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Abstract 

In a broadband satellite communications network, the propagation delays are not only significant, but also 
variable among users due to their different geographical locations and the problem becomes more severe with 
increasing data rates. We consider rate control algorithms with user feedback in the form of single bits and 
formulate analytic fluid flow models composed of first-order delay-differential equations. Both single-flow and 
multi-flow system models are analyzed, with special attention paid to the Mitra-Seery algorithm. The stationary 
solutions are investigated first. For the fluctuating solutions, their dynamic behavior is analyzed, in terms of 
amplitude, transient behavior, fairness and adaptability, etc., analytically and numerically. Especially the effects 
of heterogeneous time-varying delays are investigated. It is shown that with proper parameter design the system 
can achieve stabling behavior with close to pointwise proportional fairness among flows. 

1. Introduction 

Real-time rate-based flow control with feedback is broadly used to avoid remote queue overflow by adjusting 
the variable data rates assigned to all the flows. In a broadband satellite communications network, however, the 
time associated with the adaptive processes for feedback-based rate control is in the order of the propagation 
delays, which are not only significant, but also variable among users due to their different geographical locations 
in many cases. The problem is more severe considering the high speed. Furthermore, when LEO/MEO/HEO or 
other moving objects are used as source nodes or intermediate nodes, the propagation delays are time-varying. 
But feedback-based rate control is still very suitable for broad classes of bursty applications, whose bandwidth 
demands will persist for comparable time durations to the time of adaptive processes. So it is necessary and 
important to perform the stability and dynamic behavior analysis of such kind of systems. 

We focus on a class of rate control algorithms with feedback to the users in the form of single bits within the 
broadband satellite communications network. The single bit indicates whether the instantaneous queue size at the 
distant location is beyond a threshold. In our one-hop network model, a number of flows locate in the moving 
nodes. Every flow is associated with two nonnegative parameters, νj and σj, for flow j. νj is the minimum 
bandwidth and σj is the nonnegative weight assigned to the flow j to determine its best-effort share of the 
available bandwidth. A distant queue has the service rate µ and the queue threshold QT. It is worth noting that 
network models with two or more hops can be converted to the combination of one-hop network models. 

We utilize the asynchronous and synchronous versions of general algorithms for feedback-based rate control 
system, based on our one-hop network model, to introduce suitable fluid models with heterogeneously time-
varying propagation delays for single and multiple flows, respectively. We then study the stability and the time-
varying behavior of the modelled rate-control system with single-flow. We give the conditions for the existence 
of stationary solutions, prove the convergence and obtain the convergence rate. We also give the bounds of the 
fluctuation solutions under the condition when the stationary solutions do not exist; their dynamic behavior of 
fluctuation solutions is analyzed in detail. 

We further our study to the multiple-flows fluid model for rate-control systems, using the same methodology 
as the single-flow fluid model. Fairness and scalability are two important issues in the algorithm design for the 
multiple flows. We present the stationary solutions, existence conditions and convergence speed for the multi-
flow system models. And then for the situations under which the systems only have fluctuating solutions, we 
analyze the dynamic behavior of rates and queue size in detail. Based on the analytic results, we investigate the 
effect of delays and parameters in terms of fairness, fluctuation (amplitude, period), transient behavior and 
adaptability, etc. It has been shown, analytically and in simulations, that with proper parameter design the system 
can achieve stabling behavior with close to pointwise proportional fairness among flows. 

2. Recent work 

In this paper, we extend some related work. A network model with large propagation delays in wide-area 
network was presented in [1], and its dynamics was fully investigated in both analytic way and simulation. Its 
network model is very similar to our one-hop network model except that both propagation delays and service 
rate are fixed. A fundamental theory of response-time based adaptations for large propagation delays is 
developed in [2]. The damping and gain parameters are selected for the delay-differential equations to optimize 
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transient behavior. A basic symmetric algorithm called Mitra-Seery (MS) and its design rules are given in [1], 
while an asymmetric algorithm called Jacobson-Ramakrishnan-Jain (JRJ) is introduced in [3]. We also draw 
ideas for the model formulation, fluid models approximation and behavior analysis from [4]. 

Recent work has been done on studying the similar systems with fixed delays from another point of view [5, 
6, 7, 8, 9, 10, 11]. In [5], a single-flow single-resource case with a fixed feedback delay is analyzed and the 
stability condition is shown under assumptions on the price function. In [9], the sufficient condition is given for 
the stability of the single-flow single-resource system with fixed delay and more general utility functions. The 
case with homogeneous fixed round-trip delay and a given utility function is studied in [8] for stability and 
convergence rate. In [7] a sufficient condition is given for the stability of a single-resource multiple-flows system 
with fixed queuing delays. The case with time-varying propagation delays is analyzed under an optimization 
framework in [10], with the delays modelled by Gamma distribution. In [11], heterogeneous time-varying delays 
are considered for the primal/dual distributed algorithms that solve the network flow optimization problems.  

2. Models for a single flow system 

Similarly to the work in [1] but with time-varying propagation delays and service rate, we formulate general 
asynchronous and synchronous versions for feedback-based rate-control systems, and then utilize fluid models to 
approximate the systems with single flow and multiple flows, respectively. 

In this section we focus on the systems with only one flow, which is modelled as follows: 
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Here, φ(t) is the flow rate in term of the throughput of packets at time t. Also u(t) = sgn[QT – q(t – τ(t))], and 
[.]+ = max(., 0). Γ+, Γ–, A+, A– are nonnegative parameters. It is difficult to directly solve equation (1) or study its 
dynamic behavior. So we will start our analysis from two cases: time-varying delay with fixed service rate; fixed 
delay with time-varying service rate.  

2.1 Case 1: time-varying delay with fixed service rate 

The model for a single flow with time-varying propagation delay but fixed bandwidth is 
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In this case, the time-varying propagation delay does not affect the existence of stationary solutions. We have 
the same results with the (i) and similar results with (ii) of Proposition 3.2 in [1]. 
Proposition 1: Suppose µν <Γ+ ++A . The system in (2) has a stationary solution: ++ Γ+≡ Aνϕ , q ≡ 0. Also: 

1.1 If ++ Γ+≤ At νϕ )( 1  for any t1, then ++ Γ+≤ At νϕ )(  for all t ≥ t1. If 
++ Γ+> At νϕ )( 0 , then there exists t2, 

t2 > t0, s.t. φ(t) decreases monotonically when t2 > t > t0, and ++ Γ+= At νϕ )( 2 . 

1.2 Assume RSt T ⊂∈)(τ  and ST is compact. Denote its bounds as τmin and τmax. There exists t3, s.t. for all t ≥ t3, 

TQtq <)( , ++ Γ+→ At νϕ )(  at the exponential rate Γ+. 

Proof: skipped. 

From the proof of Proposition 1, we also have the following remarks when µν <Γ+ ++A  holds: 
Remark 1: Proposition 1.1 does not require bounded τ(t). Proposition 1.2 also holds for unbounded τ(t) if: 1) 0 < 
τ(t) < t and 2) (t – τ(t)) is (not necessarily monotonically) increasing to +∞. The conditions can be satisfied when 
the system is base on FIFO and always in connection during the considered time window. 
Remark 2: Recall that Γ+, Γ–, A+, A– are nonnegative parameters. Further assume that Γ+, Γ– > 0. The system in 
equation (2) is then globally asymptotically stable with exponential rate. 

Also we have the property: regardless of whether µν <Γ+ ++A  is satisfied or not, for any t0 and t > t0, 

 [ ] ( )[ ]00 exp)()( ttAtAt MMMMM −Γ−⋅Γ−+Γ≤ ψψ .  (3) 

which is very useful for studying the solutions in the fluctuation region where µν <Γ+ ++A  does not hold. 
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2.2 Case 2: fixed delay with time-varying service rate 

The model for a single flow with fixed delay but time-varying bandwidth is obtained by setting ττ =)(t in 
equation (1). Due to space limitation, the model is skipped here. It is not easy to even find the existence of 
stationary solutions except for the cases under the following conditions. 

Proposition 2: Suppose )(inf
0

tA tt µν >
++ <Γ+  for a finite time t0. Then the system has a stationary solution: 

++ Γ+≡ Aνϕ and q ≡ 0. 

However, it is worth noting that in broadband satellite communication networks, the service rate is slowly 
time-varying, compared with the time horizon of the system dynamic behavior due to the heterogeneous 
propagation delay. Hence, in the rest of this paper, we focus on the rate control system in equation (2) which has 
time-varying delays with fixed service rate, unless stated otherwise. 

2.3 Solutions in the fluctuation region 

In this section we focus on the dynamic system behavior in the fluctuation region and expect that the system 
has fluctuating solutions with small amplitudes in some sense through careful system designs. The assumptions 
in this section are listed below: 
• µν >Γ+ ++A . 
• A+, A– ≥ 0 and Γ+, Γ– > 0. Consider Mitra-Seery (MS) algorithm where Γ+ = Γ– = Γ and A+ = A– = A. 
• φ(t) and q(t) are piece-wise differentiable. At time 0, φ(0) = q(0) = 0. 
• RSt T ⊂∈)(τ , where ST is a compact set with nonnegative lower and upper bounds τmin, τmax. 

In the fluctuation region, the demand ++ Γ+ Aν  
is even higher than the service rate µ, so unbounded 
delays may eventually lead to forced dropping of 
incoming packets in the system. Thus, we consider 
the case with bounded delays only. 

It was originally shown in [1, 12] that the system 
with fixed delays will have periodic solutions when 
no stationary solutions exist. However, with time-
varying delays, the system does not have equiripple 
periodic solutions in the fluctuation region, as shown 
in Figure 1, where as an example we use a sinusoidal 
function to model time-varying delays. The system 
has aperiodic fluctuating solutions, with an average 
rate of 144.2Mbps. Compared with its maximum, the 
fluctuation of rate is relatively small (< 1/3), and 
could be even less with careful design of parameters. 

Now we study the dynamic behavior of systems 
with general time-varying delays in the fluctuation 
region. Since ν can be absorbed by φ(t) and µ in 
equation (2), we set ν = 0 in the rest of this section. 

Phase 1: ),( 10 ttt∈ , where t0 ≡ inf{t ≥ 0: φ(t) = µ}, t1 ≡ i
= 0. Clearly, in Phase 1, u(t) = sgn[QT – q(t – τ(t))] ≡ 1
positive and increases except a subset of (t0, t0 + τmax). Assu
subset, the governing equations for Phase 1 are 
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 150Mbps, ν = 30Mbps, A+ = A– = 48.1Mbps, Γ+ = Γ– = 0.39, ∆ 
= 0.05s, QT = 10 packets, τ(t)  =  0.1 + 0.05 · sin(π · t / 11). 

igure 1: Rate-control system for a single flow with 
bounded delays 
nf{t ≥ t0: q(t – τ(t)) = QT}. We have φ(t0) = µ and q(t0) 
, φ(t) overshoots µ and always increases; q(t) stays 
ming t0 + τmax << t1 and ignoring this small transition 
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We can then obtain the solutions of )(tql

(
, )(ˆ tql , ),( 10 ttt∈  from equation (5): 
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We can assume ))(( 00 tt τϕ −  > 0, by satisfying AΓ⋅−>⋅Γ− µτ 1)exp( max  through parameter design. 
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To move any further from (7), we need to study the range of q(t1). From the definitions of 0t  and 1t , it can be 
derived from the monotonically increasing property of φ(t) in Phase 1 that 
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It is worth noting that alternative bound trajectories can be obtained by evaluating system behavior in Phase 1 
from the right side at time t1. Two trajectories can be defined from the right side at ),( 10 ttt∈ : )(tqr

(
, )(ˆ tqr  with 

fixed delay τmin or τmax, respectively, with the same initial state as q(t) at time t1. Similarly approximations for (t1 
– t0) can be obtained (skipped here). Furthermore, the combination of )(tql

(
, )(ˆ tql , )(tqr

(
, )(ˆ tqr  as follows can 

lead to tighter (two-sided) bound trajectories: [ ])(),(max)( tq tqtq rl
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≡ , [ ])(ˆ),(ˆmin)(ˆ tq tqtq rl≡ , ),( 10 ttt∈ . 

The analysis for the other phases are similar but more tedious. So we only present their definitions and then 
the final results for the single-flow system. Phase 2: ),( 21 ttt∈ , where t2 ≡ inf{t ≥ t1: q(t – τ(t)) = QT, φ(t) < µ}. 

Phase 3: ),( 32 ttt∈ , where t3 ≡ inf{t ≥ t2: q(t) = 0, φ(t) < µ}. Phase 4: ),( 43 ttt∈ , where t4 ≡ inf{t ≥ t3: φ(t) = µ}. 
Phase 1–4 together form a “cycle” of the fluctuating solutions in the system working in the fluctuation region. 
Define the period of an individual fluctuation “cycle” as 04, tt TT −≡ , we have 
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Remark 3: for the system working in the fluctuation region: 
1 Although the fluctuation is aperiodic, the time duration of each “cycle” is bounded by equation (10). In fact, 
the time duration of each phase is bounded by equations (9) and the other equations (not listed here). 
2 A larger maxτ  tends to increase the length of each “cycle period” and its variation. This makes sense since it is 
more difficult for the remote user(s) to track the dynamic system behavior with likely larger delays. 
3 The parameter design can significantly affect the system behavior. The time duration of each “cycle” largely 
depends on the ratio of ΓA  and its difference from µ. 
4 The system with larger delays has longer phases in each “cycle”, higher overshoot and larger amplitude. 
5 With a fixed ratio of ΓA , a larger Γ  speeds up dynamic behavior and in some sense compensate the effects 
of incorrect feedback due to delays. It results in a higher overshoot and larger amplitude; while a smaller Γ  
leads to slower system behavior with a lower overshoot. The system with a Γ  too small, however, may stay in 
Phase 4 (and the 2nd half of Phase 3) for a long time, during which the system performance likely degrades. 
6 The system with a larger delay or Γ  tends to have higher maxQ . maxQ  is bounded unless ( ) +→−Γ 0µA . 

Figure 2 depicts the “cycles” in the dynamic behavior with fluctuations as an example. In Figure 2(a), the 
parameters and the time duration are the same as those in Figure 1. The 41 different “cycles” fall into 6 groups; 
each group has a set of “cycles” whose trajectories are very close with each other. The rate φ(t) has a maximum, 
minimum and average value as 153.0, 105.0 and 144.2 Mbps, respectively. The maximum queue size is 11.1 at φ 
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= 134.3Mbps. The average T, period of “cycles”, is about 12.1s. Its response time, the time duration from 0 to 
the time when the flow receives the feedback of the remote queue overflow for the first time, is 9.8s. 

Figure 2(b) shows the same system with the same ratio of ΓA  but different A and Γ as those in Figure 2(a). 
Compared with Figure 2(a), the time duration of each phase and each “cycle” is longer, so there are less number 
of “cycles” (about 10) which fall into 5 groups according to their trajectories. Compared with Figure 2(a), the 
system has a lower Φmax (151.4Mbps), a much higher Φmin (143.4Mbps), a smaller maxQ (10.6), a longer T (40.2s) 
and a higher throughput (148.7Mbps) with much longer response time (98.2s). Furthermore, the rate amplitude 
decreases dramatically, and hence the relative amplitude, Φ∆Φ , drops from 0.33 to 0.05 accordingly. 

3 Models for a multiple flow system 

We extend the single-flow model (2) to the multiple-flows model as follows: 
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Here −+−+ ΓΓ jjjj AA  , , ,  are nonnegative parameters associated with the jth flow, j = 1, 2, …, N, and the feedback for 

the jth flow at time t is uj(t) = sgn[QT – q(t – τj(t))]. We start from the analysis of the multiple flow systems with 
stationary solutions. The system that satisfies this condition is stated as the system in the stationary-state region. 

3.1 Solutions in the stationary-state region 

We have the following results regarding the existence of stationary solution and the stability: 
Proposition 3: Suppose ( ) µν <Γ+∑ ++

j jjj A . The system in (11) has a stationary solution: ++ Γ+≡ jjjj Aνϕ , 

 N j ...,,1=∀  and q ≡ 0. Furthermore: 

3.1 For a given t1, if )...,,1()( 1  N j At jjjj =Γ+≤ ++νϕ , the same inequality also holds for all flows when t ≥ t1. 

If for a flow k at time t0, 
++ Γ+> kkkk At νϕ )( 0 , there exists t2, t2 > t0, s.t. )(tkϕ  decreases monotonically when t2 > 

t > t0, and ++ Γ+= kkkk At νϕ )( 2 . 

3.2 For a flow k, assume RSt k
Tk ⊂∈)(τ  and k

TS  is compact. Denote its bounds by k
minτ  and k

maxτ . Then there 

exists t3, s.t. for all t ≥ t3, TQtq <)( , ++ Γ+→ kkkk At νϕ )(  at the exponential rate Γ+. 

We have the similar remarks for the multiple flow system as Remark 1 and Remark 2. The property similarly 
to equation (3) also holds for each individual flow. Due to space limitation, they are skipped here. 

3.2 Solutions in the fluctuation region 

 
(a) A+ = A– = 48.1Mbps, Γ+ = Γ– = 0.39                                   (b) A+ = A– = 4.81Mbps, Γ+ = Γ– = 0.039 

µ = 150Mbps, ν = 30Mbps, ∆ = 0.05s, QT = 10 packets, τ(t)  =  0.1 + 0.1 · sin(πt/11). 

Figure 2: Bounded “cycles” in the fluctuation region of single-flow systems 
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In this section we will study the fluctuating but bounded dynamic behavior in the fluctuation region where 
( ) µν >Γ+∑ ++

j jjj A . The assumptions in this section are summarized below (  N j ...,,1=∀ ): 

• 0 , ≥−+
jj AA  and 0 , >ΓΓ −+

jj . jjj Γ=Γ=Γ −+  and jjj AAA == −+  , i.e., consider the MS algorithm. 

• 0=jν , since jν  can be absorbed by )(tjϕ  and µ in equation (11). 

• )(and)( t q tjϕ  are piece-wise differentiable functions with 0)0()0( == qjϕ . 

• RSt Tj ⊂∈)(τ , where ST is a compact set with bounds min
jτ , max

jτ . Denote min
min min jj

ττ ≡ , max
max max jj

τ≡τ . 

With the above assumptions, the multiple-flows model (11) can be rewritten as 
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It is worth noting that different flows have different uj(t), and that all flows are coupled in equation (12b). 
Using a similar but more complicated way as that in the analysis of the single-flow system, we have studied the 
dynamic behavior of the multiple-flow system with general time-varying delays in the fluctuation region.  

Let t0 be the time when the queue starts buffering the incoming packets for the first time in Phase I. Clearly 
q(t0) = 0, 1

min00 tt <≤ . Let 1
jt  be the time when the jth user receives the feedback information of the remote queue 

overflow, i.e., { }Tjj Qttq tt =−>≡ ))((:0inf1 τ . 1
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We also address the topic of fairness with the following constraint among flows: 

1) For any flow j, there exists time tj ≥ 0, such that jj t νϕ ≥)(  when t ≥ tj.  

2) For any two flows j and k, ( ) ( ) kkkjjj tt σνϕσνϕ −=− )()(  when ),max( kj  ttt ≥ . 

For the above fairness criteria we consider the following parameter design: 

 ,...,,2,1  N  j =∀ ,jj AA σ⋅= ,Γ=Γj  and define ∑≡ j jσσ .  (13) 

With the above design rule, the condition of fluctuation region can be rewritten as σµ>ΓA . It has been 
shown in [1] that for the system with heterogeneous fixed delays, this design rule achieves “pointwise fairness”: 
the divergences from the proportional fairness vanish monotonically as ∞→t . Through our analysis, we have: 
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1 τσµτ ≤





−Γ
Γ⋅

Γ
−≤ A

At . 

4.2 ( ) ( )∑ ⋅+⋅≥
j jjAt σστσµ min

0 . 

4.3 ( ) 







⋅Γ⋅⋅

Γ
≤





−Γ
Γ⋅

Γ
−≤








⋅Γ⋅⋅

Γ ∑∑
j

jj
j

jj A
At )exp(ln

1
ln

1
)exp(ln

1 max
0

min τσσσµτσσ . 

4.4 ( )µστ −Γ⋅+≥− AQtt Tmin0
1
min . 

4.5 ( )( ) µτσ
τ

−⋅Γ−⋅⋅Γ
+≤−

∑ j jj

T

A
Q

tt
)exp(1 maxmax0

1
max , if ( )[ ] µτσ >⋅Γ−⋅⋅Γ ∑ j jjA )exp(1 max  holds. 

4.6 ( )( ) ( )µστστ −Γ⋅⋅Γ⋅⋅Γ⋅Γ++≤− ∑ AAQtt
j jjT )exp(1 max

max0
1
max . 

4.7 ( ) ( )µστµστ −Γ⋅⋅+≤−Γ⋅⋅+≤ AQAQtq TjTj max
max1 )( . 

Proposition 4 gives the bounds of the sequence of responsive times { }N

jj t
1

1

=
 for the rate-control systems in the 

fluctuation region. The difference between ΓA  and σµ  is one of the most important factors in the bounds: a 
smaller difference leads to much longer responsive times. In general, for a specific flow j, the bounds of its 
responsive time 1

jt  increase with the feedback delay bounds of the jth flow min
jτ , max

jτ . Because { }N

jj t
1

1

=
 are delayed 

tracking of a common queue in different flows, the flow with less delay always has the shorter responsive time. 
As we all know, the (local) maximum rate max

jϕ  increases with the corresponding responsive time 1
jt . 
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In our parameters design, when ΓA  is fixed, to compensate for the long responsive time, the system may 
need a large Γ  or a large σ  (or both). In addition, for the same purpose, we can adjust the relative weights 

 N   jj ...,,2,1, =σ by assigning smaller relative weights to the flows with longer delays. 

Proposition 4.7 presents an upper bound of the queue size at the responsive time of each flow, which can be 
used along with the governing equation (12) to bound the (local) maximum queue size qmax: 

[ ] ( )[ ] ( )µστµστ −Γ⋅⋅⋅+≤−Γ⋅⋅⋅+≤−⋅≤ AQAQQtqq TjTjTjj max
max1

max 22max)(2max  (14) 

In summary, a larger )or( σ  A Γ  leads to shorter responsive times and lower maximum rates, with the 
tradeoff of a larger queue size. The tradeoffs in the parameters design are necessary to give consideration to both 
issues to achieve small responsive times of all flows and less overshoots if any with a reasonable queue size. 

4 Simulation results of the system with multiple flows 

Extensive simulation have been done for the multi-flow system with heterogeneous time-varying feedback 
delays, to demonstrate the issues, qualitatively and quantitatively, such as transient behavior, parameter design, 
the effect of time-varying delays, fairness, etc. Due to space limitation, only selective simulation are shown here. 

Figure 3 shows two flows with the same weight but different time-varying delays starting at time 0 and 50s, 
respectively. == min

2
min

1 ττ 0.05s, =max
1τ  0.15s and =max

2τ 0.25s. For convenience the queue size is measured in 
units of nominal packets. 1 nominal packet has 6250 bytes, i.e., the product of 1Mbps/s and 0.05s. 

In Figure 3, for t < 50s the system has only flow 1, and µνσ <+Γ⋅ 11 A , so the system has stationary-state 
solutions. The rate of flow 1 approaches the steady state exponentially and the queue is always empty. For t ≥ 
50s, flow 2 attempts to obtain its share of the bandwidth, and ( ) µνσ >+Γ⋅∑ = 2,1j jj A . So the system is in the 

fluctuation region for t ≥ 50s; the fluctuating behavior of the rates and queue size can be clearly observed. With 
different delays, two flows have different aperiodic fluctuations. However, the amplitude and period of the 
fluctuations are bounded and close to periodic; and the rates of the two flows almost coincide with each other 
after the transient period. It follows that fairness (½ to ½) is achieved between two flows at almost any time. 

Two sets of gains and damping constants are used in Figure 3 with their ratio fixed: the one in (a) has larger 
( A ,Γ ), which leads to shorter responsive times in both stable and fluctuation regions; while the other set in (b) 
provides smaller fluctuations and requires less buffer size in the common queue. Either of them may be desirable 
in practice depending on the specific purpose of parameter design; or it could be any other set in between for 
further tradeoff among the above performance metrics. 

Figure 4 shows the transient behavior of the system with 16 flows as four new flows start at 0, 150s, 300s 
and 450s, respectively. The rates of all flows are shown in Figure 4(a) while the aggregated rate, the average rate 
per flow and the queue size are shown in Figure 4(b). For t < 150s, the system has stationary solutions with an 
aggregated rate of 120Mbps; for t ≥ 150s, the system has fluctuating solutions. Note that the rate fluctuations 
slow down as the number of flows increases. Figure 4(c) shows the Jain’s Fairness Index (FI) at different times 
with 4, 8, 12 and 16 active flows, respectively. The minimum bandwidth is not considered in the allocated 
resource, i.e., iii ttx νϕ −= )()( , where flow i is an active flow. The perfect fairness (FI ≈ 1) can be clearly 
observed except for the transient times when a new group of flows have been just started. 

5 Conclusions 

In this paper, we focus on feedback-based rate control systems for adaptive bandwidth allocation in 
broadband satellite communication networks. Our analyses are based on analytic fluid models composed of first-

 

(a) A = 9.62Mbps, Γ = 0.117  (b) A = 1.924Mbps, Γ = 0.0234 

Flow 1 and 2 starts at 0 and 50s, respectively. µ = 150Mbps, ν1 = ν2 = 30Mbps, ∆ = 0.05s, QT = 10 packets, σ1 = σ2 = 1,  
τ1(t) = 0.1 + 0.05 · sin(πt/11), τ2(t) = 0.15 + 0.1 · sin(πt/7). 

Figure 3: Multi-flows: various gain and damping constants with fixed ratio 
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order delay-differential equations with damping and gain functions. Furthermore, practically and most 
importantly, the heterogeneous time-varying propagation delays are reflected in the system models. Single-flow 
and multi-flow system models are analyzed, respectively, with much attention paid to the symmetrical Mitra-
Seery (MS) algorithm.  

We show the stationary solutions, existence conditions and convergence speed for the single-flow and multi-
flow system models, respectively. And then for the situations under which the systems only have fluctuating 
solutions, we analyze the dynamic behavior of rates and queue size in detail. Based on the analytic results, we 
investigate the effect of delays and parameters in terms of fairness, fluctuation (amplitude, period), transient 
behavior and adaptability, etc. It has been shown, analytically and in simulations, that with proper parameter 
design the system can achieve stable behavior with close to pointwise proportional fairness among flows. 
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(a) Rates of flows (b) Aggregated rate and queue behavior 

 

Figure 4: Multi-flows: the effect of increasing number of flows 

Four new flows start at 0, 150, 300 and 450 s, 
respectively. A = 4.81Mbps, Γ = 0.0585,  

µ = 150Mbps, ∆ = 0.05s, QT = 10 packets,  
νj = 5Mbps, σj = 0.3, j = 1, …, 16. 

        For k = 0, 1, 2, 3,  
τ4k + 1(t) = τ4k + 4(t) = 0.1 + 0.05 · sin(πt/11), 
τ4k + 2(t) = τ4k + 3(t) = 0.15 + 0.1 · sin(πt/7). 
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