
HybridSim: A Modeling and Co-simulation
Toolchain for Cyber-Physical Systems

Baobing Wang and John S. Baras
Department of Electrical and Computer Engineering

and the Institute for Systems Research

University of Maryland, College Park, MD 20742, USA

{briankw, baras}@umd.edu

Abstract—Cyber-physical systems (CPS) involve communica-
tion networks, computation algorithms, control systems and
physical systems. Many CPS, such as Smart Buildings, are
subject to very expensive deployment costs and complex network
interactions. Thus comprehensive modeling and simulation of
such systems are crucial to ensure that they function as intended
before deployment. Given the multi-domain nature of CPS, it
is more appropriate to use a heterogeneous simulation environ-
ment to study system dynamics. In this paper, we design and
implement an integrated modeling and co-simulation toolchain,
called HybridSim, for the design and simulation of CPS. Firstly,
HybridSim can transform and import existing system compo-
nents from multi-domains into SysML, which enables systems
engineers to design CPS with only these imported SysML blocks.
Secondly, HybridSim can generate Functional Mock-up Units
(FMUs) and configuration scripts directly from SysML designs.
Finally, HybridSim can co-simulate these FMUs according to the
Functional Mock-up Interface standard to synchronize their cor-
responding simulators and exchange information between them.
We demonstrate the convenience and efficiency of HybridSim
using a comprehensive hydronic heating system model for Smart
Buildings as the case study to investigate the impact of packet loss
and sampling rate introduced by the communication network.

Index Terms—Co-simulation, TinyOS, Modelica, Functional
Mock-up Interface, Cyber-Physical Systems

I. Introduction

One of the most pervasive applications of Cyber-Physical

systems (CPS) is to integrate cyber environment and physical

systems through computing and networking [1]. Traditionally,

sensor measurements are fed to controllers through wired

networks, which are also used to deliver control commands to

actuators. However, for some applications (e.g., Smart Build-

ings, manufacture monitoring, etc.), it can be very expensive

and complex to deploy and evolve such wired networks.

For some other applications (e.g., unmanned aerial vehicles,

healthcare monitoring, etc.), it will be impossible to use wired

networks for communications. Therefore, it is preferable to

integrate computational and physical devices through self-

organized wireless networks.

However, wireless networks suffer from unreliable wireless

channels, especially in indoor applications and body-area

networks. It is imperative to understand how wireless networks

and control systems affect each other as a function of network

traffic, topology and background interference, in terms of the

stability and performance of control systems before deploy-

ment [2]. Considering the complexity of CPS, simulations are

preferable to pure mathematical analysis. Given the multi-

domain nature of CPS, it is more appropriate to use a het-

erogeneous simulation environment to study system dynamics.

However, the integration of numerical solvers for continues-

time models and simulators for event-triggered models is an

established, but far-from-trivial problem [3].

In addition, different domain engineering groups generally

exploit different domain languages and tools to model and

evaluate their designs, which may not be familiar to systems

engineers. It is error-prone and inefficient if systems engineers

have to work with these domain languages and tools directly

to design and evaluate overall systems. Instead, the outputs of

domain groups should be integrated into a unified framework

that is friendly to systems engineers [4].

In this paper, we design and implement an integrated

modeling and co-simulation toolchain, called HybridSim, for

the design and evaluation of CPS. HybridSim has three key

features. Firstly, HybridSim provides a unified framework for

systems engineers to integrate the outputs of domain groups

to design overall systems. Specifically, we consider that a CPS

consists of three main subsystems: 1) a cyber environment in

which the CPS is deployed; 2) a wireless sensor and actuator

network that is used to deliver sensor measurements and

control commands; and 3) a control and computation system

that is responsible to process information and make decisions.

We assume the second subsystem is designed and implemented

in TinyOS that is the most popular operating system for low-

power wireless devices, and the other two subsystems are

modeled and simulated in Modelica. HybridSim can transform

and import TinyOS implementations and Modelica models into

SysML blocks. Section VI discusses how to extend HybridSim

to support other domain tools and languages.

Secondly, systems engineers can design CPS by using the

imported SysML blocks in a drag-and-drop fashion. Such

SysML blocks appear as black boxes and all domain-specific

details are hidden from systems engineers. HybridSim pro-

vides a set of SysML stereotypes for systems engineers to

configure overall systems and provide guidance for code

generation and co-simulations.

Finally, HybridSim can generate configuration scripts and

simulation modules for domain implementations and mod-

els automatically from SysML designs. Based on the Func-

tional Mock-up Interface (FMI) standard [5], HybridSim can

17th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications

1550-6525/13 $26.00 © 2013 IEEE

DOI 10.1109/DS-RT.2013.12

33

17th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications

1550-6525/13 $26.00 © 2013 IEEE

DOI 10.1109/DS-RT.2013.12

33

17th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications

1550-6525/13 $26.00 © 2013 IEEE

DOI 10.1109/DS-RT.2013.12

33

17th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications

1550-6525/13 $26.00 © 2013 IEEE

DOI 10.1109/DS-RT.2013.12

33

co-simulate these subsystems by leveraging the advantages

of their respective professional simulators and emulators.

HybridSim provides a robust and flexible mechanism for data

exchange and synchronization between these subsystems.

The convenience and efficiency of HybridSim is demon-

strated by using a comprehensive hydronic heating system

model for Smart Buildings as the case study. We investigate

the impact of sampling rates, background traffic, and network

sizes in wireless sensor networks on the performance of the

control system modeled in Modelica.

The rest of this paper is organized as follows. We discuss

related work in Section II and introduce some background

briefly in Section III. In Section IV, we explain the design

and implementation of HybridSim in details. The case study is

presented in Section V. Finally we discuss some observations,

limits and future work for HybridSim in Section VI and

conclude this work in Section VII.

II. RelatedWork

Since the design and synthesis of CPS has become a hot

topic in both industry and academia, several co-simulation

paradigms have been proposed. TrueTime [6] extends Mat-

lab/Simulink with libraries for co-simulation of controller task

execution in real-time kernels, network transmissions, and

continuous plant dynamics. However, physical and MAC layer

protocols must be modeled from scratch, which is complex

and time-consuming. In addition, providing support for higher

layer protocols in TrueTime can be a formidable task because

they generally utilize complex algorithms that are distributed

in nature and encompass multi-hop communications [2].

Viptos [7] extends TOSSIM [8] by providing interrupt-

level simulation of actual TinyOS programs, with packet-

level simulation of the network, while allowing developers to

use Ptolemy II to model the physical environment and other

parts of the system. However, information can only flow from

Ptolemy II to TOSSIM because there is no way for Ptolemy

II to receive data from TOSSIM. Therefore, Viptos cannot be

used to investigate the impact of network dynamics on the

performance of overall CPS.

Wang et al. [3] proposed a model-based systems design

framework for wireless sensor networks. They described a

hierarchy of model libraries to model various behaviors and

structures of sensor networks, and proposed a system design

flow to compose both continuous-time and event-triggered

modules to develop applications with support for performance

study by simulations. However, they cannot take advantage

of existing models and implementations, and thus their model

libraries must be developed from scratch. Similarly, Bombino

et al. [9] proposed a model-driven co-simulation framework

based on SysML for discrete event modeling, and on Mat-

lab/Simulink for continuous time modeling.

The Modelica/ns-2 co-simulation platform [2] integrates

Modelica and ns-2 for CPS, with ns-2 deciding their com-

munication times. Therefore, sending data between Modelica

and ns-2 in response to events generated inside Modelica is

not supported. The synchronization mechanism is improved

later in [10]. NCSWT (Networked Control System Wind

Tunnel) [1] integrates Matlab/Simulink with ns-2 according to

the High Level Architecture (HLA) standard. To conform to

the HLA standard, the time management mechanisms of both

simulators are modified to enable synchronization between

them. However, the overhead of NCSWT is very large, which

takes more than one hour to complete a 98-second simulation.

There are also other similar works on the integration of

Matlab/Simulink and ns-2 [11], [12].

In all the above work, simulators involved in co-simulations

are tightly coupled with each other, and even need to be

modified to enable data exchange and synchronization. Com-

paratively, HybridSim adopts the FMI standard, and only

interacts with FMI-compatible API that are supported by more

than 40 commercial and open-source tools1. This implies the

extensibility of HybridSim to integrate other tools. In addition,

existing works require systems engineers to work with domain

languages and tools directly, while HybridSim enables systems

engineers to work with only SysML blocks by transforming

and importing domain implementations and models.

III. Background

In this section, we briefly introduce the tools and standards

based on which HybridSim is designed and implemented.

A. Functional Mock-up Interface

FMI [5] is a tool independent standard to support both

model exchange and co-simulation of dynamic models using a

combination of XML files and compiled C-code. FMI provides

a set of standard functions to exchange data between subsys-

tems and synchronize them in communication steps. These

subsystems are called FMI slaves, while the co-simulation

coordinator is called FMI master. FMI compliant models are

referred to as Functional Mock-up Units (FMUs)

B. TinyOS and Avrora

TinyOS [13] is an open source operating system (OS)

designed for low-power wireless devices, such as those used

in sensor networks, ubiquitous computing, personal area net-

works, smart buildings, and smart meters. TinyOS emphasizes

reacting to external events, extremely low-power operation

and small memory footprint. Rather than a monolithic OS,

TinyOS is object-oriented, providing a set of components that

are included as-needed in applications by extending the C lan-

guage with concepts of interfaces, modules and configurations.

TinyOS is the most popular OS that is widely used to design

and implement wireless sensor networks.

Avrora [14] is a set of emulation and analysis tools for pro-

grams written for MicaZ and mica2 sensor platforms. Avrora

contains a flexible framework for emulating and analyzing

executable binary files compiled from TinyOS applications,

providing a clean Java API and infrastructure for experimen-

tation, profiling, and analysis. Unlike TOSSIM [8], Avrora

provides cycle-accurate instruction-level timing accuracy.

1Full tool list: https://www.fmi-standard.org/tools

34343434

C. Modelica

Modelica [15] is an object-oriented language for modeling

of large, complex, and heterogeneous systems. Models in

Modelica are mathematically described by differential, alge-

braic and discrete equations. Modelica is designed so that

available, specialized algorithms can be utilized to enable

efficient handling of large models having more than one

hundred thousand equations. Dymola [16] is a commercial

modeling and simulation environment based on Modelica,

which can compile Modelica codes, solve equations and

simulate Modelica models. Specifically, Dymola can generate

an FMU by wrapping a whole Modelica system model.

D. SysML

SysML [17] is a general-purpose modeling language for

systems engineering, with graphical representations for the

specification, analysis, design, verification and validation of

systems and systems-of-systems involving hardware, software

and information. SysML is defined as an extension of a subset

of UML. IBM Rational Rhapsody [18] is a software platform

for model-based systems engineering based on SysML, which

can generate source codes for SysML behavior diagrams for

interactive simulations. In this work, Rhapsody is used as our

development environment.

IV. HybridSim: Design and Implementation

In this section, we first introduce the workflow of

HybridSim, and then describe the model integration environ-

ment and co-simulation toolchain in more details.

A. HybridSim Workflow

HybridSim is an important module of our WSNDesign

Plug-in for IBM Rational Rhapsody, which is still under

development. Its workflow is shown in Fig. 1, which roughly

consists of three major steps: model transformation, system

configuration, and co-simulation.

Model Transformation. The design of a cyber-physical

system usually involves multiple engineering groups from

different domains. For example, to design a smart building, we

can have one group working on the HVAC (heating, ventila-

tion, and air conditioning) system, and another group working

on the communication network. Generally, different domain

groups exploit different languages and tools to model and

evaluate their designs, which may not be familiar to systems

engineers. HybridSim solves this problem by transforming and

importing domain models into SysML, which is widely used

for model-based systems engineering. Currently HybridSim

can transform TinyOS components, Modelica modules and

FMUs, and import them as SysML blocks.

System Configuration. Systems engineers can create

SysML Block Definition Diagrams and SysML Internal Block

Diagrams, by selecting TinyOS SysML blocks, Modelica

SysML blocks and FMU SysML blocks to set up a system-

level simulation environment to evaluate the performance and

dynamics of an overall system. Particularly, systems engineers

need to configure simulation parameters for both TinyOS

emulator and Modelica simulator, and specify information

exchanging between them.

Co-simulation. After systems engineers have set up a

simulation environment, HybridSim will compile TinyOS ap-

plication codes and Modelica models, and generate their

corresponding FMUs. Meanwhile, related configuration files

and simulation scripts are generated automatically as well.

Then HybridSim launches the FMI co-simulation master to

co-simulate TinyOS FMU and Modelica FMU, and outputs

their corresponding results.

IBM Rhapsody WSNDesign Plug-in

TinyOS
(*.nc, *.h)

TinyOS FMU
(*.fmu)

Modelica FMU
(*.fmu)

Modelica
(*.mo)

TinyOS-SysML
Importer

Modelica-SysML
Importer

TinyOS
SysML Blocks

TinyOS-FMU
SysML Blocks

Modelica-FMU
SysML Blocks

Modelica
SysML Blocks

FMU-SysML
Importer

TinyOS FMU
Generator

Avrora Emulator
(fmi-avrora.jar)

FMI Wrapper
(*.c, *.h) Configuration

Generator

Modelica FMU
Generator

FMI Co-simulation
Master (*.py)

TinyOSApp.fmu ModelicaSys.fmu

ModelicaSys
Result

TinyOSApp
Result

ConnectionConfig.txt

Fig. 1. HybridSim Toolchain Workflow

B. SysML-centric Integration Environment

HybridSim is developed according to the following princi-

ples:

• Domain engineers work with the languages and tools with

which they are familiar. They should not be required to

re-implement their designs just for overall system simu-

lation and evaluation. Ideally, domain engineers just need

to provide standard interfaces for systems engineers to

exchange information and synchronize with other domain

simulators.

• Systems engineers only need to work with their favorite

languages and tools as well. For overall system integration

and simulation, they take the outputs of domain engi-

neering groups as black boxes. Systems engineers only

need to work with the interfaces provided by domain

implementations and models.

• Systems engineers should take advantage of exiting pro-

fessional simulators/emulators in each domain for overall

system evaluation. In addition, the burden to set up a co-

simulation environment should be minimized for systems

engineers.

Support Modelica. As SysML is widely used for model-

based systems engineering, HybridSim selects SysML as the

working language for systems engineers. Meanwhile, Model-

ica is becoming increasingly popular to model CPS in both in-

35353535

dustry and academia in recent years. For example, researchers

at the Lawrence Berkeley National Laboratory have devel-

oped a Modelica Buildings Library with dynamic simulation

models for building energy and control systems in Smart

Buildings [19]. Therefore, HybridSim supports Modelica as a

very important domain language. Specifically, HybridSim can

import Modelica models in two formats into SysML blocks:

both Modelica FMUs and Modelica source codes.

The FMU-SysML Importer reads the model description (i.e.,

modelDescription.xml) of a Modelica FMU to figure out its

input and output ports, and then creates a SysML block with

corresponding input and output flow ports. In addition, the

ModelicaFMU stereotype is applied to this SysML block,

which has a tag referring to the original FMU for simulation

code generation.

Similarly, the Modelica-SysML Importer parses Modelica

source codes to extract its input and output ports informa-

tion, and then generates SysML blocks. Unlike SyM [20],

HybridSim only extracts the high-level structure information

of a Modelica module, and ignores its internal component

connections and behavior definitions. Therefore, this importer

is much simpler and very stable. The ModelicaSource
stereotype is applied to generated SysML blocks to refer their

behaviors to the original source codes, and specify which tool

should be used to generate FMUs from these SysML blocks.

Currently, Dymola is the only tool supported by HybridSim.

However, it is very easy to extend HybridSim to support

OpenModelica or other Modelica tools.

Support TinyOS. WSNs will play a fundamental role in

future CPS, such as Smart Buildings [21]. As TinyOS is

the most popular operating system to develop sensor applica-

tions, HybridSim supports TinyOS and its programming lan-

guage, nesC, for communication networks design. Similarly,

HybridSim can transform and import TinyOS components in

two formats into SysML blocks: TinyOS FMUs and nesC

source codes.

As Modelica FMUs, TinyOS FMUs are transformed and

imported by the FMU-SysML Importer as well. However,

the TinyOSFMU stereotype is applied to their correspond-

ing SysML blocks, which provides additional tags for co-

simulation setup in addition to the reference to the original

FMU. To the best of our knowledge, HybridSim is currently

the only tool that can generate TinyOS FMUs. Considering

that design groups of communication systems may not be

familiar with SysML and IBM Rational Rhapsody, an inde-

pendent version of TinyOS FMU Generator of HybridSim is

also available.

To import TinyOS components from nesC source codes,

HybridSim takes advantage of the XML output feature of

the nesC compiler, from where input and output interfaces

of TinyOS components are extracted. If a component does not

have any interface (i.e., it is a complete TinyOS application),

the TinyOSSource stereotype is applied to its corresponding

SysML block. Otherwise, the TinyOSComponent stereo-

type is applied.

Systems engineers can integrate a sensor network imple-

mentation into the overall system in two ways from source

codes. The easiest way is to select an existing SysML block

tagged with TinyOSSource. The other way is to create

a new SysML block that is applied with TinyOSSource,

and then specify a reference to an executable binary file, or

create an Internal Block Diagram for it. Systems engineers can

select and connect existing TinyOS components in a drag-and-

drop fashion in this diagram to specify its source code. This

enables systems engineers to develop simple sensor network

applications for partial evaluation of overall systems before

real applications are finished. Note that HybridSim only has

a limited support for the second method, without interface

compatibility checking for connections. In addition, although

HybridSim can make use of existing imported TinyOS com-

ponents, systems engineers cannot modify their source codes

or create new TinyOS components in HybridSim. This is

reasonable because systems engineers are not supposed to

directly work with domain languages.

In order to exchange information with Modelica models,

HybridSim provides a simple mechanism that allows systems

engineers to input data coming from Modelica simulators into

sensors, and vice verse. An example is shown in Fig. 3.

To input data to sensors on a mote, systems engineers just

need to add input flow ports to the SysML block (tagged

with TinyOSSource) representing the application to be run

on that mote. The name of an input port must exactly be

the type of the target sensor (e.g., temperature, light, etc.).

Currently, only scalar-valued sensors are supported. To get

data out of motes, output flow ports should be added to their

corresponding SysML blocks. The name of an output port

must exactly be the name of a variable declared with module-

scope in some TinyOS module. The TinyOSVariable
stereotype should be applied to that port to specify in which

module that variable is declared.

C. FMI-based Co-simulation Toolchain

HybridSim adopts the FMI standard to co-simulate TinyOS

and Modelica, and synchronizes and exchanges information

between their respective simulators by calling their FMI-

compatible API. The implementation details of the Modelica

FMU Generator, the TinyOS FMU Generator, the Config-

uration Generator and the FMI Co-simulation Master are

described as follows.

Modelica FMU Generator. If a SysML block is tagged

with ModelicaFMU, HybridSim just needs to forward the

location of the corresponding FMU to the Configuration

Generator. If that block is tagged with ModelicaSource,

HybridSim calls Dymola to compile the source codes and

generate an FMU.

TinyOS FMU Generator. SysML blocks tagged with

TinyOSFMU are processed similarly as blocks tagged with

ModelicaFMU. For blocks tagged with TinyOSSource,

HybridSim needs to compile nesC source codes, prepare the

TinyOS Emulator, and compile the FMI Wrapper source codes.

36363636

To compile nesC source codes, HybridSim first checks how

the TinyOS application is created. If it is directly imported

from TinyOS libraries, HybridSim just needs to set up certain

environment variables and read its associated Makefile to

compile it. Otherwise, if it is created in the second way as

described above, HybridSim will collect information about all

the required TinyOS components and generate a Makefile. The

output of this step is a set of ELF (Executable and Linkable

Format) files, which will be loaded by the TinyOS Emulator.

The TinyOS Emulator is developed based on Avrora [14]

in Java, which is extended as follows. Firstly, the TinyOS

Emulator provides interfaces to input data into sensors from

outside interactively. Secondly, the TinyOS Emulator can

extract runtime values of variables from TinyOS components.

By processing the ports tagged with TinyOSVariable, the

TinyOS Emulator can infer the actual variable names in ELF

files, and their memory addresses when these ELF files are

loaded into RAM. Monitors are added to monitor these RAM

addresses, which can reconstruct the variable values when

they are updated. These two extensions enable the TinyOS

Emulator to exchange data with a Modelica simulator. Finally,

a new synchronization mechanism is developed, which can

synchronize all threads of sensor motes, get information about

the next system-wide event from local event queues, and

enable the FMI Co-simulation Master to control the size of

each synchronization step.

The FMI Wrapper is developed based on FMU-SDK [22] in

C, which is extended with a more flexible mechanism to handle

variable references. In addition, the FMI Wrapper provides

convenient interfaces to interactive with the TinyOS Emulator

through the Java Native Interface framework. Finally, the FMI

Wrapper can process the output of the Configuration Generator

to generate modelDescription.xml and compile all files into a

stand-alone FMU with the TinyOS Emulator included.

Configuration Generator. The main output of this module

is two configuration files for co-simulation. The first one is an

Avrora configuration script, which specifies a set of options for

the TinyOS Emulator, sensor types for each mote, and a set

of variables whose values should be extracted and the TinyOS

components in which they are declared. The second one is a

connection configuration file, which specifies connections of

the output and input ports of a TinyOS FMU and a Modelica

FMU. This file is used by the FMI Co-simulation Master to

exchange information between the TinyOS Emulator and a

Modelica simulator.

FMI Co-simulation Master. Fig. 2 describes the algorithm

of the FMI Co-simulation Master, which is developed based on

PyFMI [23] in Python. The master first parses the connection

configuration file and records connections in two hashtables.

The key of an entry is an output port of the given FMU, and the

value is its corresponding input port of the other FMU. After

the two FMU slaves have been instantiated and initialized, the

master begins to co-simulate them in steps. In each step, the

master first reads the values of output ports of the Modelica

slave, which are then forwarded to the TinyOS slave. Next,

the step size δ is computed as the minimum of the specified

communication step size, and the two incremental times of

the next event in the TinyOS slave and in the Modelica slave,

respectively. Therefore, no interaction event is missed. Then

the master stimulates the TinyOS slave to emulate up to t+ δ.
After that, the values of its output ports are forwarded to the

input ports of the Modelica slave, which is then stimulated to

simulate up to t + δ similarly. When the specified end time

of co-simulation is reached, the master terminates both slaves

and releases the resource occupied by them. The co-simulation

results for both slaves are stored in Dymola format, which

can be loaded into Dymola for further analysis, or plotted in

HybridSim directly.

Input: Two FMUs, stopTime, connSize, config.txt

Output: TOSResult.txt, MdlResult.txt

1: [TOS Conn,MdlConn]← parse(con f ig.txt);
2: TOS S lave← loadFMU(TinyOS App. f mu);

3: MdlS lave← loadFMU(ModelicaS ys. f mu);

4: TOS Result = newDymolaWriter(TOS S lave);

5: MdlResult = newDymolaWriter(MdlS lave);

6: TOS S lave.initialize(); MdlS lave.initialize();

7: t ← 0;

8: while t < stopT ime do
9: values← MdlS lave.get(MdlConn.keys);

10: TOS S lave.set(MdlConn.values, values);

11: δ← getS tep(connS ize, TOS S lave,MdlS lave);

12: TOS S lave.doS tep(t, δ);
13: values← TOS S lave.get(TOS Conn.keys);

14: MdlS lave.set(TOS Conn.values, values);

15: MdlS lave.doS tep(t, δ);
16: TOS Result.writePoint(); MdlResult.writePoint();
17: t ← t + δ;
18: end while
19: TOS S lave.terminate(); MdlS lave.terminate()

20: TOS S lave. f ree(); MdlS lave. f ree()

Fig. 2. FMI Co-simulation Master

V. Case Study

In this section, we use a comprehensive hydronic heating

system as the case study to demonstrate the convenience

and efficiency of HybridSim. Specifically, we investigate the

impacts of packet loss and sampling rate that are introduced

by wireless sensor networks on the heating system.

A. Modelica Model and TinyOS Application

Our Modelica model is developed based on an example

provided by the Modelica Buildings Library [19], which

comprehensively models the hydronic heating system for a

building with energy storage and thermostatic radiator valves.

Two rooms on the same intermediate floor are modeled using

a dynamic model for the heat transfer through opaque con-

structions, with the same temperature above and below them.

They share one common wall and have two windows. Realistic

37373737

weather data traces from Chicago are fed into this model as

the outside environment.

The hydronic heating system consists of a boiler, a storage

tank and a radiator with a thermostatic valve in each room.

The supply water temperature setpoint is reset based on the

outside temperature. A three-way-valve mixes the water from

the tank with the water from the radiator return. The pump has

a variable frequency drive that controls the pump head. The

building has a controlled fresh air supply with a heat recovery

ventilator to preheat the outside air. Each room has a leakage

model of the facade, through which the difference in air supply

will flow if the supply and exhaust air are unbalanced.

A finite state machine is used to control the boiler and its

pump. They are switched on when the temperature at the top

of the tank is less than 1 Kelvin above the setpoint temperature

for the supply water of the radiator loop. The boiler is switched

on 10 seconds later than the pump. They are switched off when

the temperature at the bottom of the tank reaches 55 ◦C. The

pump is switched off 10 seconds later than the boiler.

In this case study, we only care about the temperatures of

the two rooms, and the top and bottom of the tank, each of

which is monitored by a temperature sensor. Originally, their

readings are directly fed into the controller without any delay

or loss. To investigate the impact of wireless sensor networks,

the connections between the sensors and the controller are

deleted. Instead, their readings are provided to four output

ports respectively. Correspondingly, four input ports that are

connected to the controller are created to get data from outside.

The TinyOS application consists of a set of relay motes and

four sensor motes sampling the temperatures of the two rooms,

and the top and bottom of the tank. In addition, a sink (i.e.,

base station) is assigned to collect all their readings through

multi-hop communications. The Collection Tree Protocol [24]

is selected as the routing protocol, and the Rician fading

channel model is applied in the TinyOS Emulator.

Fig. 3 demonstrates a system configuration for one of our

co-simulation scenarios. Four sensor motes (two on the left

and two on the right) are created by referring to an existing

ELF file, which is created by the nesC compiler. The sink

and relay motes are created by referring to the Makefile for

their source codes (the ELF file is actually compiled from this

source codes), while the hydronic heating system model is

imported from an existing Modelica FMU.

HybridSim first generates a configuration file for the TinyOS

Emulator as shown in Fig. 4. The topology file is generated by

HybridSim based on the ID and location of each mote as spec-

ified in Fig. 3. Each parameter is assigned a unique reference

number, which is required by the FMI standard. The name of

an output parameter is N〈id〉_〈component〉__〈outPort〉,
while that of an input parameter is N〈id〉_〈inPort〉. This file

is also parsed to generate the TinyOS FMU. The corresponding

configuration for co-simulation setup is shown in Fig. 5.

B. Co-simulation Results

We first investigate the impact of sampling rate of sensor

motes by simulating the system for one day. The commu-

��������	�
���
���	���������������
������������������
��������

�������	�
����

�
���	��������� �!"

#�
�

����$%&'�����
()�������)�����
*���

#���+��$�����

#��'+��$����� #����,+��$�����

#����-+��$�����

#���.�$�����#��'.�$�����
#����,.�$����� #����-.�$�����
#���+��$�����

#��'+��$����� #����,+��$�����

#����-+��$�����

#���.�$�����#��'.�$�����
#����,.�$����� #����-.�$�����

�
������

�
���	�#���+�������"

#�
�

��$%&'�����
(/��0��1
��23 $%&'
������
��������$%&'�����
(/$�45��0$4,/��-/*6��/5��1$4,/��,-��/5
������$%&'�����
(�����
������
�7��	�����

����
�
���	�#���+�������"

#�
�

��$%&'�����
(-
��23 $%&'
������
��������$%&'�����
(-$4,/��8-*6��/5
������$%&'�����
(�����
������
�7��	***

#��'+��$�����

#����,+��$����� #����-+��$�����

#���+��$�����#��'+��$�����

#����,+��$����� #����-+��$�����

#���+��$�����

����������

�
���	�#���+�������"

#�
�

��$%&'�����
(6
��23 $%&'
������(#���
��������$%&'�����
(6$4,,*6��,*6��/5
������$%&'�����
(�����
������
�*���

���'�������$��������'�������$�����

����������

�
���	�#���+�������"

#�
�

��$%&'�����
(9
��23 $%&'
������(#���
��������$%&'�����
(9$4,/��/��/5
������$%&'�����
(�����
������
�*���

���'�������$��������'�������$�����

��������

�
���	�#���+�������"

#�
�

��$%&'�����
(,
��23 $%&'
������(#���
��������$%&'�����
(,$4-,*6��1��/5
������$%&'�����
(�����
������
�*���

���'�������$��������'�������$�����

��������

�
���	�#���+�������"

#�
�

��$%&'�����
(8
��23 $%&'
������(#���
��������$%&'�����
(8$4-6��,*6��/5
������$%&'�����
(�����
������
�*���

���'�������$��������'�������$�����

Fig. 3. System Configuration

options for the Avrora emulator
options = -nodecount=8 -topology-file=top.txt ...

SmartBuildings.elf
direction refNum paramName initialValue
output 915 N1_SmartBuildingsC__Troom1Out 20
output 925 N1_SmartBuildingsC__Troom2Out 20
output 935 N1_SmartBuildingsC__TtopOut 20
output 945 N1_SmartBuildingsC__TbotOut 20
input 715 N2_temperature 20
input 725 N3_temperature 20
input 735 N4_temperature 20
input 745 N5_temperature 20

Fig. 4. TinyOS Emulator Configuration

Direction: output = input
HH: HydronicHeating, SB: SmartBuildings
Abbreviated from the original file
HH->TtopOut = SB->N4_temperature
HH->TbotOut = SB->N5_temperature
HH->Troom1Out = SB->N2_temperature
HH->Troom2Out = SB->N3_temperature
SB->N1_SmartBuildingsC__TtopOut = HH->TtopIn
SB->N1_SmartBuildingsC__TbotOut = HH->TbotIn
SB->N1_SmartBuildingsC__Troom1Out = HH->Troom1In
SB->N1_SmartBuildingsC__Troom2Out = HH->Troom2In

Fig. 5. Co-simulation Configuration

nication step size for the TinyOS slave and the Modelica

slave to exchange data and synchronize with each other is

one second. Fig. 6 shows the simulation results when the

sampling period is 10 seconds and 60 seconds, respectively.

The four sensor motes locate within one-hop neighborhood

of the sink, and no background traffic is considered. The

simulation result of the original Modelica model in which all

sensor readings are fed into the controller directly is used as

the reference. As we can see, when the sampling period is 10

seconds, its impact is imperceptible. If the sampling period

is increased to 60 seconds, there is a little variation, but its

result is still very close to the reference. This is reasonable

because temperature usually changes slowly. This indicates

that wireless sensor networks can be used in some CPS

38383838

to reduce deployment complexity and costs. Especially for

slow response systems, such as our hydronic heating system,

low sensor duty cycles can still guarantee acceptable system

performance while increasing sensor lifetime significantly.

(a) Room1 Temperature

(b) Room2 Temperature

(c) Temperature of Tank Top

(d) Temperature of Tank Bottom

Fig. 6. Impact of Sampling Rates

Smart Buildings, especially commercial buildings, are not

clean environments for sensor communications, which usually

suffer from heavy background traffic interference, such as WiFi

traffic and Bluetooth traffic. In this scenario, we simulate the

hydronic heating system under heavy WiFi traffic interference.

Specifically, we feed a real-world noise trace into the TinyOS

Emulator, which is measured in the Meyer Library at Stanford

University with a large HTTP download and other WiFi traffic

going-on [25]. The simulation results for different network

sizes are shown in Fig. 7, which indicate that it is impractical

to deploy a sensor network with more than 3 hops from

a sensor mote to the sink in our case. Note that we only

analyze the simulation results directly in HybridSim in this

case study, which can also be processed by exiting tools for

Avrora emulator and Modelica simulator.

(a) Room1 Temperature

(b) Room2 Temperature

Fig. 7. Impact of Network Size

Table I shows the run-time efficiency of HybridSim. It can

be seen that the performance of HybridSim depends on the

network complexity. Actually, the efficiency is dominated by

TinyOS Emulator that provides cycle-accurate instruction-level

emulation.

TABLE I
Run-time Efficiency (Simulation Time = 24 Hours)

Scenario # of Nodes Runtime (H)

1 Hop 6 4.54
2 Hop 8 6.18
3 Hop 11 9.04
4 Hop 14 11.24

VI. Discussion

In this section, we discuss some observations, limits and

future work for HybridSim.

Communication step sizes impact co-simulation overhead

and accuracy. HybridSim adopts variable communication step

sizes based on the time of the next event in both slaves to

provide fine-grained interactions between them, so that no

event potentially requiring interactions is missed. However,

in some scenarios, such a big overhead is not necessary. For

example, in our case study, the TinyOS slave and the Modelica

39393939

slave only interact at sampling points, and the sampling

period is much larger than variable communication steps. If

communication step sizes are fixed to a reasonable value (e.g.,

1 second), the overhead imposed by the co-simulation master

can be reduced significantly, while a good accuracy is still

guaranteed. Systems engineers need to study the trade-off

between overhead and accuracy depending on their system

characteristics.

HybridSim can be extended with more interesting features.

Firstly, the ns-3 network simulator [26] can be integrated

into HybridSim. Since ns-3 is a more general discrete-event

simulator for both wireless and wired networks, and preferable

for fast prototyping of network designs, this feature will make

HybridSim more interesting to a larger community. An FMI

wrapper for ns-3 should be developed, similar to our FMI

wrapper for the Avrora emulator. In addition, it will be very

interesting to integrate Matlab/Simulink into HybridSim as

well. For this feature, an FMU generator for Matlab/Simulink

models is desired.

Another future work is to enhance the coupling between

HybridSim and IBM Rational Rhapsody, which currently only

serves as the environment for the FMI Co-simulation Master.

We are interested in integrating the Rhapsody simulator into

HybridSim, which can generate simulation source codes for

SysML Activity Diagrams and Statechart Diagrams. With

this feature, HybridSim will become a much better design

framework and toolchain for model-based systems engineer-

ing. Another interesting topic is to support distributed co-

simulations, which is also specified in the FMI standard and

is more suitable for large complex systems.

VII. Conclusions

In this paper, we designed and implemented a modeling

and co-simulation toolchain, called HybridSim, for Cyber-

Physical Systems. HybridSim can transform and import exist-

ing TinyOS components and Modelica models into SysML,

so that systems engineers can design and simulate overall

systems in a uniform framework. Based on the FMI stan-

dard, HybridSim provides a robust and flexible mechanism

to exchange data and synchronize the TinyOS Emulator and

the Modelica simulator. Therefore, HybridSim can leverage

the advantage of their respective professional emulator and

simulator, and investigate complex cyber-physical interactions.

In addition, HybridSim enables domain engineering groups

to work relatively independently, while facilitating systems

engineers to design and evaluate overall systems by using

outputs from domain groups. A comprehensive case study

is discussed to illustrate the convenience and efficiency of

HybridSim.

Acknowledgements

This work was partially supported by the National Science

Foundation (NSF) under grant award CNS-1035655, and by

the National Institute of Standards and Technology (NIST)

under grant award 70NANB11H148.

References

[1] D. Riley, E. Eyisi, J. Bai, X. Koutsoukos, Y. Xue, and J. Sztipanovits,
“Networked control system wind tunnel (ncswt): an evaluation tool for
networked multi-agent systems,” in Proceedings of the 4th International
ICST Conference on Simulation Tools and Techniques (SIMUTools),
2011, pp. 9–18.

[2] A. T. Al-Hammouri, M. S. Branicky, and V. Liberatore, “Co-simulation
tools for networked control systems,” in Proceedings of the 11th
international conference on Hybrid Systems: Computation and Control
(HSCC), 2008, pp. 16–29.

[3] B. Wang and J. S. Baras, “Integrated modeling and simulation frame-
work for wireless sensor networks,” in IEEE 21st WETICE, 2012, pp.
1 – 6.

[4] P. Derler, E. Lee, and A.-S. Vincentelli, “Modeling cyber-physical
systems,” Proceedings of the IEEE, vol. 100, no. 1, pp. 13–28, 2012.

[5] MAP FMI, “Functional Mock-up Interface,” https://www.fmi-standard.
org/ .

[6] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K. Arzen, “How does
control timing affect performance? analysis and simulation of timing
using jitterbug and truetime,” IEEE Control Systems, vol. 23, no. 3, pp.
16–30, 2003.

[7] E. Cheong, E. A. Lee, and Y. Zhao, “Viptos: a graphical development
and simulation environment for tinyos-based wireless sensor networks,”
in ACM SenSys, 2005, pp. 302–302.

[8] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate and
scalable simulation of entire tinyos applications,” in ACM SenSys, 2003,
pp. 126–137.

[9] M. Bombino and P. Scandurra, “A model-driven co-simulation envi-
ronment for heterogeneous systems,” International Journal on Software
Tools for Technology Transfer, pp. 1–12, 2012.

[10] A. T. Al-Hammouri, “A comprehensive co-simulation platform for
cyber-physical systems,” Computer Communications, vol. 36, no. 1, pp.
8–19, Dec. 2012.

[11] T. Kohtamaki, M. Pohjola, J. Brand, and L. Eriksson, “PiccSIM
toolchain - design, simulation and automatic implementation of wireless
networked control systems,” in Networking, Sensing and Control, 2009.
ICNSC ’09. International Conference on, 2009, pp. 49–54.

[12] O. Heimlich, R. Sailer, and L. Budzisz, “NMLab: A co-simulation
framework for matlab and ns-2,” in Advances in System Simulation
(SIMUL), 2010 Second International Conference on, 2010, pp. 152–157.

[13] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” ACM SIGPLAN
Notices, vol. 35, no. 11, pp. 93–104, Nov. 2000.

[14] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: scalable sensor network
simulation with precise timing,” in ACM/IEEE IPSN, 2005.

[15] Modelica Association, “Modelica Language Specification 3.3,” https:
//www.modelica.org.

[16] Dassault Systemes, “Dymola,” http://www.3ds.com/products/catia/
portfolio/dymola.

[17] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML:
The Systems Modeling Language (2nd Edition). Morgan Kaufmann
Publishers Inc., 2011.

[18] IBM, “IBM Rational Rhapsody Help,” www.ibm.com/software/awdtools/
rhapsody/ .

[19] Lawrence Berkeley National Laboratory, “Modelica Buildings Library,”
http://simulationresearch.lbl.gov/modelica/ .

[20] C. J. Paredis, Y. Bernard, R. M. Burkhart, H.-P. de Koning, S. Frieden-
thal, P. Fritzson, N. F. Rouquette, and W. Schamai, “An overview of the
sysml-modelica transformation specification,” in INCOSE International
Symposium, 2010.

[21] R. Fontugne, J. Ortiz, N. Tremblay, P. Borgnat, P. Flandrin, K. Fukuda,
D. Culler, and H. Esaki, “Strip, bind, and search: a method for identi-
fying abnormal energy consumption in buildings,” in ACM/IEEE IPSN,
2013, pp. 129–140.

[22] QTronic GmbH, “FMU SDK 1.0.2,” http://www.qtronic.de/en/ fmusdk.
html.

[23] JModelica.org, “PyFMI 1.2.1,” http://www.jmodelica.org/page/4924.
[24] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection

tree protocol,” in ACM SenSys, 2009, pp. 1–14.
[25] H. Lee, A. Cerpa, and P. Levis, “Improving wireless simulation through

noise modeling,” in ACM/IEEE IPSN, 2007, pp. 21–30.
[26] NS-3 Consortium, “ns-3 Network Simulator,” http://www.nsnam.org/ .

40404040

