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Abstract: We consider the consensus problem of a group of dynamic agents whose communication
network is modeled by a directed time-varying graph. In this paper we generalize the asymptotic
consensus problem to convex metric spaces. A convex metric space is a metric space endowed with
a convex structure. Using this convex structure we define convex sets and in particular the convex hull of
a (finite) set. Under minimal connectivity assumptions, we show that if at each iteration an agent updates
its state by choosing a point from a particular subset of the convex hull generated by the agent’s current
state and the states of its neighbors, then asymptotic agreement is achieved. In addition, we give bounds
on the distance between the consensus point and the initial values of the agents.
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1. INTRODUCTION

A consensus problem consists of a group of dynamic agents
who seek to agree upon certain quantities of interest by ex-
changing information among them according to a set of rules.
This problem can model many phenomena involving informa-
tion exchange between agents such as cooperative control of
vehicles, formation control, flocking, synchronization, parallel
computing, etc. Distributed computation over networks has a
long history in control theory starting with the work of Borkar
and Varaya (1982), Tsitsiklis (1984) and Tsitsiklis et al. (1986)
on asynchronous agreement problems and parallel computing.
A theoretical framework for solving consensus problems was
introduced by Saber and Murray (2003, 2004), while Jadbabaie
et al. (2004) studied alignment problems for reaching an agree-
ment. Relevant extensions of the consensus problem were done
by Ren and Beard (2005), by Moreau (2005) or, more recently,
by Nedic and Ozdaglar (2008); Nedic et al. (to appear).

Typically agents are connected via a network that changes
with time due to link failures, packet drops, node failure,
etc. Such variations in topology can happen randomly which
motivates the investigation of consensus problems under a
stochastic framework. Hatano and Mesbahi (2005) consider an
agreement problem over random information networks, where
the existence of an information channel between a pair of
elements at each time instance is probabilistic and independent
of other channels. Porfiri and Stilwell (2007) provide sufficient
conditions for reaching consensus almost surely in the case
of a discrete linear system, where the communication flow is
given by a directed graph derived from a random graph process,
independent of other time instances. Under a similar model of
the communication topology, Salehi and Jadbabaie (2008) give
necessary and sufficient conditions for almost sure convergence
to consensus , while Salehi and Jadbabaie (2010) extend the
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applicability of their necessary and sufficient conditions to
strictly stationary ergodic random graphs. Extensions to the
case where the random graph modeling the communication
among agents is a Markovian random process are given by
Matei et al. (2008) and Matei et al. (2009).

A convex metric space is a metric space endowed with a convex
structure. The main goal of this paper is to generalize the
asymptotic consensus problem to the more general case of
convex metric spaces and emphasize the fundamental role of
convexity and in particular of the convex hull of a finite set
of points. Tsitsiklis (1984) showed that, under some minimal
connectivity assumptions on the communication network, if
an agent updates its value by choosing a point (in R

n) from
the (interior) of the convex hull of its current value and the
current values of its neighbors, then asymptotic convergence
to consensus is achieved. We will show that this idea extends
naturally to the more general case of convex metric spaces.

Our main contributions are as follows. First, after citing rel-
evant results concerning convex metric spaces, we study the
properties of the distance between two points belonging to
two, possible overlapping convex hulls of two finite sets of
points. These properties will prove to be crucial in proving the
convergence of the agreement algorithm. Second, we provide a
dynamic equation for an upper bound of the vector of distances
between the current values of the agents. We show that the
agents asymptotically reach agreement, by showing that this
upper bound asymptotically converges to zero. Third, we char-
acterize the agreement point compared to the initial values of
the agents, be giving upper bounds on the distance between the
agreement point and the initial values in terms of the distances
between the initial values of the agents.

The paper is organized as follows. Section 2 introduces the
main concepts about convex metric spaces. Section 3 formu-
lates the problem addressed in this note followed by the state-
ment of our main results in Section 4. Section 5 presents a set
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of auxiliary results regarding properties of convex hulls in a
convex metric space and regarding the time evolution of the
distances between the states of the agents under a particular
state update scheme. These auxiliary results are used to prove
our main result in Section 6.

Some basic notations: Given W ∈ R
n×n, by [W]i j we refer to

the (i, j) element of the matrix. The underlying graph of W
is a graph of order n for which every edge corresponds to a
non-zero, non-diagonal entry of W. We will denote by 1{A} the
indicator function of event A. Given some space X we denote
by P(X) the set of all subsets of X.

We would like to point out that this note does not contain all
the proofs of the results. For the missing proofs, the reader is
invited to consult the extended version of this note given by the
reference Matei and Baras (2010).

2. DEFINITIONS AND RESULTS ON CONVEX METRIC
SPACES

In this subsection we first present a set of definitions and basic
results about convex metric spaces. For more details about
the following definitions and results the reader is invited to
consult Sharma and Dewangan (1995),Takahashi (1970). Next,
we introduced the convex hull notion of a finite set of points
belonging to a convex metric space.

2.1 Main definitions

Definition 1. Let (X, d) be a metric space. A mapping ψ : X ×
X × [0, 1]→ X is said to be a convex structure on X if

d(u,ψ(x, y, λ)) ≤ λd(u, x) + (1 − λ)d(u, y), (1)

for all x, y, u ∈ X and for all λ ∈ [0, 1].

Definition 2. The metric space (X, d) together with the convex
structure ψ is called convex metric space.

A Banach space and each of its subsets are convex metric space.
There are examples of convex metric spaces not embedded in
any Banach space. The following two examples are taken from
Takahashi (1970).

Example 1. Let I be the unit interval [0, 1] and X be the family
of closed intervals [ai, bi] such that 0 ≤ ai ≤ bi ≤ 1. For
Ii = [ai, bi], I j = [a j, b j] and λ ∈ I, we define a mapping ψ
by ψ(Ii, I j, λ) = [λai + (1 − λ)a j, λbi + (1 − λ)b j] and define a
metric d in X by the Hausdorff distance, i.e.

d(Ii, I j) = sup
a∈I

{| inf
b∈Ii

{|a − b|} − inf
c∈I j

{|a − c|}|}.

Example 2. We consider a linear space L which is also a metric
space with the following properties:

(a) For x, y ∈ L, d(x, y) = d(x − y, 0);
(b) For x, y ∈ L, and λ ∈ [0, 1],

d(λx + (1 − λ)y, 0) ≤ λd(x, 0) + (1 − λ)d(y, 0).

Hence L, together with the convex structure ψ(x, y, λ) = λx +
(1 − λ)y, is a convex metric space.

Definition 3. Let X be a convex metric space. A nonempty
subset K ⊂ X is said to be convex if ψ(x, y, λ) ∈ K, ∀x, y ∈ K
and ∀λ ∈ [0, 1].

We define the set valued mapping ψ̃ : P(X)→ P(X) as

ψ̃(A) , {ψ(x, y, λ) | ∀x, y ∈ A,∀λ ∈ [0, 1]}, (2)

where A is an arbitrary set in X.

In Takahashi (1970) it is shown that, in a convex metric space,
an arbitrary intersection of convex sets is also convex and
therefore the next definition makes sense.

Definition 4. The convex hull of the set A ⊂ X is the inter-
section of all convex sets in X containing A and is denoted by
conv(A).

Another characterization of the convex hull of a set inX is given
in what follows. By defining Am , ψ̃(Am−1) with A0 = A for
some A ⊂ X, it is discussed in Sharma and Dewangan (1995)
that the set sequence {Am}m≥0 is increasing and lim sup Am exits,
and lim sup Am = lim inf Am = lim Am =

⋃∞
m=0 Am.

Proposition 1. (Sharma and Dewangan (1995)). LetX be a con-
vex metric space. The convex hull of a set A ⊂ X is given by

conv(A) = lim Am =

∞
⋃

m=0

Am. (3)

It follows immediately from above that if Am+1 = Am for some
m, then conv(A) = Am.

2.2 On the convex hull of a finite set

For a positive integer n, let A = {x1, . . . , xn} be a finite set in
X with convex hull conv(A) and let z belong to conv(A). By
Proposition 1 it follows that there exits a positive integer m such
that z ∈ Am. But since Am = ψ̃(Am−1) it follows that there exits
z1, z2 ∈ Am−1 and λ(1,2) ∈ [0, 1] such that z = ψ(z1, z2, λ(1,2)).
Similarly, there exits z3, z4, z5, z6 ∈ Am−2 and λ(3,4), λ(5,6) ∈ [0, 1]
such that z1 = ψ(z3, z4, λ(3,4)) and z2 = ψ(z5, z6, λ(5,6)). By
further decomposing z3,z4,z5 and z6 and their followers until
they are expressed as functions of elements of A and using a
graph theory terminology, we note the z can be viewed as the
root of a weighted binary tree with leaves belonging to the set A.
Each node α (except the leaves) has two children α1 and α2, and
are related through the operator ψ in the sense α = ψ(α1, α2, λ)
for some λ ∈ [0, 1]. The weights of the edges connecting α with
α1 and α2 are given by λ and 1 − λ respectively.

From the above discussion we note that for any point z ∈
conv(A) there exits a non-negative integer m such that z is the
root of a binary tree of height m, and has as leaves elements
of A. The binary tree rooted at z may or may not be a perfect
binary tree, i.e. a full binary tree in which all leaves are at the
same depth. That is because on some branches of the tree the
points in A are reached faster than on others. Let ni denote the
number of times xi appears as a leaf node, with

∑n
i=1 ni ≤ 2m

and let mil be the length of the ith
l

path from the root z to the
node xi, for l = 1 . . .ni. We formally describe the paths from
the root z to xi as the set

Pz,xi
,

{(

{yil , j}
mil

j=0
, {λil, j}

mil

j=1

)

| l = 1 . . .ni

}

, (4)

where {yil j}
mil

j=0
is the set of points forming the il

th path, with

yil ,0 = z and yil,mil
= xi and where {λil , j}

mil

j=1
is the set of weights

corresponding to the edges along the paths, in particular λil , j be-
ing the weight of the edge (yil , j−1, yil , j). We define the aggregate
weight of the paths from root z to node xi as
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W(Pz,xi
) ,

ni
∑

l=1

mil
∏

j=1

λil , j. (5)

It is not difficult to note that all the aggregate weights of the
paths from the root z to the leaves {x1, . . . , xn} sum up to one,
i.e.

n
∑

i=1

W(Pz,xi
) = 1.

Definition 5. We say that a point z belongs to the interior of
conv(A) and we denote this by z ∈ int(conv(A)), if all elements
of A belong to the set of leaves of the binary tree rooted at z.

Definition 6. Given a small enough positive scalar λ < 1
we define the following subset of int(conv(A)) consisting of
all points in int(conv(A)) whose aggregate weights are lower
bounded by λ, i.e.

Cλ(A) , {z | z ∈ int(conv(A)),W(Pz,xi
) ≥ λ, ∀xi ∈ A}. (6)

Remark 1. By a small enough value of λ we understand a value
such that the inequality W(Pz,xi

) ≥ λ is satisfied for all i.
Obviously, for n agents λ needs to satisfy

λ ≤
1

n
,

but usually we would want to choose a value much smaller then
1/n since this implies a reacher set Cλ(A).

3. PROBLEM FORMULATION

We consider a convex metric space (X, d) and a set of n agents
indexed by i which take values on X. Denoting by k the time
index, the agents exchange information based on a commu-
nication network modeled by a time varying, directed graph
G(k) = (V, E(k)), where V is the finite set of vertices (the agents)
and E(k) is the set of edges. An edge (communication link)
ei j(k) ∈ E(k) exists if node i receives information from node j.
Each agent has an initial value in X. At each subsequent time-
slot is adjusting its value based on the observations about the
values of its neighbors. The goal of the agents is to asymptot-
ically agree on the same value. In what follows we denote by
xi(k) ∈ X the value or state of agent i at time k.

Definition 7. We say that the agents asymptotically reach con-
sensus (or agreement) if

lim
k→∞

d(xi(k), x j(k)) = 0, ∀i, j, i , j. (7)

Similar to the communication models used by Tsitsiklis et al.
(1986), Blondel et al. (2005) and Nedic and Ozdalgar (2009),
we impose minimal assumptions on the connectivity of the
communication graph G(k). Basically these assumption con-
sists in having the communication graph connected infinitely of-
ten and having bounded intercommunication interval between
neighboring nodes.

Assumption 1. (Connectivity). The graph (V, E∞) is connected,
where E∞ is the set of edges (i, j) representing agent pairs
communicating directly infinitely many times, i.e.,

E∞ = {(i, j) | (i, j) ∈ E(k) for infinitely many indices k}

Assumption 2. (Bounded intercommunication interval). There
exists an integer B ≥ 1 such that for every (i, j) ∈ E∞ agent
j sends his/her information to the neighboring agent i at least

once every B consecutive time slots, i.e. at time k or at time
k + 1 or . . . or (at latest) at time k + B − 1 for any k ≥ 0.

Assumption 2 is equivalent to the existence of an integer B ≥ 1
such that

(i, j) ∈ E(k) ∪ E(k + 1) ∪ . . . ∪ E(k + B − 1), ∀k ,∀(i, j) ∈ E∞.

Let Ni(k) denote the communication neighborhood of agent i,
which contains all nodes sending information to i at time k, i.e.
Ni = { j | e ji(k) ∈ E(k)} ∪ {i}, which by convention contains the
node i itself. We denote by Ai(k) , {x j(k),∀ j ∈ Ni(k)} the set
of the states of agent i’s neighbors (its own included).

4. STATEMENT OF THE MAIN RESULT

The following theorem states our main result regarding the
asymptotic agreement problem on metric convex space.

Theorem 1. Let Assumptions 1 and 2 hold for G(k) and let
λ < 1 be a positive scalar sufficiently small. If agents update
their state according to the scheme

xi(k + 1) ∈ Cλ(Ai(k)), ∀i, (8)

then they asymptotically reach consensus, i.e.

lim
k→∞

d(xi(k), x j(k)) = 0, ∀i, j, i , j. (9)

Remark 2. We can iteratively generate points for which we can
make sure that they belong to the interior of the convex hull
of a finite set A = {x1, . . . , xn}. Given a set of positive scalars
{λ1, . . . , λn−1} ∈ (0, 1), consider the iteration

yi+1 = ψ(yi, xi+1, λi) for i = 1 . . .n − 1 with y1 = x1. (10)

It is not difficult to note that yn is guaranteed to belong to the
interior of conv(A). In addition, if we impose the condition

λ
1

n−1 ≤ λi ≤
1 − (n − 1)λ

1 − (n − 2)λ
, i = 1 . . .n − 1, (11)

and λ respects the inequality

λ
1

n−1 ≤
1 − (n − 1)λ

1 − (n − 2)λ
, (12)

then yn ∈ Cλ(A). We should note that for any n ≥ 2 we can find
a small enough value of λ such that inequality (12) is satisfied.

Remark 3. We would like to point out that the result refers
strictly to the convergence of the distances between states and
not to the convergence of the states themselves. It may be the
case that the sequences {xi(k)}k≥0 i = 1 . . .n do not have a limit
and still the distances d(xi(k), x j(k)) decrease to zero as k goes
to infinity. In other words the agents asymptotically agree on
the same value which may be very well variable. However, as
stated in the next corollary this is not the case and in fact the
states of the agents do converge to the same value.

Corollary 1. Let Assumptions 1 and 2 hold for G(k) and let
λ < 1 be a positive scalar sufficiently small. If agents update
their state according to the scheme

xi(k + 1) ∈ Cλ(Ai(k)), ∀i, (13)

then there exists x∗ ∈ X such that

lim
k→∞

d(xi(k), x∗) = 0, ∀i. (14)
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Remark 4. A procedure for generating points for which is guar-
anteed to belong to Cλ(Ai(k)) is described in Remark 2. The idea
of picking xi(k + 1) from Cλ(Ai(k)) rather than int(conv(Ai(k)))
is in the same spirit as the assumption imposed on the non-
zero consensus weights in Tsitsiklis (1984), Nedic and Ozdal-
gar (2009), Blondel et al. (2005), i.e. they are assumed lower
bounded by a positive, sub-unitary scalar. Setting xi(k + 1) ∈
int(conv(Ai(k))) may not necessarily guarantee asymptotic con-
vergence to consensus. Indeed, consider the case where X = R

with the standard Euclidean distance. A convex structure on R

is given by ψ(x, y, λ) = λx + (1 − λ)y, for any x, y ∈ R and
λ ∈ [0, 1]. Assume that we have two agents which exchange
information at all time slots and therefore A1(k) = {x1(k), x2(k)},
A2(k) = {x1(k), x2(k)}, ∀k ≥ 0. Let x1(k + 1) = λ(k)x1(k) +
(1 − λ(k))x2(k), where λ(k) = 1 − 0.1e−k and let x2(k + 1) =
µ(k)x1(k) + (1 − µ(k))x2(k), where µ(k) = 0.1e−k. Obviously,
xi(k + 1) ∈ int(conv(Ai(k))), i = 1, 2 for all k ≥ 0. It can be
easily argued that

d(x1(k + 1), x2(k + 1)) ≤
[

λ(k)(1 − µ(k))+
+µ(k)(1 − λ(k))

]

d(x1(k), x2(k)).
(15)

We note that limK→∞

∏K
k=0 (λ(k)(1 − µ(k)) + (1 − λ(k))µ(k)) =

limK→∞

∏K
k=0(1 − 0.2e−k + 0.02e−2k) = 0.73 and therefore

under inequality (15) asymptotic convergence to consensus is
not guaranteed. In fact it can be explicitly shown that the agents
do not reach consensus. From the dynamic equation governing
the evolution of xi(k), i = 1, 2, we can write

x(k + 1) =

(

λ(k) 1 − λ(k)
µ(k) 1 − µ(k)

)

x(k), x(0) = x0,

where x(k)T = [x1(k), x2(k)], and we obtain that

lim
k→∞

x(k) =

(

0.8540 0.1451
0.1451 0.8540

)

x0

and therefore it can be easily seen that consensus is not reached
from any initial state.

5. AUXILIARY RESULTS

This section is divided in two parts. In the first part we study
the properties of the distance between two points belonging to
two convex hulls of two (possibly overlapping) finite sets of
points (Proposition 2). In the second part, under a particular
state update scheme, we show that the entries of the vector of
distances between the states of the agents at time k + 1 are
upper bounded by linear combinations of the entries of the same
vector but at time k. The coefficients of the linear combinations
are the entries of a time varying matrix for which we prove a
number of properties (Lemma 1). In addition, we analyze the
properties of the transition matrix of the aforementioned time
varying matrix (Lemma 2).

The next result characterizes the distance between two points
x, y ∈ X belonging to the convex hulls of two (possibly
overlapping) finite sets X and Y.

Proposition 2. Let X = {x1, . . . , xnx
} and Y = {y1, . . . , yny

} be
two finite sets on X and let λ < 1 be a positive scalar small
enough.

(a) If x ∈ int(conv(X)) and y ∈ X then

d(x, y) ≤

nx
∑

i=1

λid(xi, y), (16)

for some λi > 0 with
∑nx

i=1
λi = 1.

(b) If x ∈ int(conv(X)) and y ∈ int(conv(Y)) then

d(x, y) ≤

nx
∑

i=1

ny
∑

j=1

λi jd(xi, y j), (17)

for some λi j > 0 with
∑nx

i=1

∑ny

j=1
λi j = 1.

(c) If x ∈ Cλ(X), y ∈ Cλ(Y), then

λi ≥ λ and λi j ≥ λ
2, ∀ i, j, (18)

where λi and λi j where introduced in part (a) and part (b),
respectively.

(d) If x ∈ Cλ(X), y ∈ Cλ(Y) and X ∩ Y , ∅, then

nx
∑

i=1

ny
∑

j=1

λi j1{d(xi,y j),0} ≤ 1 − λ2, (19)

where λi j were introduced in part (b).

Proof. See the proof of Proposition 2.2 of Matei and Baras
(2010).

5.1 On the time evolution of the distances between the states of
the agents

The next result characterizes the dynamics of an upper bound
for the vector of distances between the agents, under a particu-
lar state update scheme.

Lemma 1. Given a small enough positive scalar λ < 1, assume
that agents update their states according to the scheme xi(k +
1) ∈ Cλ(Ai(k)), for all i. Let d(k) , (d(xi(k), x j(k))) for i , j be
the N dimensional vector of all distances between the states of
the agents, where N =

n(n−1)

2
. Then we obtain that

d(k + 1) ≤W(k)d(k), d(0) = d0, (20)

where the inequality is meant componentwise and the N × N
dimensional matrix W(k) has the following properties:

(a) W(k) is non-negative and there exits a positive scalar η ∈
(0, 1) such that

[W(k)]īī ≥ η, ∀ ī, k (21)

[W(k)]ī j̄ ≥ η, ∀ [W(k)]ī j̄ , 0, ī , j̄, ∀ k. (22)

(b) If Ni(k) ∩ N j(k) , ∅, then the row ī of matrix W(k),
corresponding to the pair of agents (i, j), has the property

N
∑

j̄=1

[W(k)]ī j̄ ≤ 1 − η, (23)

where η is the same as in part (a).
(c) If Ni(k) ∩ N j(k) = ∅ then the row ī corresponding to the

pair of agents (i, j) sums up to one, i.e.

N
∑

j̄=1

[W(k)]ī j̄ = 1. (24)

In particular if G(k) is completely disconnected (i.e. agents
do not send any information), then W(k) = I.

(d) the rows of W(k) sum up to a value smaller or equal than
one, i.e.

N
∑

j̄=1

[W(k)]ī j̄ ≤ 1, ∀ ī, k. (25)
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Proof. Given two agents i and j, by part (b) of Proposition 2
the distance between their states can be upper bounded by

d(xi(k + 1), x j(k + 1)) ≤
∑

p∈Ni(k),q∈N j(k)

w
i j
pq(k)d(xp(k), xq(k)),(26)

for all i , j and where w
i j
pq(k) > 0 and

∑

p∈Ni(k),q∈N j(k) w
i j
pq(k) =

1. By defining W(k) , (w
i j
pq(k)) for i , j and p , q (where

the pairs (i, j) and (p, q) refer to the rows and columns of
W(k), respectively), inequality (20) follows. We continue with
proving the properties of matrix W(k).

(a) Since all w
i j
pq(k) > 0 for all i , j, p ∈ Ni(k) and q ∈ N j(k),

we obtain that W(k) is non-negative. By part (c) of Proposition

2, there exists η , λ2 such that w
i j
pq(k) ≥ η for all non-zero

entries of W(k). Also, since i ∈ Ni(k) and j ∈ N j(k) for all k ≥ 0

it follows that the term w
i j

i j
(k)d(xi(k), x j(k)), with w

i j

i j
(k) ≥ ηwill

always be present in the right-hand side of the inequality (26),
and therefore W(k) has positive diagonal entries.

(b) Follows from part (d) of Proposition 2, with η = λ2.

(c) If Ni(k) ∩ N j(k) = ∅ then no terms of the form

w
i j
pp(k)d(xp(k), xp(k)) will appear in the sum of the right hand

side of inequality (26). Hence
∑

p∈Ni(k),q∈N j(k) w
i j
pq(k) = 1 and

therefore
N

∑

j̄=1

[W(k)]ī j̄ = 1.

If G(k) is completely disconnected, then the sum of the
right hand side of inequality (26) will have only the term

w
i j

i j
(k)d(xi(k), x j(k)) with w

i j

i j
(k) = 1, for all i, j = 1 . . .n.

Therefore W(k) is the identity matrix.

(d) The result follows from parts (b) and (c).

Let Ḡ(k) = (V̄, Ē(k)) be the underlying graph of W(k) and let ī
and j̄ refer to the rows and columns of W(k), respectively. Note
that under this notation, index ī corresponds to a pair (i, j) of
distinct agents. It is not difficult to see that the set of edges of
Ḡ(k) is given by

Ē(k) = {((i, j), (p, q)) | (i, p) ∈ E(k),
( j, q) ∈ E(k), i , j, p , q} .

(27)

Proposition 3. Let Assumptions 1 and 2 hold for G(k). Then,
similar properties hold for Ḡ(k) as well, i.e.

(a) the graph (V̄ , Ē∞) is connected, where

Ē∞ = {(ī, j̄) | (ī, j̄) ∈ Ē(k) infinetly many indices k};

(b) there exists an integer B̄ ≥ 1 such that every (ī, j̄) ∈ Ē∞
appears at least once every B̄ consecutive time slots, i.e. at
time k or at time k + 1 or . . . or (at latest) at time k + B̄ − 1
for any k ≥ 0.

Proof. See the proof of Proposition 4.1 of Matei and Baras
(2010).

Let Φ(k, s) , W(k − 1)W(k − 2) · · ·W(s), with Φ(k, k) = W(k)
denote the transition matrix of W(k) for any k ≥ s. It should
be obvious from the properties of W(k) that Φ(k, s) is a non-
negative matrix with positive diagonal entries and ‖Φ(k, s)‖∞ ≤
1 for any k ≥ s.

Lemma 2. Let W(k) be the matrix introduced in Lemma 1. Let
Assumptions 1 and 2 hold for G(k). Then, there exits a row
index ī∗ such that

N
∑

j̄=1

[Φ(s + m, s)]ī∗ j̄ ≤ 1 − ηm, ∀ s,m ≥ B̄ − 1, (28)

where η is the lower bound on the non-zero entries of W(k) and
B̄ is the positive integer from the part (b) of the Proposition 3.

Proof. See the proof of Lemma 4.2 of Matei and Baras (2010).

Corollary 2. Let W(k) be the matrix introduced in Lemma 1
and let Assumptions 1 and 2 hold for G(k). We then have

[Φ(s + (N − 1)B̄ − 1, s)]i j ≥ η
(N−1)B̄ ∀s, i, j, (29)

where η is the lower bound on the non-zero entries of W(k) and
B̄ is the positive integer from the part (b) of the Proposition 3.

Proof. By Proposition 3 and Lemma 1 all the assumptions of
Lemma 2 of Nedic and Ozdalgar (2009) are satisfied, from
which the result follows.

6. PROOF OF THE MAIN RESULT

6.1 Proof of Theorem 1

Proof. We have that the vector of distances between the states
of the agents respects the inequality

d(k + 1) ≤W(k)d(k),

where the properties of W(k) are described by Lemma 1. It
immediately follows that

‖d(k + 1)‖∞ ≤ ‖d(k)‖∞, for k ≥ 0. (30)

Let B̄0 , (N − 1)B̄ − 1, where B̄ is the positive integer from
the part (b) of the Proposition 3. In the following we show that
all row sums of Φ(s + 2B0, s) are upper-bounded by a positive
scalar strictly less than one. Indeed since Φ(s+ 2B̄0, s) = Φ(s+
2B̄0, s + B̄0)Φ(s + B̄0, s) we obtain that

N
∑

j̄=1

[Φ(s+2B̄0, s)]ī j̄ =

N
∑

j̄=1

[Φ(s+2B̄0, s+B̄0)]ī j̄

N
∑

h̄=1

[Φ(s+B̄0, s)] j̄h̄,

for all ī. By Lemma 2 we have that there exists a row j̄∗ such
that

N
∑

h̄=1

[Φ(s + B̄0, s)] j̄∗h̄ ≤ 1 − ηB̄0 ,∀s,

and since
∑N

h̄=1
[Φ(s + B̄0, s)] j̄h̄ ≤ 1 for any j̄, we get

N
∑

j̄=1

[Φ(s + 2B̄0, s)]ī j̄ ≤

N
∑

j̄=1, j̄, j̄∗

[Φ(s + 2B̄0, s + B̄0)]ī j̄+

+[Φ(s + 2B̄0, s + B̄0)]ī j̄∗ (1 − η
B̄0) =

=

N
∑

j̄=1

[Φ(s + 2B̄0, s + B̄0)]ī j̄ − [Φ(s + 2B̄0, s + B̄0)]ī j̄∗η
B̄0 .

By Corollary 2 it follows that

[Φ(s + 2B̄0, s + B̄0)]ī j̄ ≥ η
B̄0+1, ∀ī, j̄, s,

and since
∑N

j̄=1
[Φ(s + 2B̄0, B̄0)]ī j̄ ≤ 1 we get that

N
∑

j̄=1

[Φ(s + 2B̄0, s)]ī j̄ ≤ 1 − η2B̄0+1, ∀ī, s.
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Therefore

‖Φ(s + 2B̄0, s)‖∞ ≤ 1 − η2B̄0+1, ∀s. (31)

It follows that

‖d(tk)‖∞ ≤
(

1 − η2B̄0+1
)k
‖d(0)‖∞, ∀k ≥ 0, (32)

where tk = 2kB̄0 which shows that the subsequence {‖d(tk)‖∞}k≥0

asymptotically converges to zero. Combined with inequality
(30) we farther obtain that the sequence {‖d(k)‖∞}k≥0 asymp-
totically converges to zero. Therefore the agents asymptotically
reach consensus.

6.2 Proof of Corollary 1

Proof. The main idea of the proof consist of showing that the
set conv(A(k)), where A(k) = {xi(k), i = 1 . . .n}, converges to a
set containing one point.

We first note that since Ai(k) ⊆ A(k) it can be easily argued
that conv(Ai(k)) ⊆ conv(A(k)), for all i and k. Also, since
Cλ(Ai(k)) ⊆ conv(Ai(k)) it follows that Cλ(Ai(k)) ⊆ conv(A(k))
and consequently xi(k + 1) ∈ conv(A(k)). Therefore, we have
that conv(A(k + 1)) ⊆ conv(A(k)) for all k and from the theory
of limit of sequence of sets, it follows that

lim inf conv(A(k)) = lim sup conv(A(k)) = lim conv(A(k)) = A∞,

where A∞ =
⋂

k≥0 conv(A(k)). We denote the diameter of the
set A(k) by

δ(A(k)) = sup{d(x, y) | x, y ∈ A(k)},

and by Proposition 2 of Sharma and Dewangan (1995) we have
that

δ(conv(A(k))) = δ(A(k)).

From Theorem 1 we have that

lim
k→∞

d(xi(k), x j(k)) = 0, ∀i , j,

and consequently

lim
k→∞
δ(A(k)) = lim

k→∞
δ(conv(A(k))) = 0,

which also means that

δ(A∞) = 0,

i.e. the set A∞ contains only one point, say x∗ ∈ X, or A∞ =
conv(x∗), or

lim
k→∞

conv(A(k)) = conv(x∗).

But since xi(k+1) ∈ Cλ(Ai(k)) ⊆ conv(A(k)) for all i, k it follows
that

lim
k→∞

d(xi(k), x∗) = 0,∀ i,

i.e. the states of the agents converge to the same point x∗ ∈ X.

7. CONCLUSION

In this note we emphasized the importance of the convexity
concept and in particular the importance of the convex hull
notion for reaching consensus. We did this by generalizing the
asymptotic consensus problem to the case of convex metric
space. For a group of agents taking values in a convex metric
space, we introduced an iterative algorithm which ensures
asymptotic convergence to agreement under some minimal
assumptions on the communication graph.
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