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Abstract— We address the consensus-based distributed linear
filtering problem, where a discrete time, linear stochastic
process is observed by a network of sensors. We assume
that the consensus weights are known and we first provide
sufficient conditions under which the stochastic process is
detectable, i.e. for a specific choice of consensus weights there
exists a set of filtering gains such that the dynamics of the
estimation errors (without noise) is asymptotically stable. Next,
we provide a distributed, sub-optimal filtering scheme based on
minimizing an upper bound on a quadratic filtering cost. In the
stationary case, we provide sufficient conditions under which
this scheme converges; conditions expressed in terms of the
convergence properties of a set of coupled Riccati equations. We
continue with presenting a connection between the consensus-
based distributed linear filter and the optimal linear filter of
a Markovian jump linear system, appropriately defined. More
specifically, we show that if the Markovian jump linear system
is (mean square) detectable, then the stochastic process is
detectable under the consensus-based distributed linear filtering
scheme. We also show that the optimal gains of a linear filter
for estimating the state of a Markovian jump linear system
appropriately defined can be used to approximate the optimal
gains of the consensus-based linear filter.

I. Introduction

Sensor networks have broad applications in surveillance

and monitoring of an environment, collaborative processing

of information, and gathering scientific data from spatially

distributed sources for environmental modeling and protec-

tion. A fundamental problem in sensor networks is devel-

oping distributed algorithms for the state estimation of a

process of interest. Generically, a process is observed by a

group of (mobile) sensors organized in a network. The goal

of each sensor is to compute accurate state estimates. The

distributed filtering (estimation) problem has received a lot

of attention during the past thirty years. An important contri-

bution was brought by Borkar and Varaiya [1], who address

the distributed estimation problem of a random variable by

a group of sensors. The particularity of their formulation

is that both estimates and measurements are shared among

neighboring sensors. The authors show that if the sensors

form a communication ring, through which information

is exchanged infinitely often, then the estimates converge

asymptotically to the same value, i.e. they asymptotically

agree. An extension of the results in reference [1] is given

in [11]. The recent technological advances in mobile sensor
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networks have re-ignited the interest for the distributed

estimation problem. Most papers focusing on distributed

estimation propose different mechanisms for combining the

Kalman filter with a consensus filter in order to ensure that

the estimates asymptotically converge to the same value;

these schemes will be henceforth called consensus based

distributed filtering (estimation) algorithms. Relevant results

related to this approach can be found in [7], [8], [9], [2],

[10], [12].

In this paper we address the consensus-based deterministic

distributed linear filtering problem as well. We assume that

each agent updates its (local) estimate in two steps. In the

first step, an update is produced using a Luenberger observer

type of filter. In the second step, called consensus step, every

sensor computes a convex combination between its local up-

date and the updates received from the neighboring sensors.

Our focus is not on designing the consensus weights, but on

designing the filter gains. For given consensus weights, we

will first give sufficient conditions for the existence of filter

gains such that the dynamics of the estimation errors (without

noise) is asymptotically stable. These sufficient conditions

are also expressible in terms of the feasibility of a set of

linear matrix inequalities. Next, we present a distributed (in

the sense that each sensor uses only information available

within its neighborhood), sub-optimal filtering algorithm,

valid for time varying topologies as well, resulting from

minimizing an upper bound on a quadratic cost expressed in

terms of the covariances matrices of the estimation errors. In

the case where the matrices defining the stochastic process

and the consensus weights are time invariant, we present

sufficient conditions such that the aforementioned distributed

algorithm produces filter gains which converge and ensure

the stability of the dynamics of the covariances matrices

of the estimation errors. We will also present a connection

between the consensus-based linear filter and the linear

filtering of a Markovian jump linear system appropriately

defined. More precisely, we show that if the aforementioned

Markovian jump linear system is (mean square) detectable

then the stochastic process is detectable as well under the

consensus-based distributed linear filtering scheme. Finally

we show that the optimal gains of a linear filter for the

state estimation of the Markovian jump linear system can

be used to approximate the optimal gains of the consensus-

based distributed linear filtering strategy. We would like to

mention that, due to space limitations, not all the results are

proved. The reader is invited to consult the extended version

of this paper represented by reference [6], which contains all

the missing proofs.
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Paper structure: In Section II we describe the problems

addressed in this note. Section III introduces the sufficient

conditions for detectability under the consensus-based linear

filtering scheme together with a test expressed in terms of the

feasibility of a set of linear matrix inequalities. In Section IV

we present a sub-optimal distributed consensus based linear

filtering scheme with quantifiable performance. Section V

makes a connection between the consensus-based distributed

linear filtering algorithm and the linear filtering scheme for

a Markovian jump linear system.

Notations and Abbreviations: We represent the property

of positive (semi-positive) definiteness of a symmetric matrix

A, by A ≻ 0 (A � 0). By convention, we say that a symmetric

matrix A is negative definite (semi-definite) if −A ≻ 0 (−A �
0) and we denote this by A ≺ 0 (A � 0). Given a set of square

matrices {Ai}Ni=1
, by diag(Ai, i = 1 . . .n) we understand the

block diagonal matrix which contains the matrices Ai’s on the

main diagonal. By A≻ B we understand that A−B is positive

definite. We use the abbreviations CBDLF, MJLS and LMI

for Consensus-Based Linear Filter(ing), Markovian Jump

Linear System and Linear Matrix Inequality, respectively.
Remark 1.1: Given a positive integer N, a set of vectors

{xi}Ni=1
, a set of non-negative scalars {pi}Ni=1

summing up to
one and a positive definite matrix Q, the following inequality
holds

















N
∑

i=1

pixi

















′

Q

















N
∑

i=1

pi xi

















≤
N

∑

i=1

pix
′
i Qxi. (1)

II. Problem formulation

We consider a stochastic process modeled by a discrete-
time linear dynamic equation

x(k+1) = A(k)x(k)+w(k), x(0) = x0, (2)

where x(k) ∈Rn is the state vector and w(k) ∈Rn is a driving
noise, assumed Gaussian with zero mean and (possibly time
varying) covariance matrix Σw(k). The initial condition x0 is
assumed to be Gaussian with mean µ0 and covariance matrix
Σ0. The state of the process is observed by a network of N
sensors indexed by i, whose sensing models are given by

yi(k) = Ci(k)x(k)+ vi(k), i = 1, . . . ,N, (3)

where yi(k) ∈ Rri is the observation made by sensor i and

vi(k) ∈Rri is the measurement noise, assumed Gaussian with

zero mean and (possibly time varying) covariance matrix

Σvi
(k). We assume that the matrices {Σvi

(k)}N
i=1

and Σw(k)

are positive definite for k ≥ 0 and that the initial state x0,

the noises vi(k) and w(k) are independent for all k ≥ 0.

For later reference we also define Σ
1/2
vi

(k), Σ
1/2
w (k), where

Σvi
(k) , Σ

1/2
vi

(k)Σ
1/2
vi

(k)′ and Σw(k) , Σ
1/2
w (k)Σ

1/2
w (k)′.

The set of sensors form a communication network whose

topology is modeled by a directed graph that describes the

information exchanged among agents. The goal of the agents

is to (locally) compute estimates of the state of the process

(2).

Let x̂i(k) denote the state estimate computed by sensor

i and let ǫi(k) denote the estimation error, i.e. ǫi(k) , x(k)−
x̂i(k). The covariance matrix of the estimation error of sensor

i is denoted by Σi(k) , E[ǫi(k)ǫi(k)′], with Σi(0) = Σ0.

The sensors update their estimates in two steps. In the first
step, an intermediate estimate, denoted by ϕi(k), is produced
using a Luenberger observer filter

ϕi(k) = A(k)x̂i(k)+ Li(k)(yi(k)−Ci(k)x̂i(k)), i = 1, . . . ,N, (4)

where Li(k) is the filter gain.
In the second step, the new state estimate of sensor i

is generated by a convex combination between ϕi(k) and
all other intermediate estimates within its communication
neighborhood, i.e.

x̂i(k+1) =

N
∑

j=1

pi j(k)ϕ j(k), i = 1, . . . ,N, (5)

where pi j(k) are non-negative scalars summing up to one (
∑N

j=1
pi j(k) = 1), and pi j(k) = 0 if no link from j to i exists

at time k. Having pi j(k) dependent on time accounts for a

possibly time varying communication topology.
Combining (4) and (5) we obtain the dynamic equations

for the consensus based distributed filter:

x̂i(k+1) =

N
∑

j=1

pi j(k)
[

A(k)x̂ j(k)+ L j(k)
(

y j(k)−C j(k)x̂ j(k)
)]

, (6)

for i = 1, . . . ,N. From (6) the estimation errors evolve
according to

ǫi(k+1) =
∑N

j=1
pi j(k)

[(

A(k)− L j(k)C j(k)
)

ǫ j(k)+

+w(k)− L j(k)v j(k)
]

, i = 1, . . . ,N.
(7)

Definition 2.1: (distributed detectability) Assuming that

A(k), C(k), {Ci(k)}N
i=1

and p(k), {pi j(k)}N
i, j=1

are time invari-

ant, we say that the linear system (2) is detectable using the

CBDLF scheme (6), if there exist a set of matrices L, {Li}Ni=1
such that the system (7), without the noise, is asymptotically

stable.
We introduce the following finite horizon quadratic filter-

ing cost function

JK (L(·)) =
K

∑

k=0

N
∑

i=1

E[‖ǫi(k)‖2], (8)

where by L(·) we understand the set of matrices L(·) ,
{Li(k),k = 0 . . .K−1}N

i=1
. The optimal filtering gains represent

the solution of the following optimization problem

L∗(·) = argmin
L(·)

JK(L(·)). (9)

Assuming that A(k), C(k), {Ci(k)}N
i=1

, Σw(k), Σv(k), {Σvi
(k)}

and p(k) , {pi j(k)}N
i, j=1

are time invariant, we can also define

the infinite horizon filtering cost function

J∞(L) = lim
K→∞

1

K
JK(L) = lim

k→∞

N
∑

i=1

E[‖ǫi(k)‖2], (10)

where L , {Li}Ni=1
is the set of steady state filtering gains.

By solving the optimization problem

L∗ = argmin
L

J∞(L), (11)

we obtain the optimal steady-state filter gains.

In the next sections we will address the following prob-

lems:
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Problem 2.1: (Detectability conditions) Under the above

setup, we want to find conditions under which the system

(2) is detectable in the sense of Definition 2.1.

Problem 2.2: (Sub-optimal scheme for consensus based

distributed filtering) Ideally, we would like to obtain the

optimal filter gains by solving the optimization problems

(9) and (11), respectively. Due to the complexity of these

problems, we will not provide the optimal filtering gains

but rather focus on providing a sub-optimal scheme with

quantifiable performance.

Problem 2.3: (Connection with the linear filtering of a

Markovian jump linear system) We make a parallel between

the consensus-based distributed linear filtering scheme and

the linear filtering of a particular Markovian jump linear

system.

III. Distributed detectability

Let us assume that no single pair (A,Ci) is detectable in the

classical sense, but the pair (A,C) is detectable, where C′ =
(C′

1
, . . . ,C′

N
). In this case, we can design a stable (centralized)

Luenberger observer filter. The question is, can we obtain a

stable consensus-based distributed filter? As the Example 3.1

of [6] shows, this is not true in general. That is why it is

important to find conditions under which the CBDLF can

produce stable estimates.

Proposition 3.1: Consider the linear dynamics (2)-(3). As-

sume that in the CBDLF scheme (6), we have pi j =
1
N

and

that x̂i(0) = x0, for all i, j = 1 . . .N. If the pair (A,C) is

detectable, then the system (2) is detectable as well, in the

sense of Definition 2.1.
Proof: Rewrite the matrix C as

C =

N
∑

i=1

C̄i,

where C̄′
i
= (On×r1

, . . . ,On×ri−1
, C′

i
, On×ri+1

, . . . ,On×rN
). Ig-

noring the noise, we define the measurements

ȳi(k) = C̄ix(k),

which are equivalent to the ones in (3). Under the assump-
tion that pi j =

1
N

and x̂i = x0 for all i, j = 1 . . .N, it follows
that the estimation errors follow the dynamics

ǫ(k+1) =
1

N

N
∑

i=1

(A− LiC̄i)ǫ(k). (12)

Setting Li = NL for i = 1 . . .N, it follows that

ǫ(k+1) = (A− LC)ǫ(k).

Since the pair (A,C) is detectable, there exists a matrix L

such that A−LC has all eigenvalues inside the unit circle and

therefore the dynamics (12) is asymptotically stable, which

implies that (2) is detectable in the sense of Definition 2.1.

The previous proposition tells us that if we achieve (av-

erage) consensus between the state estimates at each time

instant, and if the pair (A,C) is detectable (in the classical

sense), then the system (2) is detectable in the sense of

Definition 2.1. However, achieving consensus at each time

instant can be time and numerically costly and that is why

it is important to find (testable) conditions under which the

CBDLF produces stable estimates.

Lemma 3.1: (sufficient conditions for distributed de-

tectability) If there exists a set of symmetric, positive definite

matrices {Qi}Ni=1
and a set of matrices {Li}Ni=1

such that

Qi =

N
∑

j=1

p ji(A− L jC j)
′Q j(A− L jC j)+S i, i = 1 . . .N, (13)

for some positive definite matrices {S i}Ni=1
, then the system

(2) is detectable in the sense of Definition 2.1.
Proof: The dynamics of the estimation error without

noise is given by

ǫi(k+1) =

N
∑

j=1

pi j(A− L jC j)ǫ j(k), i = 1, . . . ,N. (14)

In order to prove the stated result we have to show that (14)
is asymptotically stable. We define the Lyapunov function

V(k) =

N
∑

i

xi(k)′Qi xi(k),

and our goal is to show that V(k+1)−V(k) < 0 for all k ≥ 0.
The Lyapunov difference can be upper bounded by

V(k+1)−V(k) ≤

≤
N
∑

i=1



















N
∑

j=1

pi jǫ j(k)′(A− L jC j)
′Qi(A− L jC j)ǫ j(k)



















− ǫi(k)′Qiǫi(k),

(15)
where the inequality followed from Remark 1.1. By chang-

ing the summation order we can further write

V(k+1)−V(k)≤
N

∑

i=1

ǫi(k)′



















N
∑

j=1

p ji(A− L jC j)
′Q j(A− L jC j)−Qi



















ǫi(k).

Using (13) yields

V(k+1)−V(k) ≤ −
N
∑

i=1

ǫi(k)′S iǫi(k) < 0,

since {S j}Nj=1
are positive definite matrices and therefore

asymptotic stability follows.

The following result relates the existence of the sets of

matrices {Qi}Ni=1
and {Li}Ni=1

such that (13) is satisfied, with

the feasibility of a set of linear matrix inequalities (LMI).

Proposition 3.2: (distributed detectability test) The linear

system (2) is detectable in the sense of Definition 2.1 if the

following linear matrix inequalities, in the variables {Xi}Ni=1

and {Yi}Ni=1
, are feasible

(

Xi M

M diag(Xi, i = 1 . . .N)

)

> 0, (16)

for i = 1 . . .N, where M =
(√

p1i(A
′X1 −C′

1
Y′

1
), . . . ,

√
pNi(A

′XN −C′
N

Y′
N

)
)

and where

{Xi}Ni=1
are symmetric. Moreover, a stable CBDLF is

obtained by choosing the filter gains as Li = X−1
i

Yi for

i = 1 . . .N.

Proof: Given in [6].
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IV. Sub-Optimal Consensus-Based Distributed linear

Filtering

Obtaining the closed form solution of the optimization

problem (9) is a challenging problem, which is in the same

spirit as the decentralized optimal control problem. In this

section we provide a sub-optimal algorithm for computing

the filter gains of the CBDLF, with quantifiable performance

in the sense that we compute a set of filtering gains which

guarantee a certain level of performance with respect to the

quadratic cost (8).

A. Finite Horizon Sub-Optimal Consensus-Based Dis-

tributed Linear Filtering

The sub-optimal scheme for computing the CBDLF gains

results from minimizing an upper bound of the quadratic

filtering cost (8). The following proposition gives upper-

bounds for the covariance matrices of the estimation errors.
Proposition 4.1: Consider the following coupled differ-

ence equations

Qi(k+1) =
∑N

i=1
pi j(k)

[(

A(k)− L j(k)C j(k)
)

Q j(k)·
·
(

A(k)− L j(k)C j(k)
)′
+ L j(k)Σv j

(k)L j(k)
]

+Σw(k),
(17)

with Qi(0) = Σi(0), for i = 1, . . . ,N. Then, the following
inequality holds

Σi(k) � Qi(k), (18)

for i = 1, . . . ,N and for all k ≥ 0.

Proof: Given in [6].
Defining the finite horizon quadratic cost function

J̄K (L(·)) =
∑K

k=1

∑N
i=1

tr(Qi(k)), (19)

the next Corollary follows immediately.
Corollary 4.1: The following inequalities hold

JK(L(·)) ≤ J̄K (L(·)),
limsupK→∞

1
K

JK (L) ≤ limsupK→∞
1
K

J̄K(L). (20)

Proof: Follows immediately from Proposition 4.1.

In the previous corollary we obtained an upper bound on
the filtering cost function. Our sub-optimal consensus based
distributed filtering scheme will result from minimizing this
upper bound in terms of the filtering gains {Li(k)}N

i=1
, i.e.

min
L(·)

J̄K(L(·)). (21)

Proposition 4.2: The optimal solution for the optimization
problem (21) is

L∗i (k) = A(k)Q∗i (k)Ci(k)′
[

Σvi
(k)+Ci(k)Q∗i (k)Ci(k)′

]−1
, (22)

and the optimal value is given by

J̄∗K(L∗(·)) =
K
∑

k=1

N
∑

i=1

tr(Q∗i (k)),

where Q∗
i
(k) is computed using

Q∗
i
(k+1) =

∑N
j=1

pi j(k)
[

A(k)Q∗
j
(k)A(k)′+Σw(k)−A(k)Q∗

j
(k)C j(k)′·

·
(

Σv j
(k)+C j(k)Q∗

j
(k)C j(k)′

)−1
C j(k)Q∗

j
(k)A(k)′

]

,

(23)

with Q∗
i
(0) = Σi(0) and for i = 1, . . . ,N.

Proof: Let J̄K(L(·)) be the cost function when an

arbitrary set of filtering gains L(·), {Li(k),k = 0, . . . ,K−1}N
i=1

is used in (17). We will show that J̄∗
K

(L∗(·))≤ J̄K(L(·)), which

in turn will show that L∗(·) , {Li(k)∗,k = 0, . . . ,K − 1}N
i=1

is

the optimal solution of the optimization problem (21). Let

{Q∗
i
(k)}N

i=1
and {Qi(k)}N

i=1
be the matrices obtained when L∗(·)

and L(·), respectively are substituted in (17). In what follows

we will show by induction that Q∗
i
(k) � Qi(k) for k ≥ 0 and

i = 1, . . . ,N, which basically prove that J̄∗
K

(L∗(·)) ≤ J̄K(L(·)),
for any L(·). For simplifying the proof, we will omit in

what follows the time index for some matrices and for the

consensus weights.
Substituting {L∗

i
(k),k ≥ 0}N

i=1
in (17), after some matrix

manipulations we get

Q∗
i
(k+1) =

∑N
j=1

pi j

[

AQ∗
j
(k)A′+Σw −AQ∗

j
(k)C′

j
(Σv j
+

+C jQ
∗
j
(k)C′

j
)−1C jQ

∗
j
(k)A′

]

, Q∗
i
(0) = Σi(0), i = 1 . . .N.

We can derive the following matrix identity (for simplicity
we will give up the time index):

(A+ LiCi)Qi(Ai+ LiCi)
′+ LiΣvi

L′
i
= (A+ L∗

i
Ci)Qi(Ai+ L∗

i
Ci)
′+

+L∗
i
Σvi

L∗
i
′ + (Li− L∗

i
)(Σvi
+CiQiC

′
i
)(Li− L∗

i
).

(24)
Assume that Q∗

i
(k)�Qi(k) for i= 1 . . .N. Using identity (24),

the dynamics of Qi(k)∗ becomes

Q∗
i
(k+1) =

∑N
j=1

pi j

[

(A+ L jC j)Q j(k)(A+ L jC j)
′ + L jΣv j

L′
j
−

−(L j− L∗
j
)(Σv j

+C jQ j(k)C′
j
)(L j− L∗

j
)′+Σw

]

.

The difference Q∗
i
(k+1)−Qi(k+1) can be written as

Qi(k+1)∗ −Qi(k+1) =
∑N

j=1
pi j

[

(A+ L jC j)(Q
∗
j
(k)−Q j(k))·

·(A+ L jC j)
′ − (L j− L∗

j
)(Σv j

+C jQ j(k)C′
j
)(L j− L∗

j
)′
]

.

Since Σvi
+CiQi(k)C′

i
is positive definite for all k ≥ 0 and i =

1, . . . ,N and since we assumed that Q∗
i
(k) � Qi(k), it follows

that Q∗
i
(k+1) � Qi(k+1). Hence we obtain that

J̄∗K(L∗(·)) ≤ J̄K(L(·)),

for any set of filtering gains L(·)= {Li(k),k = 0, . . . ,K−1}N
i=1

,

which concludes the proof.

We summarize in the following algorithm the sub-

optimal CBDLF scheme resulted from Proposition 4.2.

Algorithm 1: Consensus Based Distributed Linear Fil-

tering Algorithm

Input: µ0, P0

Initialization: x̂i(0) = µ0, Yi(0) = Σ01

while new data exists2

Compute the filter gains:3

Li← AYiC
′
i (Σvi

+CiYiC
′
i )
−1

Update the state estimates:4

ϕi← Ax̂i+ Li(yi−C− ix̂i)
x̂i←

∑

j pi jϕ j

Update the matrices Yi:5

Yi←
N

∑

j=1

pi j

(

(A− L jC j)Y j(A− L jC j)
′+ L jΣv j

L′j
)

+Σw
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B. Infinite Horizon Consensus Based Distributed Filtering

We now assume that the matrices A(k), {Ci(k)}N
i=1

,

{Σvi
(k)}N

i=1
and Σw(k) and the weights {pi j(k)N

i, j=1
} are time

invariant. We are interested in finding out under what condi-
tions Algorithm 1 converges and if the filtering gains produce
stable estimates. From the previous section we note that the
optimal infinite horizon cost can be written as

J̄∗∞ = lim
k→∞

N
∑

i=1

tr(Q∗i (k)),

where the dynamics of Qi(k)∗ is given by

Q∗
i
(k+1) =

∑N
j=1

pi j

[

AQ∗
j
(k)A′+Σw −AQ∗

j
(k)C′

j

(

Σv j
+

+C jQ
∗
j
(k)C′

j

)−1
C jQ

∗
j
(k)A′

]

,
(25)

and the optimal filtering gains are given by

L∗i (k) = AQ∗i (k)C′i
(

Σvi
+CiQ

∗
i (k)C′i

)−1
,

for i = 1, . . . ,N. Assuming that (25), converges, the optimal
value of the cost J̄∗∞ is given by

J̄∗∞ =
N

∑

i=1

tr(Q̄i),

where {Q̄i}Ni=1
satisfy

Q̄i =

N
∑

j=1

pi j

[

AQ̄ jA
′+Σw −AQ̄ jC

′
j(Σv j

+C jQ̄ jC
′
j)
−1C jQ̄ jA

′] . (26)

Sufficient conditions under which (26) has a unique solu-

tion and (25) converges to this unique solution are provided

by Proposition 1.1 in the Appendix section.

V. Connection with theMarkovian Jump Linear Systems

state estimation

In this section we present a connection between the
detectability of (2) in the sense of Definition 2.1 and the
detectability property of a MJLS, which is going to be
defined in what follows. We also show that the optimal gains
of a linear filter for the state estimation of the aforementioned
MJLS can be used to approximate the solution of the opti-
mization problem (9), which gives the optimal CBDLF. We
assume that the matrix P(k) describing the communication
topology of the sensors is doubly stochastic and we assume,
without loss of generality, that the matrices {Ci(k),k≥ 0}N

i=1
in

the sensing model (3), have the same dimension. We define
the following Markovian jump linear system

ξ(k+1) = Ãθ(k)(k)ξ(k)+ B̃θ(k)(k)w̃(k)

z(k) = C̃θ(k)(k)ξ(k)+ D̃θ(k)(k)ṽ(k), ξ(0) = ξ0,
(27)

where ξ(k) is the state, z(k) is the output, θ(k) ∈ {1, . . . ,N}
is a Markov chain with probability transition matrix P(k)′,
w̃(k) and ṽ(k) are independent Gaussian noises with zero
mean and identity covariance matrices. Also, ξ0 is a Gaus-
sian noise with mean µ0 and covariance matrix Σ0. We
denote by πi(k) the probability distribution of θ(k) (Pr(θ(k)=
i) = πi(k)) and we assume that πi(0) > 0. We have that
Ãθ(k)(k) ∈ {Ãi(k)}N

i=1
, B̃θ(k)(k) ∈ {B̃i(k)}N

i=1
, C̃θ(k)(k) ∈ {C̃i(k)}N

i=1

and D̃θ(k)(k) ∈ {D̃i(k)}N
i=1

, where the index i refers to the state
i of θ(k). We set

Ãi(k) = A(k), B̃i(k) =
√
πi(0)√
πi(k)
Σ

1/2
w (k),

C̃i(k) = 1√
πi(0)

Ci(k), D̃i(k) = 1√
πi(k)
Σ

1/2
vi

(k),
(28)

for all i,k ≥ 0 (note that since P(k) is assumed doubly
stochastic and πi(0)> 0, we have that πi(k)> 0 for all i,k ≥ 0).
In addition, ξ0, θ(k), w̃(k) and ṽ(k) are assumed independent
for all k ≥ 0. The random process θ(k) is also called mode.
Assuming that the mode is directly observed, a linear filter
for the state estimation is given by

ξ̂(k+1) = Ãθ(k)(k)ξ̂(k)+Mθ(k)(k)(z(k)− C̃θ(k)(k)ξ̂(k)), (29)

where we assume that the filter gain Mθ(k) depends only

on the current mode. The dynamics of the estimation error

e(k) , ξ(k)− ξ̂(k) is given by

e(k+1) =
(

Ãθk(k)−Mθ(k)(k)C̃θ(k)(k)
)

e(k)+

+B̃θ(k)(k)w(k)−Mθ(k)(k)D̃θ(k)(k)v(k).
(30)

Let µ(k) and Y(k) denote the mean and the covariance

matrix of e(k), i.e. µ(k) , E[e(k)] and Y(k) , E[e(k)e(k)′],
respectively. We define also the mean and the covari-

ance matrix of e(k), when the system is in mode i, i.e.

µi(k), E[e(k)1{θ(k)=i}] and Yi(k) , E[e(k)e(k)′1{θ(k)=i}], where

1{θ(k)=i} is the indicator function. It follows immediately that

µ(k) =
∑N

i=1µi(k) and Y(k) =
∑N

i=1 Yi(k).
Definition 5.1: The optimal linear filter (29) is obtain

by minimizing the following quadratic finite horizon cost
function

J̃K (M(·)) =
K

∑

k=1

tr(Y(k)) =

K
∑

k=1

N
∑

i=1

tr(Yi(k)), (31)

where M(·) , {Mi(k),k = 0, . . . ,K − 1}N
i=1

are the filter gains

and where Mi(k) corresponds to Mθ(k)(k) when θ(k) is in

mode i. We can give a similar definition for an optimal steady

state filter using the infinite horizon quadratic cost function.

Definition 5.2: Assume that the matrices Ãi(k), C̃i(k) and

P(k) are constant for all k ≥ 0. We say that the Markovian

jump linear system (27) is mean square detectable if there

exits {Mi}Ni=1
such that limk→∞ E[‖e(k)‖2] = 0, when the

noises w̃(k) and ṽ(k) are set to zero.

The next result makes the connection between the detectabil-

ity of the MJLS defined above the distributed detectability

of the process (2).

Proposition 5.1: If the Markovian jump linear system (27)

is mean square detectable, then the linear stochastic system

(2) is detectable in the sense of Definition 2.1.

Proof: Given in [6].

The next result establishes that the optimal gains of the

filter (29) can be used to approximate the solution of the

optimzation problem (9).

Proposition 5.2: Let M∗(·), {M∗
i
(k),k = 0, . . . ,K−1}N

i=1
be

the optimal gains of the linear filter (29). If we set Li(k) =
1√
πi(0)

M∗
i
(k) as filtering gains in the CBDLF scheme, then the

filter cost function (8) is guaranteed to be upper bounded by

JK(L(·)) ≤
K

∑

k=0

N
∑

i=1

1

πi(0)
tr(Y∗i (k)), (32)

where Y∗
i
(k) are the covariance matrices resulting from

minimizing (31).

Proof:
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By Theorem 5.5 of [5], the filtering gains that minimize
(31) are given by

M∗i (k) = Ãi(k)Y∗i (k)C̃i(k)′
[

πi(k)D̃ j(k)D̃ j(k)′+ C̃i(k)Y∗i (k)C̃i(k)′
]−1
,

(33)
for i = 1 . . .N, where Y∗

i
(k) satisfies

Y∗
i
(k+1) =

∑N
j=1

pi j(k)
[

Ã j(k)Y∗
j
(k)Ã j(k)′ +π j(k)B̃ j(k)B̃ j(k)′−

−Ã j(k)Y∗
j
(k)C̃ j(k)′

(

π j(k)D̃ j(k)D̃ j(k)′ + C̃ j(k)Y∗
j
(k)C̃ j(k)′

)−1
·

·C̃ j(k)Y∗
j
(k)Ã j(k)′

]

.

(34)
In what follows we will show by induction that Y∗

i
(k) =

πi(0)Q∗
i
(k) for all i,k ≥ 0, where Q∗

i
(k) satisfies (23). For

k = 0 we have Y∗
i
(0) = πi(0)Y∗(0) = πi(0)Σ0 = πi(0)Q∗

i
(0). Let

us assume that Y∗
i
(k) = πi(0)Q∗

i
(k). Then, from (28) we have

π j(k)B̃ j(k)B̃ j(k)′ = πi(0)Σw(k), π j(k)D̃ j(k)D̃ j(k)′ = Σvi
(k),

π j(k)D̃ j(k)D̃ j(k)′ + C̃ j(k)Y∗
j
(k)C̃ j(k)′ = Σv j

(k)+C j(k)Q∗
j
(k)C j(k)′.

(35)
Also,

M∗i (k) =
√

πi(0)A(k)Q∗i (k)Ci(k)′
[

Σv j
(k)+C j(k)Q∗j(k)C j(k)′

]−1
,

(36)

and from (22) we get that M∗
i
(k) =

√
πi(0)L∗

i
(k). From (34),

(35), it can be easily argued that Y∗
i
(k+1) = πi(0)Q∗

i
(k+1).

By Corollary 4.1 we have that

JK(L(·)) ≤ J̄K (L(·)),

for any set of filtering gains L(·) and in particular for Li(k)=
1
πi(0)

M∗
i
(k) = L∗

i
(k), for all i and k. But since

J̄K (L∗(·)) =
K

∑

k=0

N
∑

i=1

1

πi(0)
Y∗i (k),

the result follows.

VI. Conclusions

In this paper we addressed three problems. First we

provided (testable) sufficient conditions under which stable

consensus-based distributed linear filters can be obtained.

Second, we gave a sub-optimal, linear filtering scheme,

which can be implemented in a distributed manner and is

valid for time varying communication topologies as well,

and which guarantees a certain level of performance. Third,

under the assumption that the stochastic matrix used in

the consensus step is doubly stochastic we showed that

if an appropriately defined Markovian jump linear system

is detectable, then the stochastic process of our interest is

detectable as well. We also showed that the optimal gains of

the consensus-based distributed linear filter scheme can be

approximated by using the optimal linear filter for the state

estimation of a particular Markovian jump linear system.
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Appendix

Given a positive integers N, a sequence of positive num-
bers p = {pi j}Ni, j=1

and a set of matrices F = {Fi}Ni=1
, we

consider the following matrix difference equations

Wi(k+1) =

N
∑

j=1

pi jF jW j(k)F′j , Wi(0) =W0
i , i = 1, . . . ,N. (37)

Definition 1.1 ([4]): Given a set of matrices C = {Ci}Ni=1
,

we say that (p,L,A) is detectable if there exists a set

of matrices L = {Li}Ni=1
such that the dynamics (37) is

asymptotically stable, where Fi = Ai − LiCi, for i = 1, . . . ,N.

Definition 1.2 ([4]): Given a set of matrices C = {Ci}Ni=1
,

we say that (A,L,p) is stabilizable, if there exists a set

of matrices L = {Li}Ni=1
such that the dynamics (37) is

asymptotically stable, where Fi = Ai −CiLi, for i = 1 . . .N.

Proposition 1.1: Let Σv = {Σ1/2
vi
}N
i=1

, where Σvi
= Σ

1/2
vi

′
Σ

1/2
vi

.

Suppose that (p,C,A) is detectable and that (A,Σ
1/2
v ,p) is sta-

bilizable in the sense of Definitions 1.1 and 1.2, respectively.

Then there exists a unique set of symmetric positive definite

matrices Q̄= {Q̄i}Ni=1
satisfying (26). Moreover, for any initial

conditions Q0
i
≻ 0, we have that limk→∞Qi(k)= Q̄i, where the

dynamics of Qi(k) is given by (25).

Proof: See [6].
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