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Abstract— We consider the problem of a group of agents
whose objective is to asymptotically reach agreement of opinion.
The agents exchange information subject to a communication
topology modeled by a time varying graph. The agents use a
probabilistic algorithm under which at each time instant an
agent updates its state by probabilistically choosing from its
current state/opinion and the ones of its neighbors. We show
that under some minimal assumptions on the communication
topology (infinitely often connectivity and bounded intercom-
munication time between agents), the agents reach agreement
with probability one. We show that this algorithm has the
same geometric properties as the linear consensus algorithm
in R

n. More specifically, we show that the probabilistic update
scheme of an agent is equivalent to choosing a point from the
(generalized) convex hull of its current state and the states of
its neighbors; convex hull defined on a particular convex metric
space where the states of the agents live and for which a detailed
description is given.

I. Introduction

A consensus problem consists of a group of dynamic

agents who seek to agree upon certain quantities of interest

by exchanging information among themselves according to

a set of rules. This problem can model many phenomena

involving information exchange between agents such as

cooperative control of vehicles, formation control, flocking,

synchronization, parallel computing, agreeing on a common

decision, etc. Distributed computation over networks has a

long history in control theory starting with the work of

Borkar and Varaiya [1], Tsitsiklis, Bertsekas and Athans

[25], [26] on asynchronous agreement problems and parallel

computing. A theoretical framework for solving consensus

problems was introduced by Olfati-Saber and Murray in

[18], [19], while Jadbabaie et al. studied alignment problems

[5] for reaching an agreement. Relevant extensions of the

consensus problem were done by Ren and Beard [16], by

Moreau in [11] or, more recently, by Nedic and Ozdaglar in

[14], [13].

In the following, we first introduce a probabilistic algo-

rithm which ensures convergence to the same opinion with

probability one and which can be applied to the scenario

discussed above. Under this algorithm the state of an agent

is updated by choosing probabilistically from the set of
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current states/opinions of the agent and its neighbors. Ini-

tially, we prove the convergence of this algorithm by using

purely probability theory arguments. Second, we address the

geometric properties of the aforementioned algorithm and

show that it has similar geometric properties as the linear

consensus algorithm in R
n [2],[25],[26]. We introduce the

notion of convex metric space, which is a metric space

endowed with a convex structure. Using the convex structure,

the notion of a convex hull is generalized. Next we refer to

a result about the generalized asymptotic consensus problem

[8], which states that if an agent updates its state by choosing

as new state a point from (a subset of) the (generalized)

convex hull of the current state of the agent and the states of

its neighbors, then asymptotic agreement is guaranteed. We

show that the probabilistic algorithm for reaching consensus

of opinion fits the framework of the generalized asymptotic

consensus problem for a particular convex metric space (with

a particular convex structure). More specifically, choosing

with some probability as new state an opinion from the

current states of its own and its neighbors, an agent in fact

chooses a point from the convex hull of its current state and

the states of its neighbors, belonging to the particular metric

space. We define the convex structure for this convex metric

space and in particular we give a detailed description of the

convex hull of a finite set of points. We end our analysis

by taking a closer look on the probabilistic convergence

properties of the agreement algorithm.

The paper is organized as follows. In Section II we

formulate the problem studied in this paper and present the

main assumptions. In Section III we introduce a probabilistic

consensus of opinion algorithm together with a proof of

convergence, using probability theory arguments. In Section

IV we present a generalization of the consensus problem on

convex metric spaces together with a general convergence

result. In Section V we make use of the machinery introduced

in the previous section to study the geometric properties of

the probabilistic consensus of opinion algorithm.

Some basic notations: Given W ∈Rn×n by [W]i j we refer

to the (i, j) element of the matrix. The underlying graph of

W is a graph of order n for which every edge corresponds

to a non-zero, non-diagonal entry of W. We will denote by

1{A} the indicator function of event A. Given some space X

we denote by P(X) the set of all subsets of X.

II. Problem formulation

We assume that the objective of a group of n agents

indexed by i is to agree on an opinion. We model the

set of opinions by a finite set of distinct integers, say

S = {1,2, . . . , s} for some positive integer s, where each
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element of S refers to a particular opinion. The goal of the

agents is to reach the same opinion by repeatedly exchanging

messages among themselves. By denoting the time-index

by k, the message exchanges are performed subject to a

communication topology modeled by a time varying graph

G(k) = (V,E(k)), where V represents the finite set of vertices

(agents) and E(k) represents the time varying set of edges. If

an arc from node j to node i exits at time k, then this means

that agent j sends a message to agent i.

Similar to the communication models used in [26], [2],

[12], we impose minimal assumptions on the connectivity

of the communication graph G(k). Basically, these assump-

tions consist of having the communication graph connected

infinitely often and having bounded intercommunication in-

terval between neighboring nodes.

Assumption 2.1 (Connectivity): The graph (V,E∞) is con-

nected, where E∞ is the set of edges (i, j) representing agent

pairs communicating directly infinitely many times, i.e.,

E∞ = {(i, j) | (i, j) ∈ E(k) for infinitely many indices k}

Assumption 2.2 (Bounded intercommunication interval):

There exists an integer B ≥ 1 such that for every (i, j) ∈ E∞
agent j sends his/her information to the neighboring agent i

at least once every B consecutive time slots, i.e. at time k

or at time k+1 or . . . or (at latest) at time k+B−1 for any

k ≥ 0.

Assumption 2.2 is equivalent to the existence of an integer

B ≥ 1 such that

(i, j) ∈ E(k)∪E(k+1)∪ . . .∪E(k+B−1), ∀(i, j) ∈ E∞ and ∀k.

We denote by X the space of discrete random variables

defined on the probability space (Ω,F ,P), taking values in

the set S . We denote by Xi(k) the state of agent i at time k,

which are random processes defined on (Ω,F ,P).

Let Ni(k) denote the communication neighborhood of

agent i, which contains all nodes sending information to

i at time k, i.e. Ni(k) = { j | e ji(k) ∈ E(k)} ∪ {i}, which by

convention contains the node i itself. We denote by Ai(k) ,

{X j(k), j ∈ Ni(k)} the set of the states of agent i’s neighbors

(its own included), and by A(k) , {Xi(k), i = 1 . . .n} the set of

all states of the agents.

We introduce the following definitions of consen-

sus/agreement.

Definition 2.1: We say that the agents reach agreement (a)

1) in probability, if

lim
k→∞

Pr

(

max
i, j
|Xi(k)−X j(k)| = 0

)

= 1.

2) in almost sure sense (with probability one), if

Pr

(

lim
k→∞

max
i, j
|Xi(k)−X j(k)| = 0

)

= 1.

In the following section we introduce a probabilistic

algorithm which, under Assumptions 2.1 and 2.2 ensures

convergence to agreement in the sense of Definition 2.1. In

addition, the geometric properties of this algorithm will be

investigated.

III. Probabilistic Consensus of Opinion Algorithm

In this section we introduce a simple probabilistic algo-

rithm which ensures convergence to agreement in the sense

of Definition 2.1. Using purely probability theory arguments,

we prove the convergence of this algorithm for the special

case where the communication topology is fixed (time in-

variant) and connected. However, we later generalized the

result to hold under the more general Assumptions 2.1 and

2.2.

Let θi(k), i = 1 . . .n be a set of independent random

processes defined on the probability space (Ω,F ,P), taking

values in the finite set {1,2, . . . ,n}. The statistics of θi(k) is

known by agent i and is given by Pr(θi(k) = j) =wi j(k), with
∑n

j=1 wi j(k) = 1.

Assumption 3.1: The probability distributions of the ran-

dom processes θi(k) have the properties:

1) wi j(k) > 0 for j ∈Ni(k) and wi j(k) = 0 for j <Ni(k), for

all i and k;

2) there exists a positive scalar λ small enough (i.e. much

smaller than 1/n) such that wi j(k) ≥ λ for j ∈Ni(k), for

all i and k.

We assume that at each time instant, the agents update

their state according to the scheme

Xi(k+1) =
∑

j∈Ni(k)

1{θi(k)= j}X j(k), ∀i, (1)

where the initial states Xi(0)’s take values in S with some

probability distribution. We note that (1) can be equivalently

written as

Xi(k+1) = X j(k) with probability wi j(k), (2)

for all i and j ∈ Ni(k). However, (1) exhibits a linearity

property in terms of the neighboring states (familiar to the

consensus problem in R
n) which is going to be useful in

proving some later results.

In what follows, using purely probability theory argu-

ments, we prove that under the update scheme (1), indeed

the agents converge to the same opinion in the sense of

Definition 2.1. For simplicity, we assume that the commu-

nication graph is fixed for all time and connected. We will

however prove the convergence results under more general

assumptions, but using a different machinery.

Proposition 3.1: Let Assumption 3.1 hold and assume

that the communication graph G(k) is time invariant and

connected. In addition, assume that the coefficients wi j(k)

defining the probability distributions of the random process

θi(k) are constant for all time instances. If the agents update

their states according to the scheme (1), i.e.

Xi(k+1) =
∑

j∈Ni

1{θi(k)= j}X j(k), (3)

then the agents reach agreement with probability one in the

sense of Definition 2.1.

Proof: We define the random process Z(k) =

(X1(k),X2(k), . . . ,Xn(k)) which has a maximum of ss states

and we introduce the agreement space

A , {(o,o, . . . ,o) | o ∈ S }.
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From (3), the probability of Xi(k+1) conditioned on X j(k), j ∈

Ni is given by

Pr(Xi(k+1) = oi|X j(k) = o j, j ∈ Ni) =
∑

j∈Ni

wi j1{oi=o j}. (4)

It is not difficult to note that Z(k) is a finite state,

homogeneous Markov chain. We will show that Z(k) has s

absorbing states and all other ss− s states are transient, where

the absorbing states correspond to the states in the agreement

space A. Using the independence of the random processes

θi(k), the entries of the probability transition matrix of Z(k)

can be derived from (4) and are given by

Pr(X1(k+1) = ol1 , . . . ,Xn(k+1) = oln |X1(k) = op1
, . . .

. . . ,Xn(k) = opn) =
∏n

i=1

∑

j∈Ni
wi j1{li=p j}.

(5)

We note from (5) that once the process reaches an agreement

state it will stay there indefinitely, i.e.

Pr(X1(k+1) = o, . . . ,Xn(k+1) = o|X1(k) = o, . . .

. . . ,Xn(k) = o) = 1, ∀o ∈ S ,

and hence the agreement states are absorbing states. We
will show next that, under the connectivity assumption, the
agreement space A is reachable from any other state, and
therefore all other states are transient. We are not saying that
all agreement states are reachable from any other state, but
that from any state at least one agreement state is reachable.
Let (o1,o2, . . . ,on) <A, with o j ∈ S , j = 1 . . .n be an arbitrary
state. We first note that from this state only agreement states
of the form (o j,o j, . . . ,o j) can be reached. Given that X j(0)=
o j, we show that with positive probability the agreement
vector (o j,o j, . . . ,o j) can be reached. At time slot one, with
probability w j j agent j keeps its initial choice, while its
neighbors to which it sends information can choose o j with
some positive probability, i.e. Xi(1)= o j with probability wi j,
for all i such that j ∈Ni. Due to the connectivity assumption
there exists at least one i such that j ∈ Ni. At the next time-
index all the agents which have already chosen o j keep their
opinion with positive probability, while their neighbors will
choose o j with positive probability. Since the communication
network is assumed connected, every agent will be able to
choose o j with positive probability in at most n− 1 steps,
therefore an agreement state can be reached with positive
probability. Hence, from any initial state (o1,o2, . . . ,on) <A,
all agreement states of the form (o j,o j, . . . ,o j) with j = 1 . . .n
are reachable with positive probability. Since the agreement
states are absorbing states, it follows that (o1,o2, . . . ,on) <A
is a transient state. Therefore, the probability for the Markov
chain Z(k) to be in a transient state converges asymptotically
to zero, while the probability to be in one of the agreement
states converges asymptotically to one, i.e.

lim
k→∞

Pr(Z(k) <A) = lim
k→∞

Pr



















⋃

i, j

{

Xi(k) , X j(k)
}



















= 0. (6)

Given an arbitrary ǫ > 0, we define the event

Bk(ǫ) ,

{

ω : max
i, j
|Xi(k)−X j(k)| > ǫ

}

.

But since

Bk(ǫ) =
⋃

i, j

{

|Xi(k)−X j(k)| > ǫ
}

⊆
⋃

i, j

{

Xi(k) , X j(k)
}

,

from (6) it follows that

lim
k→∞

Pr (Bk(ǫ)) ≤ lim
k→∞

Pr



















⋃

i, j

{

Xi(k) , X j(k)
}



















= 0,

and hence the agents asymptotically agree in probability

sense. In addition, due to the geometric decay toward zero

of the probability Pr(Z(k) <A), by the Borel-Cantelli Lemma

the result follows.

In the next sections we study the geometric properties of

the consensus of opinion algorithm introduced above, based

on the theory of convex metric spaces.

IV. The Asymptotic Consensus Problem on ConvexMetric

Spaces

In this section we present a generalization of the consensus

problem on convex metric spaces. We first give a brief

introduction on convex metric spaces followed by the results

concerning the consensus problem. This theory will be used

as framework for studying the geometric properties of the

probabilistic consensus of opinion algorithm presented in the

previous section. A detailed version of this section with the

detailed proofs of the results stated here can be found in [7],

[8].

A. Definitions and Results on Convex Metric Spaces

For more details about the following definitions and results

the reader is invited to consult [27],[28].

Definition 4.1: Let (X,d) be a metric space. A mapping

ψ : X×X× [0,1]→X is said to be a convex structure on X

if

d(u,ψ(x,y,λ)) ≤ λd(u, x)+ (1−λ)d(u,y), (7)

for all x,y,u ∈ X and for all λ ∈ [0,1].

Definition 4.2: The metric space (X,d) together with the

convex structure ψ is called convex metric space.

Definition 4.3: Let X be a convex metric space. A

nonempty subset K ⊂ X is said to be convex if ψ(x,y,λ) ∈ K,

∀x,y ∈ K and ∀λ ∈ [0,1].

We define the set valued mapping ψ̃ : P(X)→P(X) as

ψ̃(A) , {ψ(x,y,λ) | ∀x,y ∈ A,∀λ ∈ [0,1]}, (8)

where A is an arbitrary set in X.

In [28] it is shown that, in a convex metric space, an

arbitrary intersection of convex sets is also convex and

therefore the next definition makes sense.

Definition 4.4: The convex hull of the set A ⊂ X is the

intersection of all convex sets in X containing A and is

denoted by conv(A).

Another characterization of the convex hull of a set in X is

given in what follows. By defining Am , ψ̃(Am−1) with A0 = A

for some A ⊂ X, it is shown in [27] that the set sequence

{Am}m≥0 is increasing and limsup Am exits, and limsup Am =

liminf Am = lim Am =
⋃∞

m=0 Am.

Proposition 4.1 ([27]): Let X be a convex metric space.

The convex hull of a set A ⊂ X is given by

conv(A) = lim Am =

∞
⋃

m=0

Am. (9)
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It follows immediately from above that if Am+1 = Am for

some m, then conv(A) = Am.

For a positive integer n, let A = {x1, . . . , xn} be a finite

set in X with convex hull conv(A) and let z belong to

conv(A). By Proposition 4.1 it follows that there exists a

positive integer m such that z ∈ Am. But since Am = ψ̃(Am−1)

it follows that there exists z1,z2 ∈ Am−1 and λ(1,2) ∈ [0,1] such

that z = ψ(z1,z2,λ(1,2)). Similarly, there exists z3,z4,z5,z6 ∈

Am−2 and λ(3,4),λ5,6 ∈ [0,1] such that z1 = ψ(z3,z4,λ(3,4)) and

z2 = ψ(z5,z6,λ(5,6)). By further decomposing z3,z4,z5 and z6

and their followers until they are expressed as functions of

elements of A and using a graph theory terminology, we note

that z can be viewed as the root of a weighted binary tree

with leaves belonging to the set A. Each node α (except the

leaves) has two children α1 and α2, and are related through

the operatorψ in the sense α=ψ(α1,α2,λ) for some λ ∈ [0,1].

The weights of the edges connecting α with α1 and α2 are

given by λ and 1−λ respectively.

From the above discussion we note that for any point z ∈

conv(A) there exists a non-negative integer m such that z

is the root of a binary tree of height m, and has as leaves

elements of A. The binary tree rooted at z may or may not be

a perfect binary tree, i.e. a full binary tree in which all leaves

are at the same depth. That is because on some branches of

the tree the points in A are reached faster than on others.

Let ni denote the number of times xi appears as a leaf node,

with
∑n

i=1 ni ≤ 2m and let mil be the length of the ith
l

path

from the root z to the node xi, for l = 1 . . .ni. We formally

describe the paths from the root z to xi as the set

Pz,xi
,

{(

{yil, j}
mil

j=0
, {λil , j}

mil

j=1

)

| l = 1 . . .ni

}

, (10)

where {yil j}
mil

j=0
is the set of points forming the il

th path,

with yil,0 = z and yil,mil
= xi and where {λil, j}

mil

j=1
is the set

of weights corresponding to the edges along the paths, in
particular λil, j being the weight of the edge (yil, j−1,yil, j). We
define the aggregate weight of the paths from root z to node
xi as

W(Pz,xi
) ,

ni
∑

l=1

mil
∏

j=1

λil , j. (11)

It is not difficult to note that all the aggregate weights of

the paths from the root z to the leaves {x1, . . . , xn} sum up to

one, i.e.
n

∑

i=1

W(Pz,xi
) = 1.

Next, we define an approximation of the convex hull of a

finite set of points.

Definition 4.5: Given a small enough positive scalar λ < 1,

we denote by Cλ(A) the sub-set of conv(A) consisting in all

points in conv(A) for which there exists at least one tree

representation whose aggregate weights are lower bounded

by λ, i.e.

Cλ(A) , {z | z ∈ conv(A),W(Pz,xi
) ≥ λ, ∀xi ∈ A}. (12)

Remark 4.1: By a small enough value of λ we understand

a value such that the inequality W(Pz,xi
) ≥ λ is satisfied for

all i. Obviously, for n agents λ needs to satisfy λ ≤ 1
n
, but

Fig. 1. The decomposition of a point z ∈ A3 with A = {x1 , x2, x3}

usually we would want to choose a value much smaller then

1/n since this implies a richer set Cλ(A).

Remark 4.2: We can iteratively generate points for which

we can make sure that they belong to the convex hull of

a finite set A = {x1, . . . , xn}. Given a set of positive scalars

{λ1, . . . ,λn−1} ∈ (0,1), consider the iteration

yi+1 = ψ(yi, xi+1,λi) for i = 1 . . .n−1 with y1 = x1. (13)

It is not difficult to note that yn is guaranteed to belong to

conv(A). In addition, if we impose the condition

λ
1

n−1 ≤ λi ≤
1− (n−1)λ

1− (n−2)λ
, i = 1 . . .n−1, (14)

and λ respects the inequality

λ
1

n−1 ≤
1− (n−1)λ

1− (n−2)λ
, (15)

then yn ∈ Cλ(A). We should note that for any n ≥ 2 we can

find a small enough value of λ such that the inequality (15)

is satisfied.

B. Consensus algorithm on convex metric spaces

We consider a convex metric space (X,d,ψ) and a set of n

agents indexed by i which take values on X. The communi-

cation model is identical to the one described in Section II.

The Assumptions 2.1 and 2.2 on the communication model

and the notations for the communication neighborhoods are

kept valid throughout this section, as well. In what follows

we denote by xi(k) the value or state of agent i at time k.

Definition 4.6: We say that the agents asymptotically

reach consensus (or agreement) if

lim
k→∞

d(xi(k), x j(k)) = 0, ∀i, j, i , j. (16)

The following theorem introduces the generalized asymp-

totic consensus algorithm on convex metric spaces.

Theorem 4.1: Let Assumptions 2.1 and 2.2 hold for G(k)

and let λ < 1 be a positive scalar sufficiently small. If agents

update their state according to the scheme

xi(k+1) ∈ Cλ(Ai(k)), ∀i, (17)

then they asymptotically reach consensus, i.e.

lim
k→∞

d(xi(k), x j(k)) = 0, ∀i, j, i , j. (18)
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In addition, the decrease of the distances between the state of

the agents is (at least) geometric, i.e. there exist two positive

constants c and γ, with γ < 1, such that

d(xi(k), x j(k)) ≤ cγk, ∀i , j. (19)

The proof of this theorem can be found in Section IV of

[8] (proof of Theorem 3.1).

In fact, we can show that not only the distances between

the agents’ states converge to zero, but the agents’ states

converge to some fixed value, common for all agents.

Corollary 4.1: Let Assumptions 2.1 and 2.2 hold for G(k)

and let λ < 1 be a positive scalar sufficiently small. If agents

update their state according to the scheme

xi(k+1) ∈ Cλ(Ai(k)), ∀i, (20)

then there exists x∗ ∈ X such that

lim
k→∞

d(xi(k), x∗) = 0, ∀i. (21)

V. The Geometry of the Consensus of Opinion Algorithm

In this section we show that (2) respects the update scheme

introduced in Theorem 5.1 for the generalized consensus

problem, for a particular metric space and convex structure.

A. Geometric framework

As introduced in Section II, in what follows, by X we

understand the space of discrete random variables taking

values in S . We introduce the operator d :X×X→R, defined

as

d(X,Y) = E[ρ(X,Y)],

where ρ : R×R→ {0,1} is the discrete metric, i.e.

ρ(x,y) =

{

1 x , y

0 x = y

It is not difficult to note that the operator d can also be

written as d(X,Y) = E[1{X,Y}] = Pr(X , Y), where 1{X,Y} is

the indicator function of the event {X , Y}.

We note that for all X,Y,Z ∈ X, the operator d satisfies the

following properties (a)

1) d(X,Y) = 0 if and only if X = Y with probability one,

2) d(X,Z)+d(Y,Z) ≥ d(X,Y) with probability one,

3) d(X,Y) = d(Y,X),

4) d(X,Y) ≥ 0,

and therefore is a metric on X. The space X together with

the operator d define the metric space (X,d).

Let θ ∈ {1,2} be an independent random variable, with

probability mass function Pr(θ= 1)= λ and Pr(θ = 2)= 1−λ,

where λ ∈ [0,1]. We define the mapping ψ :X×X×[0,1]→X

given by

ψ(X1,X2,λ) = 1{θ=1}X1+1{θ=2}X2, ∀X1,X2 ∈ X,λ ∈ [0,1].

(22)

Proposition 5.1: The mapping ψ is a convex structure on

X.

Proof: For any U,X1,X2 ∈ X and λ ∈ [0,1] we have

d(U,ψ(X1,X2,λ)) = E[ρ(U,ψ(X1,X2,λ))] =

= E[E[ρ(U,ψ(X1,X2,λ))|U,X1,X2]] =

= E[E[ρ(U,1{θ=1}X1 +1{θ=2}X2)]|U,X1,X2] =

= E[λρ(U,X1)+ (1−λ)ρ(U,X2)] =

= λd(U,X1)+ (1−λ)d(U,X2).

From the above proposition it follows that (X,d,ψ) is a

convex metric space.

The next theorem characterizes the convex hull of a finite

set in X.

Theorem 5.1: Let n be a positive integer and let A =

{X1, . . . ,Xn} be a set of points in X. Consider an independent

random variable θ taking values in the set {1,2, . . . ,n} with

probability mass function given by Pr(θ = i) = wi, for some

non-negative scalars wi, with
∑n

i=1 wi = 1. Then

conv(A) =















Z ∈ X | Z =

n
∑

i=1

1{θ=i}Xi, ∀wi ≥ 0,

n
∑

i=1

wi = 1















.

(23)

The proof of this result is given in [8] as the proof of

Theorem 6.1.

Corollary 5.1: Let n be a positive integer, let A =

{X1, . . . ,Xn} be a set of points in X and let λ < 1 be a

positive scalar sufficiently small. Consider an independent

random variable θ taking values in the set {1,2, . . . ,n} with

probability mass function given by Pr(θ = i) = wi, for some

positive scalars wi, with
∑n

i=1 wi = 1. Then

Cλ(A) =















Z ∈ X | Z =

n
∑

i=1

1{θ=i}Xi, ∀wi ≥ λ,

n
∑

i=1

wi = 1















.

(24)

Proof: Follows immediately from Definition 4.5 and

Theorem 5.1.

B. Convergence of the Consensus of Opinion Algorithm

In this section we give a general convergence result for the

state update scheme (1), by using the machinery introduced

in Section IV.

Corollary 5.2: Let Assumptions 2.1 and 2.2 hold for G(k)

and let Assumption 3.1 hold for the random processes θi(k).

If the agents update their state according to the scheme (1),

then the agents converge to consensus with probability one

(in the sense of Definition 2.1).

Proof: By Corollary 5.1, from (1) we have that

Xi(k+1) ∈ Cλ(Ai(k)), ∀i,k

However, by Theorem 4.1, we get that

lim
k→∞

d(Xi(k),X j(k)) = 0, ∀i , j.

Recall that we defined the distance between two points

X1,X2 ∈ X as

d(X1,X2) = E[ρ(X1,X2)] = Pr(X1 , X2).

Therefore, we have that

lim
k→∞

Pr(Xi(k) , X j(k)) = 0. (25)
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This says that the measure of the set on which Xi(k) and

X j(k) are different converges to zero as k goes to infinity,

i.e. the agents asymptotically agree in probability sense. In

what follows we show that in fact the agents asymptotically

agree with probability one (or in almost sure sense).

Given an arbitrary ǫ > 0, we define the event

Bk(ǫ) , {ω : max
i, j
|Xi(k)−X j(k)| > ǫ}.

An upper bound on the probability of the event Bk(ǫ) is given

by

Pr(Bk(ǫ)) = Pr
(

⋃

i, j

{

ω : |Xi(k)−X j(k)| > ǫ
})

≤

≤
∑

i, j Pr
(

|Xi(k)−X j(k)| > ǫ
)

≤
∑

i, j Pr
(

Xi(k) , X j(k)
)

.

(26)

From (25) and (26) we obtain

lim
k→∞

Pr (Bk(ǫ)) = 0.

By Theorem 4.1, we have that d(Xi(k),X j(k)) = Pr(Xi(k) ,

X j(k)), converge at least geometrically to zero. Therefore
∑

k≥0

Pr(Bk(ǫ)) <∞,

and by the Borel-Cantelli lemma it follows that

Pr

(

lim
k→∞

max
i, j
|Xi(k)−X j(k)| = 0

)

= 1.

Remarkably, it can be shown that Xi(k) converge in distri-

bution to a random variable X∗ given by

X∗ =

n
∑

j=1

1{θ∗= j}X j(0),

where Pr(θ∗ = j) = 1
n
. Note that X∗ is a point in the

convex hull of {X1(0), . . . ,Xn(0)} generated by associating

equal weights to the initial values X j(0). Hence, X∗ can be

interpreted as the (empirical) average of the initial values.

VI. Conclusions

In this paper we investigated the geometric properties of

a probabilistic consensus of opinion algorithm. We showed

that this algorithm is an example of a generalized consensus

algorithm defined on convex metric spaces; an algorithm

which consists of updating the state of an agent by choosing

as new state, a point from the (generalized) convex hull of the

agent’s current state and the current states of its neighbors.

More specifically, we defined the convex metric space and

the convex structure underlying the probabilistic of opinion

algorithm.
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