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Performance Evaluation of the Consensus-Based
Distributed Subgradient Method Under Random

Communication Topologies
Ion Matei and John S. Baras, Fellow, IEEE

Abstract—We investigate collaborative optimization of an objec-
tive function expressed as a sum of local convex functions, when
the agents make decisions in a distributed manner using local in-
formation, while the communication topology used to exchange
messages and information is modeled by a graph-valued random
process, assumed independent and identically distributed. Specifi-
cally, we study the performance of the consensus-based multi-agent
distributed subgradient method and show how it depends on the
probability distribution of the random graph. For the case of a
constant stepsize, we first give an upper bound on the difference
between the objective function, evaluated at the agents’ estimates
of the optimal decision vector, and the optimal value. Second, for a
particular class of convex functions, we give an upper bound on
the distances between the agents’ estimates of the optimal deci-
sion vector and the minimizer. In addition, we provide the rate of
convergence to zero of the time varying component of the afore-
mentioned upper bound. The addressed metrics are evaluated via
their expected values. As an application, we show how the dis-
tributed optimization algorithm can be used to perform collab-
orative system identification and provide numerical experiments
under the randomized and broadcast gossip protocols.

Index Terms—Distributed, stochastic systems, sub-gradient
methods, system identification.

I. INTRODUCTION

M ULTI-AGENT distributed optimization problems ap-
pear naturally in many distributed processing problems

(such as network resource allocation, collaborative control
and estimation, etc.), where the optimization cost is a convex
function which is not necessarily separable. A distributed
subgradient method for multi-agent optimization of a sum of
convex functions was proposed in [17], where each agent has
only local knowledge of the optimization cost, i.e., knows
only one term of the sum. The agents exchange information
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according to a communication topology, modeled as an undi-
rected, time varying graph, which defines the communication
neighborhoods of the agents. The agents maintain estimates of
the optimal decision vector, which are updated in two stages.
The first stage consists of a consensus step among the estimates
of an agent and its neighbors. In the second stage, the result
of the consensus step is updated in the direction of a subgra-
dient of the local knowledge of the optimization cost. Another
multi-agent subgradient method was proposed in [9], where the
communication topology is assumed time invariant and where
the order of the two stages mentioned above is inverted.

We investigate the collaborative optimization problem in a
multi-agent setting, when the agents make decisions in a dis-
tributed manner using local information, while the communi-
cation topology used to exchange messages and information is
modeled by a graph-valued random process, assumed indepen-
dent and identically distributed (i.i.d.). Specifically, we study
the performance of the consensus-based multi-agent distributed
subgradient method proposed in [17], for the case of a constant
stepsize.

Random graphs are suitable models for networks that change
with time due to link failures, packet drops, node failures,
etc. An analysis of the multi-agent subgradient method under
random communication topologies is addressed in [14]. The au-
thors assume that the consensus weights are lower bounded by
some positive scalar and give upper bounds on the performance
metrics as functions of this scalar and other parameters of the
problem. More precisely, the authors give upper bounds on the
distance between the cost function and the optimal solution (in
expectation), where the cost is evaluated at the (weighted) time
average of the optimal decision vector’s estimate. Our main
goal is to provide upper bounds on the performance metrics,
which explicitly depend on the probability distribution of the
random graph. We first derive an upper bound on the difference
between the cost function, evaluated at the estimate, and the
optimal value. Next, for a particular class of convex functions,
we focus on the distance between the estimate of the optimal
decision and the minimizer. The upper bound we provide has
a constant component and a time varying component. For the
latter, we provide the rate of convergence to zero. The perfor-
mance metrics are evaluated via their expected values. The
explicit dependence on the graph’s probability distribution may
be useful to design probability distributions that would ensure
the best guaranteed upper bounds on the performance metrics.
This idea has relevance especially in the wireless networks,
where the communication topology has a random nature with a
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probability distribution (partially) determined by the commu-
nication protocol parameters (the reader can consult [13], [20],
where the authors introduce probabilistic models for successful
transmissions as functions of the transmission powers). As an
example of possible application, we show how the distributed
optimization algorithm can be used to perform collaborative
system identification and we present numerical experimental
results under the randomized [4] and broadcast [1] gossip
protocols. Similar performance metrics as ours are studied in
[10], where the authors generalize the randomized incremental
subgradient method and where the stochastic component in the
algorithm is described by a Markov chain, which can be con-
structed in a distributed fashion using local information only.
Newer results on the distributed optimization problem can be
found in [6], where the authors analyze distributed algorithms
based on dual averaging of subgradients, and provide sharp
bounds on their convergence rates as a function of the network
size and topology.

Notations: Let be a subset of and let be a point in
. By slight abuse of notation, let denote the distance

from the point to the set , i.e., ,
where is the standard Euclidean norm. For a twice differ-
entiable function , we denote by and the
gradient and Hessian of at , respectively. Given a symmetric
matrix , by we understand is positive (semi)
definite. The symbol represents the Kronecker product.

Let be a convex function. We denote by
the subdifferential of at , i.e., the set of all subgradients of
at :

(1)
Let be a nonnegative real number. We denote by
the -subdifferential of at , i.e., the set of all -subgradients
of at

(2)
The gradient of the differentiable function on satisfies
a Lipschitz condition with constant if

The differentiable, convex function on is strongly
convex with constant if

We will denote by LEM and SLEM the largest and second
largest eigenvalue (in modulus) of a matrix, respectively. We
will use CBMASM as the abbreviation for Consensus-Based
Multi-Agent Subgradient Method and pmf for probability mass
function.

Paper Structure: Section II contains the problem formula-
tion. In Section III, we introduce a set of preliminary results,
which mainly consist of providing upper bounds for a number
a quantities of interest. Using these preliminary results, in
Section IV we give upper bounds for the expected value of two
performance metrics: the distance between the cost function

evaluated at the estimate and the optimal solution and the
(squared) distance between the estimate and the minimizer.
Section V shows how the distributed optimization algorithm
can be used for collaborative system identification.

II. PROBLEM FORMULATION

A. Communication Model

Consider a network of agents, indexed by .
The communication topology is time varying and is modeled
by a random graph , where is the set of

vertices (nodes) and is the set of edges,
and where we used to denote the time index. The edges in the
set correspond to the communication links among agents.
Given a positive integer , the graph takes values in a
finite set at each , where the graphs

are assumed undirected and without self loops. In
other words, we will consider only bidirectional communication
topologies. The underlying random process of is assumed
i.i.d. with probability distribution ,

, where and .
Assumption 2.1: The graph resulting from the

union of all graphs in is connected, where

Let be an undirected graph with nodes and no self loops
and let be a row stochastic matrix, with positive
diagonal entries. We say that the matrix corresponds to the
graph , or the graph is induced by , if any nonzero entry

of , with , implies a link from to in and
vice-versa.

B. Optimization Model

The task of the agents consists of minimizing a convex
function . The function is expressed as a sum of

functions, i.e.,

(3)

where are convex. Formally expressed, the agents
want to cooperatively solve the following optimization problem

(4)

The fundamental assumption is that each agent has access only
to the function .

Let denote the optimal value of and let denote the
set of optimizers of , i.e., .
Let designate the estimate of the optimal decision
vector of (4), maintained by agent , at time . The agents ex-
change estimates among themselves subject to the communica-
tion topology described by the random graph .

As proposed in [17], the agents update their estimates using
a modified incremental subgradient method. Compared to the
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standard subgradient method, the local estimate is re-
placed by a convex combination of with the estimates re-
ceived from the neighbors

(5)

where is the entry of a stochastic random ma-
trix which corresponds to the communication graph .
The matrices form an i.i.d. random process taking values
in a finite set of symmetric stochastic matrices with positive di-
agonal entries , where is a stochastic matrix
corresponding to the graph , for . The
probability distribution of is inherited from , i.e.,

. The real valued
scalar is the stepsize, while the vector is a
subgradient of at , i.e., . Obviously,
when are assumed differentiable, becomes the gra-
dient of at , i.e., .

Note that the first part of (5) is a consensus step, a problem
that has received a lot of attention in recent years, both in a
deterministic ([3], [7], [8], [16], [22], [25], [26]) and a stochastic
([12], [15], [23], [24]) framework.

The consensus problem under different gossip algorithms was
studied in [1], [4], and [5]. We note that there is direct con-
nection between our communication model and the communi-
cation model used in the randomized gossip protocol [4]. In-
deed, in the case of the randomized communication protocol,
the set is formed by the graphs with only one link ,
where for some with

, while the set is formed by stochastic ma-
trices of the form ,
where the vectors represent the standard basis. Our model
can also be used to describe a modified version of the broad-
cast communication protocol [1], where we assume that when
an agent wakes up and broadcasts information to the neigh-
borhood, it receives information from the neighbors as well.
In the case of the (modified) broadcast communication pro-
tocol, the set is formed by the graphs , where contains
links between the node and the nodes in its neighborhood, de-
noted by . The probability distribution of is given by

and the set is formed by matrices
of the form , for some

.
The following assumptions, which will not necessarily be

used simultaneously, introduce properties of the function .
Assumption 2.2: (Non-Differentiable Functions):
a) The subgradients of the functions are uniformly

bounded, i.e., there exists a positive scalar such that

b) The stepsize is constant, i.e.,

c) The optimal solution set is nonempty.
Assumption 2.3: (Differentiable Functions):

a) The functions are twice continuously differentiable
on .

b) There exists positive scalars , such that

c) The stepsize is constant, i.e., for all and
satisfies the inequality

where is the smallest among all eigenvalues of matrices
, , and .

If Assumption 2.3-(a) holds, Assumption 2.3-(b) is satisfied
if the gradient of satisfies a Lipschitz condition with con-
stant and if is strongly convex with constant . Also,
under Assumptions 2.3, has one element which is the unique
minimizer of , denoted henceforth by .

III. PRELIMINARY RESULTS

In this section, we lay the foundation for our main results
in Section IV. The preliminary results introduced here revolve
around the idea of providing upper-bounds on a number of quan-
tities of interest. The first quantity is represented by the distance
between the estimate of the optimal decision vector and the av-
erage of all estimates. The second quantity is described by the
distance between the average of all estimates and the minimizer.

We introduce the average vector of estimates of the optimal
decision vector, denoted by and defined by

(6)

The dynamic equation for the average vector can be derived
from (5) and takes the form

(7)

where .
We introduce also the deviation of the local estimates

from the average estimate , which is denoted by and
defined by

(8)

and let be a positive scalar such that

Let us define the aggregate vectors of estimates, average esti-
mates, deviations and (sub)gradients, respectively,

and
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From (6) we note that the aggregate vector of average estimates
can be expressed as

where , with the identity matrix in
and the vector of all ones in . Consequently, the aggregate
vector of deviations can be written as

(9)

where is the identity matrix in . The next Proposition
characterizes the dynamics of the vector .

Proposition 3.1: The dynamic evolution of the aggregate
vector of deviations is given by

(10)

where and , with solution

(11)

where is the transition matrix of (10) defined by
, with .

Proof: From (5) the dynamics of the aggregate vector of
estimates is given by

(12)

From (9) together with (12), we can further write

By noting that

we obtain (10). The solution (11) follows from (10) together
with the observation that .

Remark 3.1: The transition matrix of the stochastic
linear equation (10) can also be represented as

(13)

where . This follows from the fact that for
any we have

Remark 3.2: (On the First and Second Moments of the Tran-
sition Matrix ): Let be a positive integer and consider
the transition matrix ,
generated by a sequence of random graphs of length , i.e.,

, for some . The random matrix
takes values of the form , with

and . The norm of a particular
realization of is given by the LEM of the matrix

product or the SLEM of , de-
noted henceforth by . Let be the
probability of the sequence of graphs that appear
during the time interval . Let be the set of se-
quences of indices of length for which the union of graphs
with the respective indices produces a connected graph, i.e.,

. Using the pre-
vious notations, the first and second moments of the norm of

can be expressed as

(14)

(15)

where and
. The integer was used as an

index for the elements of the set , i.e., for an element of the
form .

The above formulas follow from results introduced in [8],
Lemma 1, or in [22], Lemma 3.9, which state that for any
sequence of indices , the matrix product

is ergodic, and therefore , for any .
Conversely, if then . We also note that
is the probability of having a connected graph over a time
interval of length . Due to Assumption 2.1, for sufficiently
large values of , the set is nonempty. In fact, for ,

is always non-empty. Therefore, for any such that is
not empty, we have that . In general, for
large values of , it may be difficult to compute all eigenvalues

, . We can omit the necessity of computing the eigen-
values , and this way decrease the computational burden, by
using the following upper bounds on and

(16)

(17)

where and is the proba-
bility to have a connected graph over a time interval of length

. For notational simplicity, in what follows we will omit the
index when referring to the scalars and .

Throughout this paper, we will use the symbols , , and
in the sense defined within the Remark 3.2. Moreover, the value
of is chosen such that is nonempty. The existence of such
a value is guaranteed by Assumption 2.1.

The next proposition gives upper bounds on the expected
values of the norm and the squared norm of the transition matrix

.
Proposition 3.2: Let Assumption 2.1 hold, and let

be three nonnegative integer values and a positive integer,
such that the set is non-empty. Then, the following inequal-
ities involving the transition matrix of (10), hold

(18)

(19)

(20)

where and are defined in Remark 3.2.
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Proof: We fix an such that the probability of having a
connected graph over a time interval of length is positive, i.e.,

is non-empty. Note that, by Assumption 2.1, such a value
always exists (pick ). Let be the number of intervals
of length between and , i.e.,

and let be a sequence of nonnegative integers such
that , where
and . By the semigroup property of transition
matrices, it follows that

or

where we use the fact that . Using the i.i.d. as-
sumption on the random process , we can further write

which together with (14) leads to inequality (18).
Similarly, inequality (19) follows from (15) and from the i.i.d.

assumption on the random graph process.
We now turn to inequality (20). By the semigroup property

we get

where the second inequality follows from the independence of
. Inequality (20) follows from (18) and (19).

In the next lemma we show that, under Assumption 2.3, for
small enough the gradients remain bounded with
probability one for all .

Lemma 3.1: Let Assumption 2.3 hold and let
be a function given by , where

. There exists a positive scalar such that

where ,
, is the unique minimizer of ,

and and satisfy (5) and (7), respectively.
Proof: We first note that since the matrices have positive

diagonal entries, they are aperiodic and therefore .
From Assumption 2.3 it follows immediately that is a
convex, twice differentiable function satisfying

(21)

where , and is the identity matrix in
. In addition, has a unique minimizer denoted

by . The dynamics described by (5) can be compactly written
as

(22)

with .
We observe that (22) is a modified version of the gradient

method with constant step, where instead of the identity matrix,
we have that multiplies . In what follows we show
that the stochastic dynamics (22) is stable with probability one.

Using a similar idea as in [21, Th. 3, p. 25], we have that

where by virtue of (21). Hence, with proba-
bility one

But since

it follows that

where . Since by Assumption
2.3-(c) we get that and
therefore the dynamics (22) is stable with probability one and

From Assumption 2.3 we have that

(23)

We also have that

from where it follows that

(24)
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Taking the maximum among the right-hand-side terms of the
inequalities (23) and (24), the result follows.

Remark 3.3: If the stochastic matrices are generated using
a Laplacian based scheme, e.g.,

where is the Laplacian of the graph and , then
it turns out that . Hence, the inequality in Assumption
2.3-(c) is satisfied if

which is a sufficient condition for the stability of (5). In the
case of the randomized and broadcast gossip protocols it can
be checked that .

Remark 3.4: Throughout the rest of the paper, should be
interpreted in the context of the assumptions used, i.e., under
Assumption 2.2, is the uniform bound on the subgradients
of , while under Assumption 2.3, is the bound on the
gradients and given by Lemma 3.1.

The following lemma gives upper bounds on the first and the
second moments of the distance between the estimate and
the average of the estimates, .

Lemma 3.2: Under Assumptions 2.1 and 2.2 or 2.1 and 2.3,
for the sequences , generated by (5)
with a constant stepsize , the following inequalities hold:

(25)

(26)

where , and are defined in Remark 3.2.
Proof: Note that the norm of the deviation
is upper bounded by the norm of the aggregate vector of

deviations (with probability one), i.e., .
Hence, by Proposition 3.1, we have

or

where we used the fact that and ,
.

By inequality (18) of Proposition 3.2, we get

Noting that the sum can be upper bounded
by

inequality (25) follows.
We now turn to obtaining an upper bound on the second mo-

ment of .
Let be the symmetric, semi-positive defi-

nite matrix defined by

Using Proposition 3.1, it follows that satisfies the fol-
lowing dynamic equation:

(27)

where is given by

The solution of (27) is given by

For simplicity, in what follows, we will omit the matrix
from since it disappears by multiplication with the transi-
tion matrix (see Proposition 3.1). We can further write

and by noting that , we obtain

(28)

From (19) of Proposition 3.2 we obtain
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We now focus on the terms of the sum in the right-hand side
of (28). We have

Using the solution of given in (11), we get

Similarly,

We now give a more explicit formula for the matrix product

By applying the norm operator, we get

(29)

Next we derive bounds for the expected values of each of the
terms in (29). Based on the results of Proposition 3.2 we can
write

and

Therefore, we obtain

We next compute an upper bound for
. Using the fact that

and

we obtain
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Finally, we obtain an upper bound for the second moment of
:

The following lemma allows us to interpret as an -sub-
gradient of at (with being a random variable).

Lemma 3.3: Let Assumptions 2.2 or 2.3 hold. Then
the vector is an -subdifferential of at ,
i.e., and is an

-subdifferential of at , i.e., ,
for any , where

(30)
Proof: The proof is somewhat similar to the proof of

Lemma 3.4.5 of [11]. Let be a subgradient of at .
By the subgradient definition we have that

or

Furthermore, for any we have that

or

where . Using the definition of the -subgra-
dient, it follows that . Summing over all

we get that . Note, that has
a random characteristic due to the assumptions on .

For twice differentiable cost functions with lower and upper
bounded Hessians, the next result gives an upper bound on the
second moment of the distance between the average vector
and the minimizer of .

Lemma 3.4: Let Assumptions 2.1 and 2.3 hold and let
be a sequence of vectors defined by iteration (7).

Then, the following inequality holds:

(31)

where , with and is defined in Remark
3.2.

Proof: Under Assumption 2.3, is a strongly convex
function with constant , where and therefore it
follows that

(32)

We use the same idea as in the proof of Proposition 2.4 in
[18], formulated under a deterministic setup. By (7), where we
use a constant stepsize , we obtain

Using the fact that, by Lemma 3.3, is a -subdiffer-
ential of at , we have

or, from inequality (32)

Further, we can write

or

Note that from Assumption 2.3-(c), and there-
fore the quantity does not grow unbounded. It
follows that

(33)

From the expression of in Lemma 3.3, we immediately
obtain the following inequality:

(34)

The inequality
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yields

(35)
which combined with (33), generates the inequality (31).

IV. MAIN RESULTS—ERROR BOUNDS

In the following, we provide upper bounds for two perfor-
mance metrics of the CBMASM. First, we give a bound on the
difference between the best recorded value of the cost function

, evaluated at the estimate , and the optimal value .
Second, we focus on the second moment of the distance be-
tween the estimate and the minimizer of . For a par-
ticular class of twice differentiable functions, we give an upper
bound on this metric and show how fast the time varying part
of this bound converges to zero. The bounds we give in these
section emphasize the effect of the random topology on the per-
formance metrics.

The following result shows how close the cost function
evaluated at the estimate gets to the optimal value . A
similar result for the standard sub-gradient method can be found
in [19], for example.

Corollary 4.1: Let Assumptions 2.1 and 2.2 or 2.1 and 2.3
hold and let be a sequence generated by the iteration

(5), . Let
be the smallest cost value (in average) achieved by agent at
iteration . Then

(36)

Proof: Using the subgradient definition of at we
have that

Summing over all , we get

which holds with probability one. Subtracting from both
sides of the above inequality, and applying the expectation op-
erator, we further get

or

(37)

Let be an optimal point of . By (7), where we use
a constant stepsize , we obtain

and since, by Lemma 3.3, is a -subdifferential of
at , we have

or

Since

or

Adding and subtracting inside the sum of the left-
hand side of the above inequality and recalling from Lemma 3.3
that , we obtain

Using the fact that



MATEI AND BARAS: PERFORMANCE EVALUATION OF THE CONSENSUS-BASED DISTRIBUTED SUBGRADIENT METHOD 763

we get

Using inequality (34) from Lemma 3.3 we obtain

It follows that

(38)

Combining inequalities (37) and (38) and taking the limit, we
obtain

In the case of twice differentiable functions, the next result
introduces an error bound which essentially says that the esti-
mates “converge in the mean square sense to within some guar-
anteed distance” from the optimal point, distance which can be
made arbitrarily small by an appropriate choice of the stepsize.
In addition, the time-varying component of the error bound con-
verges to zero at least linearly.

Corollary 4.2: Let Assumptions 2.1 and 2.3 hold. Then, for
the sequence generated by iteration (5) we have

(39)

where

(40)

and

(41)

where with a positive constant depending on the
initial conditions, , , and where

.

Proof: By the triangle inequality we have

By the Cauchy–Schwarz inequality for the expectation operator,
we get

(42)

Inequality (31) can be further upper bounded by

where

with and being given in (40). Using the
inequalities

from (26), a new bound for is given by

where is given in (40) and

Taking the limit of (42) and recalling that under Assumptions
2.1 and 2.3, and for any , we obtain
(39).

Inequality (42) can be further upper bounded by

where , with and
. Hence, we obtained that the time varying

component of the error bound converges linearly to zero with a
factor .

A. Discussion of the Results

We obtained upper bounds on two performance metrics rele-
vant to the CBMASM. First we studied the difference between
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the cost function evaluated at the estimate and the optimal so-
lution (Corollary 4.1)—for non-differentiable and differentiable
functions with bounded (sub)gradients. Second, for a particular
class of convex functions (see Assumptions 2.3), we gave an
upper bound for the second moment of the distance between
the estimates of the agents and the minimizer. We also showed
that the time varying component of this upper bound converges
linearly to zero with a factor reflecting the contribution of the
random topology. We introduced Assumption 2.3 to cover part
of the class of convex functions for which uniform boundness
of the (sub)gradients cannot be guaranteed.

From our results we can notice that the stepsize has a sim-
ilar influence as in the case of the standard subgradient method,
i.e., a small value of implies good precision but slow rate of
convergence, while a larger value of increases the rate of con-
vergence but at a cost in accuracy. More importantly, we can
emphasize the influence of the consensus step on the perfor-
mance of the distributed algorithm. When possible, by appropri-
ately designing the probability distribution of the random graph
(together with an appropriate choice of the integer ) we can
improve the guaranteed precision of the algorithm (intuitively,
this means making the quantities and
as small as possible). In addition, the rate of convergence of
the time varying component of the error bound (41) can be im-
proved by making the quantity as small as possible. Note
however that there are limits with respect to the positive effect
of the consensus step on the rate of convergence of , since
the latter is determined by the maximum between and .
Indeed, if the stepsize is small enough, i.e.,

(43)

then the rate of convergence of is given by . This sug-
gests that having a fast consensus step will not necessarily be
helpful in the case of a small stepsize, which is in accordance
with the intuition on the role of a small value of . In the case
where inequality (43) is not satisfied, the rate of convergence of

is determined by . However, this does not necessarily
mean that the estimates will not “converge faster to within some
distance of the minimizer,” since we are providing only an error
bound.

Assume that we are using the centralized subgradient method
to minimize the convex function satis-
fying Assumption 2.2 (the subgradients of are uniformly
bounded by ), where the stepsize used is times smaller than
the stepsize of the distributed algorithm, i.e.,

where is a subgradient of at , with .
Then, from the optimization literature we get

where . From above we note
that, compared with the centralized subgradient method with
a step size times smaller than the agents’ stepsize, the dis-
tributed optimization algorithm introduced an additional term

Fig. 1. Sample space of the random graph����.

in the error bound given by , which re-
flects the influence of the dimension of the network and of the
random topology on the guaranteed accuracy of the algorithm.

Let us now assume that we are minimizing the function ,
satisfying Assumptions 2.3-(a)(b), using a centralized gradient
algorithm

where we have that is small enough
so that the algorithm is stable and there exists so that

. It follows that we can get the following
upper bound on the distance between the estimate of the optimal
decision vector and the minimizer

with . Therefore, we can see that which
shows that the rates of convergence, at which the time-varying
components of the error bounds converge to zero in the cen-
tralized and distributed cases, are the same. However, note that
we assumed the stepzise in the centralized case to be times
smaller than the stepsize used by the agents.

The error bounds (36) and (41) are functions of three quan-
tities induced by the consensus step: ,
and . These quantities show the dependence of the perfor-
mance metrics on the pmf of and on the corresponding
random matrix . The scalars and represent the first and
second moments of the SLEM of the random matrix

, corresponding to a random graph formed
over a time interval of length , respectively. We notice from
our results that the performance of the CBMASM is improved
by making , and as small as pos-
sible, i.e., by optimizing these quantities having as decision vari-
ables and the pmf of . For instance if we are interested
in obtaining a tight bound on and having a
fast decrease to zero of , we can formulate the following
multi-criteria optimization problem:

subject to

(44)

where and were defined in (40). The second inequality
constraint was added to emphasize the fact that making
too small is pointless, since that rate of convergence of is
limited by . If we are simultaneously interested in tightening
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Fig. 2. (a) Optimal � as a function of �. (b) Optimized � as a function of �. (c) Optimized ����� �� as a function of �. (d) Optimized � as a function
of �.

the upper bounds of both metrics, we can introduce the quan-
tity in the optimization problem since
and are not necessarily minimized by the same prob-
ability distribution. The solution to the above problem is a set
of Pareto points, i.e., solution points for which improvement in
one objective can only occur with the worsening of at least one
other objective.

We note that for each fixed value of , the three quantities are
minimized if the scalars and are minimized as functions of
the pmf of the random graph. An approximate solution of (44)
can be obtained by focusing only on minimizing ,
since both and are upper bounded by this quan-
tity. Therefore, an approximate solution can be obtained by min-
imizing (i.e., computing the optimal pmf) for each value of ,
and then picking the best value with the corresponding that
minimizes . Depending on the communication model
used, the pmf of the random graph can be a quantity dependent
on a set of parameters of the communication protocol (transmis-
sion power, probability of collisions, etc.), and therefore we can
potentially tune these parameters so that the performance of the
CBMASM is improved.

In what follows we provide a simple example where we show
how , the optimal probability distribution, and
evolve as functions of .

Example 4.1: Let be a random graph process taking
values in the set , with probability and , re-
spectively. The graphs and are shown in Fig. 1. Also, let

be a (stochastic) random matrix, corresponding to ,
taking values in the set , with

Fig. 2(a) shows the optimal probability that minimizes
for different values of . Fig. 2(b) shows the optimized (com-
puted at ) as a function of . Figs. 2(c) and 2(d) show the
evolution of the optimized and as functions of

, from where we notice that a Pareto solution is obtained for
and .

In order to obtain the solution of problem (44), we need to
compute the probability of all possible sequences of length

produced by , together with the SLEM of their cor-
responding stochastic matrices. This task, for large values of

and may prove to be numerically expensive. We can
somewhat simplify the computational burden by using the
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bounds on and introduced in (16) and (17), respectively.
Note that every result concerning the performance metrics still
holds. In this case, for each value of , the upper bound on is
minimized, when is maximized, which can be interpreted
as having to choose a pmf that maximizes the probability of
connectivity of the union of random graphs obtained over a
time interval of length .

Even in the case where we use the bound on , it may be very
difficult to compute the expression for , for large values of

(the set may allow for a large number of possible unions
of graphs that produce connected graphs). Another way to sim-
plify our problem even more, is to (intelligently) fix a value for

and try to maximize having as decision variable the pmf.
We note that should be chosen such that, within a time in-
terval of length , a connected graph can be obtained. Also, a
very large value for should be avoided, since is
lower bounded by . Although in general the uniform distribu-
tion does not necessarily minimize , it becomes the optimizer
under some particular assumptions, stated in what follows. Let

be such that a connected graph can be obtained only over a
time interval of length (i.e., in order to form a connected
graph, all graphs in must appear within a sequence of length

). Choose as the value for . It follows that can be
expressed as

We can immediately observe that is maximized for the uni-
form distribution, i.e., , for .

V. APPLICATION—DISTRIBUTED SYSTEM IDENTIFICATION

In this section, we show how the distributed optimization al-
gorithm analyzed in the previous section can be used to per-
form collaborative system identification. We assume the fol-
lowing scenario: a group of sensors track an object by taking
measurements of its position. These sensors have memory and
computation capabilities and are organized in a communication
network modeled by a random graph process satisfying
the assumptions introduced in Section II. The task of the sen-
sors/agents is to determine a parametric model of the object’s
trajectory. The measurements are affected by noise, whose ef-
fect may differ from sensor to sensor (i.e., some sensors take
more accurate measurements than others). This can happen for
instance when some sensors are closer to the object than other
(allowing a better reading of the position), or sensors with dif-
ferent precision classes are used. Determining a model for the
time evolution of the object’s position can be useful in motion
prediction when the motion dynamics of the object in unknown
to the sensors. The notations used in the following are indepen-
dent from the ones used in the previous sections.

A. System Identification Model

Let be the position vector of the
tracked object. We model the time evolution of each of the axis

of the position vector as a time dependent polynomial of degree
, i.e.,

(45)

The measurements of each sensor are given by

(46)

where , , and are assumed white noises of
(unknown) variances , , and , respectively. Equiva-
lently, we have

(47)

where and ,
, and .

In the following, we focus only on one coordinate of the po-
sition vector, say . The analysis, however can be mimicked
in a similar way for the other two coordinates. Let be the total
number of measurements taken by the sensors and consider the
following quadratic cost functions

Using its own measurements, sensor can determine a para-
metric model for the time evolution of the coordinate by
solving the optimization problem

(48)

Let be the vector of measurements of
sensor and let be the matrix formed by
the regression vectors. It is well known that the optimal solution
of (48) is given by

(49)

Remark 5.1: It can be shown that is invertible for any ,
but it becomes ill conditioned for large values of . That is why,
for our numerical simulations, we will in fact use an orthogonal
basis to model the time evolution of the coordinates , ,
and .

Performing a localized system identification does not take
into account the measurements of the other sensors, which can
potentially enhance the identified model. If all the measure-
ments are centralized, a model for the time evolution of
can be computed by solving
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Fig. 3. Circular graph with � � �.

where

(50)

Note that (50) fits the framework of the distributed optimiza-
tion problem formulated in the previous sections, and therefore
can be solved distributively, eliminating the need for sharing all
measurements with all other sensors.

Remark 5.2: If each sensor has a priori information about its
accuracy, then the cost function (50) can be replaced with

(51)

where is a positive scalar such that the more accurate sensor
is, the larger is. The scalar can be interpreted as trust in

the measurements taken by sensor . The sensors can use local
identification to compute . For instance, can be chosen
as , where is given by

where is the local estimate of the model for the time evolu-
tion of .

The distributed optimization algorithm (5) can be written as

(52)

where .

B. Numerical Simulations

In this section, we simulate the distributed system identifica-
tion algorithm under two gossip communication protocols: the
randomized gossip protocol and the (modified) broadcast gossip
protocol. We perform the simulations on a circular graph, where
we assume that the cardinality of the neighborhoods of the nodes
is two (see Fig. 3). This graph is a particular example of small
world graphs [27] (for an analysis of the consensus problem
under small world like communication topologies, the reader
can consult [2] for example).

In the case of the randomized gossip protocol, the set of con-
sensus matrices is given by

where and where by con-
vention we assume that if then and if
then . We assume that if node wakes up, it chooses
with uniform distribution between its two neighbors. Hence, the
probability distribution of the random matrix is given by

We note that the minimum value of such that is
. Recall that is the length of a time interval such that

for any . It turns out that for

Interestingly, the matrix products of length of the form
with , and the ma-

trix products that may be obtained by the permutations of the
matrices in the aforementioned matrix products, have the same
SLEM (where the summations in the indices are seen as modulo

). In fact, it is exactly this property that allows us to give the
following explicit expression for

(53)

where is the SLEM of the matrix product
.

In the case of the (modified) broadcast gossip protocol, the
set is given by

where
and . For odd values of (and

), the minimum value of such that is given by
. In addition, we have that

Observing a similar phenomenon as in the case of the ran-
domized gossip protocol, namely that the matrix products

for and
their permutations have the same SLEM (where as before the
summations of indices are seen as modulo ), we obtain the
formula

where is the SLEM of the matrix product .
The values for and computed above, in the

case of the two gossip protocols, do not necessarily provide tight
error bounds, since we considered minimal time interval lengths
so that . Even for this relatively simple type of graph,
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Fig. 4. Estimates of �,������� and � for the randomized gossip protocol
and for � � ��.

analytical formulas for , for large values of , are more dif-
ficult to obtain due to an increase in combinatorial complexity
and because different matrix products that appear in the expres-
sion of do not necessarily have the same SLEM. However,
we did compute numerical estimates for different values of .

Fig. 5. Estimates of �, ���� � ��, and � for the (modified) broadcast
gossip protocol and for � � ��.

Figs. 4 and 5 show estimates of the three quantities of interest,
, and , as functions of , for (the

estimates were computed by taking averages over 2000 realiza-
tions and are shown together with the 95% confidence intervals).
We can see that is minimized for in the
case of the randomized gossip protocol and for in the
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Fig. 6. Trajectory of the object.

case of the broadcast gossip protocol, while the best achievable
are approximately equal for the two protocols, (i.e., 0.985.

for the randomized gossip protocol and 0.982 for the broadcast
gossip protocol).

Next we present numerical simulations of the distributed
system identification algorithm presented in the previous sub-
section, under the randomized and broadcast gossip protocols.
We would like to point out that, in order to maintain numerical
stability, in our numerical simulation we used an orthogonal-
ized version of , given by , where ’s columns form
an orthogonal basis of the range of , and the new vector of
the parameters is given , where is a linear transfor-
mation matrix, whose entries depend on the orthogonalization
process used (Gram–Schmidt, Householder transformations,
etc.). Therefore, the cost function we are minimizing can be
rewritten as

where .
It is easy to check that in the case of the two protocols,

(the smallest of all eigenvalues of matrices belonging to the set
) is zero. In addition, Assumption 2.3-(a)(b) are satisfied for

, and for the distributed optimization
algorithm is guaranteed to be stable with probability one (recall
Lemma 3.1). From above we see that cannot attain a value
less than 0.98 for both protocols, for any . Therefore, although
we can choose , which in turn implies , our
analysis cannot guarantee a rate of convergence for smaller
than 0.98, since the rate of convergence is upper bounded by the
maximum between and . However, this does not mean
that faster rates of convergence can not be achieved, which in
fact is shown in our numerical simulations.

In our numerical experiments we considered a number
of measurements of the -coordinate of the trajectory de-

picted in Fig. 6. Figs. 7 and 8 present numerical simulations of
the distributed system identification algorithm for the two pro-
tocols and for a circular graph with . We assumed that
the -coordinate measurements are affected by white, Gaussian
noise with a signal-to-noise ration given by

dB, for . The time polynomials modeling the
trajectory evolution are chosen of degree ten, i.e., .
We plot estimates of two metrics: and

Fig. 7. Estimate of ��� ����� ������ �� for the randomized and broadcast
gossip protocols.

for different values of (the estimates
were computed by taking averages over 500 realizations). We
note that for larger values of , under the two protocols, the
algorithm has roughly the same rate of convergence, but the
broadcast protocol is more accurate. This is in accordance with
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Fig. 8. Estimate of ��� ������ ������ � for the randomized and broad-
cast protocol gossip protocols.

our analysis, since as Figs. 4 and 5 show,
for any , quantities which control the guaran-

teed accuracy. For smaller values of , under both protocols the
algorithm becomes more accurate and the rate of convergence

decreases since the parameter becomes larger and therefore
dominant.

VI. CONCLUSION

In this paper, we studied a multi-agent subgradient method
under random communication topology. Under an i.i.d. as-
sumption on the random process governing the evolution of the
topology, we derived upper bounds on two performance metrics
related to the CBMASM. The first metric reflects how close
each agent can get to the optimal value. The second metric
reflects how close and fast the agents’ estimates of the decision
vector can get to the minimizer of the objective function, and
it was analyzed for a particular class of convex functions. All
the aforementioned performance measures were expressed in
terms of the probability distribution of the random communi-
cation topology. In addition, we showed how the distributed
optimization algorithm can be used to perform collaborative
system identification, an application which can be useful in
collaborative tracking.
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