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Abstract: We study the linear distributed asymptotic agreement(consensus) problem for a network
of dynamic agents whose communication network is modeled by a randomly switching graph. The
switching is determined by a finite state, Markov process, each topology corresponding to a state of the
process. We address both the cases where the dynamics of the agents is expressed in continuous and
discrete time. We show that, if the consensus matrices are doubly stochastic, convergence to average
consensus is achieved in the mean square and almost sure sense, if and only if the graph resulted from
the union of graphs corresponding to the states of the Markov process is strongly connected. The aim of
this paper is to show how techniques from the theory of Markovian jump linear systems, in conjunction
with results inspired by matrix and graph theory, can be used to prove convergence results for stochastic
consensus problems.
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1. INTRODUCTION

A consensus problem consists of a group of dynamic agents
who seek to agree upon certain quantities of interest by ex-
changing information among them according to a set of rules.
This problem can model many phenomena involving infor-
mation exchange between agents such as cooperative control
of vehicles, formation control, flocking, synchronization, par-
allel computing, etc. Distributed computation over networks
has a long history in control theory starting with the work
of Borkar and Varaiya Borkar and Varaya (1982), Tsitsikils,
Bertsekas and Athans Tsitsiklis (1984); Tsitsiklis et al. (1986)
on asynchronous agreement problems and parallel computing.
A theoretical framework for solving consensus problems was
introduced by Olfati-Saber and Murray in Saber and Murray
(2003, 2004), while Jadbabaie et al. studied alignment problems
Jadbabaie et al. (2004) for reaching an agreement. Relevant
extensions of the consensus problem were done by Ren and
Beard Ren and Beard (2005), by Moreau in Moreau (2005) or,
more recently, by Nedic and Ozdaglar in Nedic and Ozdaglar
(2010); Nedic et al. (2010).

Typically agents are connected via a network that changes with
time due to link failures, packet drops, node failure, etc. Such
variations in topology can happen randomly which motivates
the investigation of consensus problems under a stochastic
framework. Hatano and Mesbahi consider in Hatano and Mes-
bahi (2005) an agreement problem over random information
networks, where the existence of an information channel be-
tween a pair of elements at each time instance is probabilis-
tic and independent of other channels. In Porfiri and Stilwell

⋆ This material is based upon work supported by the US Air Force Office

of Scientific Research MURI award FA9550-09-1-0538, by the Defence Ad-

vanced Research Projects Agency (DARPA) under award number 013641-001

for the Multi-Scale Systems Center (MuSyC) through the FRCP of SRC and

DARPA, and by BAE Systems award number W911NF-08-2-0004 (the ARL

MAST CTA).

(2007), Porfiri and Stilwell provide sufficient conditions for
reaching consensus almost surely in the case of a discrete linear
system, where the communication flow is given by a directed
graph derived from a random graph process, independent of
other time instances. Under a similar communication topology
model, Tahbaz-Salehi and Jadbabaie give necessary and suffi-
cient conditions for almost sure convergence to consensus in
Salehi and Jadbabaie (2008), while in Salehi and Jadbabaie
(2010), the authors extend the applicability of their necessary
and sufficient conditions to strictly stationary ergodic random
graphs. Another recent result on the consensus problem under
random topologies can be found in Kar and Moura (2008).

This paper deals with the linear consensus problem for a group
of dynamic agents. We assume that the communication flow
between agents is modeled by a (possible directed) randomly
switching graph. The switching is determined by a homoge-
neous, finite-state Markov chain, each communication pattern
corresponding to a state of the Markov process. We address
both the cases where the dynamics of the agents is expressed
in continuous and discrete time and, under certain assumptions
on the consensus matrices, we give necessary and sufficient
conditions to guarantee convergence to average consensus in
mean square and in almost sure sense. The Markovian switch-
ing model goes beyond the common i.i.d. assumption on the
random communication topology and appears in cases where
Rayleigh fading channels are considered.

The aim of this paper is to show how mathematical techniques
used in the stability analysis of Markovian jump linear systems,
together with results inspired by matrix and graph theory, can
be used to prove (intuitively clear) convergence results for the
(linear) stochastic consensus problem.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

Copyright by the
International Federation of Automatic Control (IFAC)

8860



1.1 Basic notations and definitions

We denote by 1 the vector of all ones. If the dimension of
the vector needs to be emphasized, an index will be added for
clarity (for example, if 1 is an n dimensional vector, we will
explicitly mark this by using 1n ). Let x be a vector in R

n. By
av(x) we denote the quantity av(x) = x′1/1′

1. The symbols ⊗
and ⊕ represent the Kronecker product and sum, respectively.
Given a matrix A, Null(A) designates the nullspace of the
considered matrix. If X is some finite dimensional space,
dim(X ) gives us the dimension of X . We denote by col(A) a
vector containing the columns of matrix A, by ⊗ the Kronecker
product and by ⊕ the Kronecker sum.

Let M be a set of matrices and let A be some matrix. By M ′

we denote the set of the transpose matrices of M , i.e. M ′ =
{M′ | M ∈M }. By M ⊗A we understand the following matrix
set: M ⊗A = {M ⊗A | M ∈ M }. By writing that AM = M

we understand that AM ∈ M , for any M ∈ M .

Let P be a probability transition matrix corresponding to a
homogeneous, finite state, Markov chain. We denote by P∞ the
limit set of the sequence {Pk}k≥0, i.e. all matrices L for which
there exists a sequence {tk}k≥0 in N such that limk→∞ Ptk = L.
Note that if the matrix P corresponds to an ergodic Markov
chain, the cardinality of P∞ is one, with the limit point 1π ′,
where π is the stationary distribution. If the Markov chain is
periodic with period m, the cardinality of P∞ is m. Let d(M,P∞)
denote the distance from M to the set P∞, that is the smallest
distance from M to any matrix in P∞:

d(M,P∞) = inf
L∈P∞

‖L−M‖,

where ‖ · ‖ is a matrix norm.

Definition 1.1. Let A be a matrix in R
n×n and let G = (V,E) be

a graph of order n. We say that matrix A corresponds to graph G
or that graph G corresponds to matrix A if an edge ei j belongs
to E if and only if the (i, j) entry of A is non-zero. The graph
corresponding to A will be denoted by GA.

Definition 1.2. Let s be a positive integer and let A = {Ai}
s
i=1

be a set of matrices with a corresponding set of graphs G =
{GAi

}s
i=1. We say that the graph GA corresponds to the set A

if it is given by the union of graphs in G , i.e.

GA ,

s
⋃

i=1

GAi
.

In this paper we will use mainly to type of matrices: probability
transition matrices (row sum up to one) and generator matrices
(row sum up to zero). A generator matrix whose both rows
and columns sum up to zero will be called doubly stochastic
generator matrix.

To simplify the exposition we will sometimes characterize a
probability transition/generator matrix as being irreducible or
strongly connected and by this we understand that the corre-
sponding Markov chain (directed graph) is irreducible (strongly
connected).

Definition 1.3. Let A∈R
n×n be a probability transition/generator

matrix. We say that A is block diagonalizable if there exists
a similarity transformation P, encapsulating a number of row
permutations, such that PAP′ is a block diagonal matrix with
irreducible blocks on the main diagonal.

For simplicity, the time index for both the continuous and
discrete-time cases is denoted by t.

Paper organization: In Section II we present the setup and
formulation of the problem and we state our main convergence
theorem. In Section III we derive a number of results which
constitute the core of the proof of our main results; proof which
is given in Section IV. Section V contains a discussion of our
convergence results.

2. PROBLEM FORMULATION AND STATEMENT OF
THE CONVERGENCE RESULTS

We assume that a group of n agents, labeled 1 through n, is
organized in a communication network whose topology is given
by a time varying graph G(t) = (V,E(t)), where V is the set of
n vertices and E(t) is the time varying set of edges. The graph
G(t) has an underlying random process governing its evolution,
given by a homogeneous, continuous or discrete time Markov
chain θ (t), taking values in the finite set {1, . . . ,s}, for some
positive integer s. In the case θ (t) is a discrete-time Markov
chain, its probability transition matrix is P = (pi j) (rows sum
up to one), while if θ (t) is a continuous time Markov chain, its
generator matrix is denoted by Λ = (λi j) (rows sum up to zero).
The random graph G(t) takes values in a finite set of graphs
G = {Gi}

s
i=1 with probability Pr(G(t) = Gi) = Pr(θ (t) = i),

for i = 1 . . .s. We denote by q = (qi) the initial distribution of
θ (t).

Letting x(t) denote the state of the n agents, in the case θ (t)
is a discrete-time Markov chain, we model the dynamics of the
agents by the following linear stochastic difference equation

x(t + 1) = Dθ(t)x(t), x(0) = x0, (1)

where Dθ(t) is a random matrix taking values in the finite set

D = {Di}
s
i=1, with probability distribution Pr(Dθ(t) = Di) =

Pr(θ (t)= i). The matrices Di are stochastic matrices (rows sum
up to one) with positive diagonal entries and correspond to the
graphs Gi, for i = 1 . . .s.

In the case θ (t) is a continuous-time Markov chain, we model
the dynamics of the agents by the following linear stochastic
equation

dx(t) = Cθ(t)x(t)dt, x(0) = x0, (2)

where Cθ(t) is a random matrix taking values in the finite set

C = {Ci}
s
i=1, with probability distribution Pr(Cθ(t) = Ci) =

Pr(θ (t) = i). The matrices Ci are generator like matrices (rows
sum up to zero) and correspond to the graphs Gi, for i = 1 . . .s.
The initial state x(0) = x0, for both continuous and discrete
models, is assumed deterministic. We will sometimes refer
to the matrices belonging to the sets D and C as consensus
matrices. The underlying probability space (for both models)
is denoted by (Ω,F ,P) and the solution process x(t,x0,ω)
(or simply, x(t)) of (1) or (2) is a random process defined
on (Ω,F ,P). We note that the stochastic dynamics (1) and
(2) represent Markovian jump linear systems for discrete and
continuous time, respectively. For a comprehensive study of the
theory of (discrete-time) Markovian jump linear systems, the
reader can refer to Costa et al. (2005) for example.

Assumption 2.1. Throughout this paper we assume that the
matrices belonging to the sets D and C are doubly stochastic
(rows and columns sum up to one and zero, respectively) and in
the case of the set D have positive diagonal entries. We assume
also that the Markov chain θ (t) is irreducible.

Remark 2.1. Consensus matrices that satisfy Assumption 2.1
can be constructed for instance by using a Laplacian based
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scheme in the case where the communication graph is undi-
rected or balanced (for every node, the inner degree is equal
to the outer degree) and possible weighted. If Li denotes the
Laplacian of the graph Gi, we can choose Ai = I − εLi and
Ci =−Li, where ε > 0 is chosen such that Ai is stochastic.

Definition 2.1. We say that x(t) converges to average consen-
sus

I. in the mean square sense, if for any x0 ∈ R
n and initial

distribution q = (q1, . . . ,qs) of θ (t),

lim
t→∞

E[‖x(t)− av(x0)1‖
2] = 0.

II. in the almost sure sense, if for any x0 ∈ R
n and initial

distribution q = (q1, . . . ,qs) of θ (t),

Pr(lim
t→∞

‖x(t)− av(x0)1‖) = 1.

Assumption 2.1 will guarantee reaching average consensus, de-
sirable in important distributed computing applications such as
distributed estimation Saber (2005) or distributed optimization
Nedic and Ozdalgar (2009). Any other scheme can be used as
long as it produces matrices with the properties stated above
and it reflects the communication structures among agents.

Problem 2.1. Given the random processes D(t) and C(t), to-
gether with Assumption 2.1, we derive necessary and sufficient
conditions such that the state vector x(t), evolving according
to (1) or (2), converges to average consensus in the sense of
Definition 2.1.

In the following we state the convergence results for the linear
consensus problem under Markovian random communication
topology.

Theorem 1. The state vector x(t), evolving according to the
dynamics (1) (or (2)) converges to average consensus in the
sense of Definition 2.1, if and only if GD (or GC ) is strongly
connected.

The above theorem formulates an intuitively obvious condition
for reaching consensus under the linear scheme (1) or (2) and
under the Markovian assumption on the communication pat-
terns. Namely, it expresses the need for persistent communica-
tion paths among all agents. We defer for Section IV the proof
of this theorem and provide here an intuitive and non-rigorous
interpretation. Since θ (t) is irreducible, with probability one all
states are visited infinitely many times. But since the graph GD

(or GC ) is strongly connected, communication paths between
all agents are formed infinitely many times, which allows for
consensus to be achieved. Conversely, if the graph GD (or GC )
is not strongly connected, then there exists at least two agents,
such that for any sample path of θ (t), no communication path
among them (direct or indirect) is ever formed. Consequently,
consensus can not be reached. Our main contribution is to prove
Theorem 1 using an approach based on the stability theory of
Markovian jump linear systems, in conjunction with a set of
results based on matrix and graph theory.

3. PRELIMINARY RESULTS

This section starts with a set of general preliminary results
after which it continues with results characteristic to the cases
where the dynamics of the agents is expressed in discrete
and continuous time, respectively. The proof of Theorem 1 is

mainly based on four lemmas (Lemmas 3.1 and 3.2 for discrete-
time case and Lemmas 3.3 and 3.4 for continuous-time case)
which state properties of some matrices that appear in the
dynamic equations of the first and second moment of the state
vector. The preliminary results are stated without proofs; proofs
which can be founded in our 2009 ISR Technical Report which
can be accessed through the link provided in the reference list
(Matei and Baras (2009)).

3.1 General preliminary results

In the next corollary we present a property of the eigenspaces
corresponding to the eigenvalue one of a set of probability
transition matrices.

Corollary 3.1. Let s be a positive integer and let A = {Ai}
s
i=1

be a set of doubly stochastic, probability transition matrices.
Then,

Null(
s

∑
i=1

(Ai − I)) =
s
⋂

i=1

Null(Ai − I),

and dim(Null(∑s
i=1(Ai − I))) = 1 if and only if GA is strongly

connected.

The following Corollary is the counterpart of Lemma 3.7 of
Ren and Beard (2005), in the case of generator matrices.

Corollary 3.2. Let G ∈ R
n×n be a rate transition matrix. If G

has an eigenvalue λ = 0 with algebraic multiplicity equal to
one, then limt→∞ eGt = 1v′, where v is a nonnegative vector
satisfying G′v = 0 and v′1= 1.

3.2 Preliminary results - discrete-time dynamics

In this subsection we state a set of results used to prove
Theorem 1 in the case where the agents’ dynamics is expressed
in discrete-time. Basically these results study the convergence
properties of a sequence of matrices {Qk}k≥0, where Q has a
particular structure which comes from the analysis of the first
and second moment of the state vector x(t).

Lemma 3.1. Let s be a positive integer and consider a set
of doubly stochastic matrices with positive diagonal entries,
D = {Di}

s
i=1, such that the corresponding graph GD is strongly

connected. Let P be the s× s dimensional probability transition
matrix of an irreducible, homogeneous Markov chain and let P∞

be the limit set of the sequence {Pk}k≥0. Consider the ns× ns

matrix Q whose blocks are given by Qi j , p jiD j. Then P′
∞ ⊗

(

1
n
11

′
)

is the limit set of the sequence of matrices {Qk}k≥1,
i.e.:

lim
k→∞

d

(

Qk,P′
∞ ⊗

(

1

n
11

′

))

= 0. (3)

Lemma 3.2. Under the same assumptions as in Lemma 3.1, if

we define the matrix blocks of Q as Qi j , p jiD j ⊗D j, then

P′
∞ ⊗

(

1
n211

′
)

is the limit set of the sequence {Qk}k≥1, i.e.

lim
k→∞

d

(

Qk,P′
∞ ⊗

(

1

n2
11

′

))

,

where the vector 1 above has dimension n2.

3.3 Preliminary results - continuous-time dynamics

The following two lemmas emphasize geometric properties of
two matrices arising from the linear dynamics of the first and
second moment of the state vector, in the continuous-time case.
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Lemma 3.3. Let s be a positive integer and let C = {Ci}
s
i=1 be a

set of n×n doubly stochastic matrices such that GC is strongly
connected. Consider also a s × s generator matrix Λ = (λi j)
corresponding to an irreducible Markov chain with stationary

distribution π = (πi). Define the matrices A , diag(C′
i , i =

1 . . . s) and B , Λ ⊗ I. Then A + B has an eigenvalue λ = 0
with algebraic multiplicity one and with corresponding right
and left eigenvectors given by 1ns and (π11

′
n,π21

′
n, . . . ,πs1

′
n),

respectively.

Lemma 3.4. Let s be a positive integer and let C = {Ci}
s
i=1 be a

set of n×n doubly stochastic matrices such that GC is strongly
connected. Consider also a s × s generator matrix Λ = (λi j)
corresponding to an irreducible Markov chain with stationary

distribution π = (πi). Define the matrices A , diag(C′
i ⊕C′

i , i =

1 . . . s) and B , Λ ⊗ I. Then A + B has an eigenvalue λ = 0
with algebraic multiplicity one, with corresponding right and
left eigenvectors given by 1n2s and (π11

′
n2 ,π21

′
n2 , . . . ,πs1

′
n2),

respectively.

4. PROOF OF THE CONVERGENCE THEOREM

The proof will focus on showing that the state vector x(t)
converges in mean square sense to average consensus. Equiv-
alently, by making the change of variable z(t) = x(t)−av(x0)1,
we will actually show that z(t) is mean square stable for the
initial condition z(0) = x0 − av(x0)1, where z(t) respects the
same dynamic equation as x(t). Using results from the stability
theory of Markovian jump linear systems, mean square stability
also imply stability in the almost sure sense (see for instance
Corollary 3.46 of Costa et al. (2005) for discrete-time case or
Theorem 2.1 of Feng and Loparo (1990) for continuous-time
case, with the remark that we are interested for the stability
property to be satisfied for a specific initial condition, rather
then for any initial condition), which for us imply that x(t)
converges almost surely to average consensus.

We first prove the discrete-time case after which we continue
with the proof for the continuous-time case.

4.1 Sufficiency - discrete-time case

Proof. Let V (t) denote the second moment of the state vector

V (t), E[x(t)x(t)T ],

where we used E to denote the expectation operator. The matrix
V (t) can be expressed as

V (t) =
s

∑
i=1

Vi(t), (4)

where Vi(t) is given by

Vi(t), E[x(t)x(t)T χ{θ(t)=i}] i = 1 . . .s, (5)

with χ{θ(t)=i} being the indicator function of the event {θ (t) =
i}.

The set of discrete coupled Lyapunov equations governing the
evolution of the matrices Vi(t) are given by

Vi(t + 1) =
s

∑
j=1

p jiD jV j(t)D
T
j , i = 1 . . . s, (6)

with initial conditions Vi(0) = qix0xT
0 . By defining η(t) ,

col(Vi(t), i = 1 . . . s), we obtain a vectorized form of equations
(6)

η(t + 1) = Γdη(t), (7)

where Γd is an n2s× n2s matrix given by

Γd =







p11D1 ⊗D1 . . . ps1Ds ⊗Ds

...
. . .

...
p1sD1 ⊗D1 . . . pssDs ⊗Ds






(8)

and η ′
0 = (q1col(x0x′0)

′, . . . ,qscol(x0x′0)
′)′.

We note that Γd satisfies all the assumptions of Lemma 3.2 and
hence we get

lim
k→∞

d

(

Γk
d ,P

′
∞ ⊗

(

1

n2
11

′

))

= 0,

where P∞ is the limit set of the matrix sequence {Pk}k≥0. Using
the observation that

1

n2
11

′col(x0x′0) = av(x0)
2
1,

the limit of the sequence {η(tk)}k≥0, where {tk}k≥0 is such that
limk→∞(P

tk )i j = p∞
i j, is

lim
k→∞

η(tk)
′ = av(x0)

2

















s

∑
j=1

p∞
j1q j1

...
s

∑
j=1

p∞
jsq j1

′

















.

By collecting the entries of limk→∞ η(tk) we obtain

lim
k→∞

Vi(tk) = av(x0)
2

(

s

∑
j=1

p∞
jiq j

)

11
′,

and from (4) we get

lim
k→∞

V (tk) = av(x0)
2
11

′ (9)

since ∑s
i, j=1 p∞

jiq j = 1. By repeating the previous steps for all

subsequences generating limit points for {Pk}k≥0 we obtain
that (9) holds for any sequence in N.

Through a similar process as in the case of the second moment
(in stead of Lemma 3.2 we use Lemma 3.1), we show that:

lim
k→∞

E[x(t)] = av(x0)1. (10)

From (9) and (10) we have that

lim
t→∞

E[‖x(t)− av(x0)1‖
2] =

lim
t→∞

trace(E[(x(t)− av(x0)1)(x(t)− av(x0)1)
′]) =

= lim
t→∞

trace(E[x(t)x(t)′]− av(x0)1E[x(t)′]−

−av(x0)E[x(t)]1
′+ av(x0)

2
11

′) = 0.

Therefore, x(t) converges to average consensus in the mean
square sense, and consequently in the almost sure sense, as
well.

4.2 Necessity - discrete-time case

Proof. If GA is not strongly connected then by Corollary 3.1,
dim(

⋂s
i=1 Null(Ai − I))> 1. Consequently, there exist a vector

v ∈
⋂s

i=1 Null(Ai − I)) such that v /∈ span(1). If we choose v as
initial condition, for every realization of θ (t), we have that

x(t) = v, for all t ≥ 0,

and therefore consensus can not be reached in the sense of
Definition 2.1.
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4.3 Sufficiency - continuous time

Using the same notations as in the discrete-time case, the dy-
namic equations describing the evolution of the second moment
of x(t) are given by

d

dt
Vi(t) =CiVi(t)+Vi(t)C

′
i +

s

∑
j=1

λ jiV j(t), i = 1 . . . s, (11)

equations whose derivation is treated in Fragoso and Costa

(2005). By defining the vector η(t) , col(Vi(t), i = 1 . . . s), the
vectorized equivalent of equations (11) is given by

d

dt
η(t) = Γcη(t), (12)

where

Γc =









C1 ⊕C1 0 · · · 0
0 C2 ⊕C2 · · · 0
... · · ·

. . .
...

0 0 · · · Cs ⊕Cs









+Λ′⊗ I

and η ′
0 = (q1col(x0x′0)

′, . . . ,qscol(x0x′0)
′)′.

By Lemma 3.4, the eigenspace corresponding to the zero eigen-
value of Γc has dimension one, with unique (up to the multipli-
cation by a scalar) left and right eigenvectors given by 1n2s and
1
n2 (π11

′
n2 ,π21

′
n2 , . . . ,πs1

′
n2), respectively. Since Γ′

c is a gener-

ator matrix with an eigenvalue zero of algebraic multiplicity

one, by Corollary 3.2 we have that limt→∞ eΓ′
ct = v1′, where

v′ = 1
n2 (π11

′,π21
′, . . . ,πs1

′). Therefore, as t goes to infinity,

we have that

lim
t→∞

η(t) =













π1
11

′

n2
· · · π1

11
′

n2

...
. . .

...

πs
11

′

n2
· · · πs

11
′

n2



















q1col(x0x′0)
...

qscol(x0x′0)






.

By noting that

11
′

n2
col(x0x′0) = av(x0)

2
1n2 ,

we farther get

lim
t→∞

η(t) = av(x0)
2







π11n2

...
πs1n2






.

Rearranging the columns of limt→∞ η(t), we get

lim
t→∞

Vi(t) = av(x0)
2πi11

′,

or
lim
t→∞

V (t) = av(x0)
2
11

′.

Through a similar process (using this time Lemma 3.3), we can
show that

lim
t→∞

E[x(t)] = av(x0)1.

Therefore, x(t) converges to average consensus in the mean
square sense and consequently in the almost surely sense.

4.4 Necessity proof - continuous time

Follows the same lines as in the discrete-time case.

5. DISCUSSION

The proof of Theorem 1 was based on the analysis of two matrix
sequences {eΓct}t≥0 and {Γt

d}t≥0 arising from the dynamic

equations of the state’s second moment, for the continuous and
discrete time, respectively. The reader may have noted that we
approached differently the analysis of the two sequences. In the
case of continuous-time dynamics, our approach was based on
showing that the left and right eigenspaces induced by the zero
eigenvalue of Γc have dimension one, and we provided the left
and right eigenvectors (bases of the respective subspaces). The
convergence of {eΓct}t≥0 followed from Corollary 3.2. In the
case of the discrete-time dynamics, we analyzed the sequence
{Γt

d}t≥0, by looking at how the matrix blocks of Γt
d evolve as t

goes to infinity. Although, similar to the continuous-time case,
we could have proved properties of Γd related to the left and
right eigenspaces induced by the eigenvalue one, this would not
have been enough in the discrete-time case. This is because,
through θ (t), Γd can be periodic, in which case the sequence
{Γt

d}t≥0 does not converge (remember that in the discrete-time
consensus problems, the stochastic matrices are assumed to
have positive diagonal entries, to avoid the possibility of being
periodic).

In the case of i.i.d. random graphs Salehi and Jadbabaie (2008),
or more general, in the case of strictly stationary, ergodic ran-
dom graphs Salehi and Jadbabaie (2010) , a necessary and
sufficient condition for reaching consensus almost surely (in
the discrete-time case) is |λ2(E[Dθ(t)])| < 1, where λ2 denotes
the eigenvalue with second largest modulus. In the case of
Markovian random topology a similar condition, does not nec-
essarily hold, neither for each time t, nor in the limit. Take,
for instance, two (symmetric) stochastic matrices D1 and D2

such that each of the graphs GD1
and GD2

, respectively, are not
strongly connected but their union is. If the two state Markov
chain θ (t) is periodic, with transitions given by p11 = p22 = 0
and p12 = p21 = 1, we note that λ2(E[Dθ(t)]) = 1, for all t ≥ 0.

Also note that λ2(limt→∞ E[Dθ(t)]) does not exist since the

sequence {E[Dθ(t)]}t≥0 does not have a limit. Yet, consensus is
reached. The assumption that allowed for the aforementioned
necessary and sufficient condition to hold, was that θ (t) is a
stationary process (which in turn implies that E[Dθ(t)] is con-

stant for all t ≥ 0). However, this is not necessarily true if θ (t)
is a (homogeneous) irreducible Markov chain, unless the initial
distribution is the stationary distribution.

For the discrete-time case we can formulate a result involving
the second largest eigenvalue of the time average expectation of

Dθ(t), i.e. limN→∞
∑N

t=1 E[Dθ (t)]

N
, which reflects the proportion of

time Dθ(t) spends in each state of the Markov chain.

Proposition 5.1. Consider the stochastic system (1). Then, un-
der Assumption 2.1, the state vector x(t) converges to average
consensus in the sense of Definition 2.1, if and only if

∣

∣

∣

∣

∣

λ2

(

lim
N→∞

∑N
t=0 E[Dθ(t)]

N

)∣

∣

∣

∣

∣

< 1.

Proof.

The time average of E[Dθ(t)] can be explicitly written as

lim
N→∞

∑N
t=0 E[Dθ(t)]

N
=

s

∑
i=1

πiDi = D̄,

where π = (πi) is the stationary distribution of θ (t). By Corol-
lary 3.5 in Ren and Beard (2005), |λ2(D̄)|< 1 if and only if the
graph corresponding to D̄ has a spanning tree, or in our case,
is strongly connected. But the graph corresponding to D̄ is the
same as GD , and the result follows from Theorem 1.
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Unlike the discrete-time, in the case of continuous time dy-
namics, we know that if there exists a stationary distribution
π (under the irreducibility assumption), the probability distri-
bution of θ (t) converges to π , hence the time averaging is not
necessary. In the following we introduce (without proof since
basically its similar to the proof of Proposition 5.1) a necessary
and sufficient condition for reaching average consensus, involv-
ing the expected value of the second largest eigenvalue of Cθ(t),
for the continuous-time dynamics.

Proposition 5.2. Consider the stochastic system (2). Then, un-
der Assumption 2.1, the state vector x(t) converges to average
consensus in the sense of Definition 2.1, if and only if

Re
(

λ2

(

lim
t→∞

E[Cθ(t)]
))

< 0.

Our analysis provides also estimates on the rate of convergence
to average consensus in the mean square sense. From the
linear dynamic equations of the state’s second moment we
notice that the eigenvalues of Γd and Γc dictate how fast the
second moment converges to average consensus. Since Γ′

d is a
probability transition matrix and since Γ′

c is a generator matrix,
an estimate of the rate of convergence of the second moment
of x(t) to average consensus is given by the second largest
eigenvalue (in modulus) of Γd , for the discrete-time case, and
by the real part of the second largest eigenvalue of Γc, for the
continuous time case.

6. CONCLUSION

In this paper we analyzed the convergence properties of the
linear consensus problem, when the communication topology is
modeled as a directed random graph with an underlying Marko-
vian process. We addressed both the cases where the dynamics
of the agents is expressed in continuous and discrete time.
Under some assumptions on the communication topologies, we
provided a rigorous mathematical proof for the intuitive neces-
sary and sufficient conditions for reaching average consensus
in the mean square and almost sure sense. These conditions
are expressed in terms of connectivity properties of the union
of graphs corresponding to the states of the Markov process.
The aim of this paper is to show how mathematical techniques
from the stability theory of the Markovian jump systems, in
conjunction with results from the matrix and graph theory can
be used to prove convergence results for consensus problems
under a stochastic framework.
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