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Abstract

We look at the problem of estimation for partially
observed� risk�sensitive control problems with �nite
state� input and output sets� and receding horizon�
We describe architectures for risk sensitive controllers�
and estimation� and we state conditions under which
both the estimated model converges to the true model�
and the control policy will converge to the optimal
risk sensitive policy�

� Introduction

Risk sensitive control of hidden Markov models has
become a topic of interest in the control community
largely in response to a paper by Baras and James
��� which shows that� in the small noise limit� risk
sensitive control problems on hidden Markov models
become robust control problems for non�deterministic
�nite state machines� This paper presents results that
are part of a program to extend the work of Baras
and James to cover situations where the plant is un�
known� We consider the combined estimation and
control problem for a class of controllers that imple�
ment randomized control strategies that approximate
optimal risk�sensitive control on a receding horizon�
Problems of combined estimation and control have

a long history� and the LQG case is standard mate�
rial for stochastic control texts� Treatment of con�
trolled hidden Markov models is more recent� the
work of Fern	andez�Gaucherand et al� �
� treats a situ�
ation similar to that treated here with di�erent meth�
ods� The methods that we use are based on existing
work in stochastic approximation� In particular we
use a recursive estimation scheme based on Krishna�
murthy and Moore ���� and an approach from Ara�

�Martin Marietta Chair in Systems Engineering�

e�mail� baras�isr�umd�edu
�e�mail� frankpit�isr�umd�edu

postathis and Marcus �� along with theorems from
Benveniste et al� ��� to prove convergence of the es�
timation scheme� The di�erence between this work
and the preceding work is that by considering ran�
domized strategies we can show convergence of the
model estimate and the control without recourse to
special reset conditions that are required in �
��
This paper is divided into �ve sections� the remain�

der of this section introduces the notation that we
use� the second section describes the controller archi�
tecture� the third describes the estimator� the fourth
states and discusses the convergence results� and the
�fth presents some conclusions and directions for fu�
ture work�
The Markov chains that are used in this paper

are discrete�time �nite�valued stochastic processes de�
�ned on an abstract probability space ���F � P �� The
�nite state space is represented by the unit vectors
fe�� � � � � eNg of RN and the �nite input space� U � is
represented by the unit vectors in RP � If the input
at time l has the value ul� then the state transition
matrix for the Markov chain has entries

Aul�ij � P �xl�� � ej j xl � ei� ul�

The �nite set of outputs Y is represented by the
unit vectors in RM � and the transition matrix from
state to output is given by

Bij � P �yk � ej j xk � ei��

The combined state and output process fxk� ykg gen�
erates a �ltration fGkg � F � and a second �ltration
fOkg is de�ned as the �ltration generated by the se�
quence of pairs �ul��� yl�� l � k� Ok can be inter�
preted as a speci�cation of the information available
to an output feedback controller from the record of
past plant inputs and outputs� In general� probabil�
ity distributions on �nite sets will be represented as
vectors� expectations as inner products in Euclidean
spaces of the appropriate dimensions� and probability



kernels on �nite spaces will be represented as matri�
ces�
LetM denote the space of probability distributions

on the �nite set U � andM�� � � � � �P denote the
compact subset of distributions that satisfy �fug � �
for all u � U � A receding horizon control policy with
horizon of length K is a speci�cation of a sequence of
probability distributions on ��� ��� � � � �K�� � M� A
control policy is an output feedback policy if each dis�
tribution �k is a measurable function on the ��algebra
Ok� Each control policy � � ��� ��� � � � � �K�� in�
duces a probability distribution on FK with density

P ��u��K��� x��K � y��K� � hxK � ByKihx�� ��i

�
K��Y
l��

hxl� Aulxl��ihxl� Bylihul� �li� ��

Where �� is the probability distribution for the ran�
dom variable x�� It is convenient here to de�ne an
additional probability measure on �

P y�u��K��� x��K � y��K� �



M
hx�� ��i

K��Y
l��



M
hxl� Aulxl��ihu� �li�

P u is absolutely continuous with respect to P y and
has Radon�Nykodym derivative

dP�

dP y

����
GK

� �K �

KY
l��

Mhxl� Byli�

In addition� the output process yk is i�i�d� with re�
spect to P y and has uniform marginal distributions
P yfyk � emg � �M �

� Controller Architecture

A risk sensitive control problem is de�ned on a hidden
Markov model by specifying a cost functional with
an exponential form� Given a running cost� ��x� u��
which is a function of both the state and the input�
and a �nal cost �f �x�� which is a function of the state
only� the �nite horizon� risk sensitive cost� associated
with the control policy �� with risk 	 and horizon K
is the functional

J ���� � E
�

�
exp



	

�
�f �xK� �

K��X
l��

��xl� ul�

��
�
���

Expressed in terms of expectations with respect to
the P y measure the cost is

J ���� � E
y

�
�K exp



	

�
�f �xK� �

K��X
l��

��xl� ul�

��
�

Optimal output feedback controls are computed by
de�ning an information state that is a process adapted

to the �ltration fOkg� translating the cost to a func�
tional on the information state� and then using dy�
namic programming to compute the optimal control�
An appropriate choice of the information state at time
k is the expected value of the accrued cost at time k�
conditioned with respect to the ��algebra Ok� and
expressed as a distribution over the state set X �

��k �x� � E
y

�
Ifxk�xg�k

exp

�


	

k��X
l��

��xl� ul�

�
j Ok

�
� ���

The information state process satis�es a linear recur�

sion on R�
N

�k � ��uk��� yk��k��� ���

with

��u� y� �M diag�h�� Byi�A�u diag�exp��	 ���� u����

The risk sensitive cost is expressed as a functional on
the information state process by the formula

J ���� � E
y
h
h��K���� exp��f ����	�i

i
� ���

The value function associated with the �nite�time�
state�feedback control problem on the information state
recursion ��� with cost function ��� is

S���� l� �

min
�l����K���M

E
y �h��K���� �f ���i j �

�
l � �� �

� � l 
 K� �
�

The associated dynamic programming equation is��
	

S���� l� � min
�l�M

E
y �S�����ul� yl����� l � ��

S����K� � h����� �f ���i� ���

An induction argument along the lines of that used
by Baras and James ��� proves the following theorem�

Theorem �� The value function S� de�ned by ���
is the unique solution to the dynamic programming
equation ���� Conversely� assume that S� is the so	
lution of the dynamic programming equation ��� and
suppose that �� is a policy such that for each l �
�� � � � � k�� ��l � ���l ��

�
l � �M� where ���l ��� achieves

the minimum in ���� Then �� is an optimal out	
put feedback controller for the risk	sensitive stochastic
control problem with cost functional �
��

The following structural properties are analogous
to those proved by Fern	andez�Gaucherand and Mar�
cus ����



Theorem �� At every time l the value function S���� l�
is convex and piecewise linear in the information state

� � R
�N

� Furthermore� the information state is in	

variant under homothetic transformations of R�
N

The randomized policies taking values in M� ap�
proximate deterministic policies in the following way�

Theorem �� Let S� denote the value function for the
optimal control problem when the policy is restricted
so that �l � M� for all � � l � K � � then S� � S
is a deterministic policy�

S���� l�� S���� l�

 � j�j
	 �

uniformly on RN
�
�f�� � � � �Kg� and the optimal poli	

cies converge ��� 	 ���

The controller architecture that we propose is based
on a moving window� Theorem � is used with the
dynamic programming equation ��� to compute the
value function for the �nite horizon problem with
horizon K� along with the values of the optimal out�
put feedback distributions ������ At each time k the
information state recursion ��� is used with a record
of the previous � observations and control values�
and a predetermined initial value �k�� to compute
the current value of the information state� The op�
timal probability distribution ���k� is selected� and
a random procedure governed by this distribution is
used to produce a control value uk�

� Estimator Architecture

The estimator architecture is a maximum likelihood
estimator� The recursive algorithm is derived by fol�
lowing the formal derivation that Krishnamurthy and
Moore ��� give for a stochastic gradient scheme that
approximates a maximum likelihood estimator for a
hidden Markov model� The resulting algorithm is
well described as a recursive version of the expec�
tation maximization algorithm of Baum and Welch�
Let �k denote an estimate for the parameters that
determine the probabilistic structure of the hidden
Markov chain� The components of �� which are the
entries of the transition matrices� are constrained to
lie in a linear submanifold � by the requirement that
the estimates �Au and �B be stochastic matrices� Gra�
dients and Hessians taken with respect to � will be
thought of as linear and bilinear forms on the tangent
space to ��
A maximum likelihood estimator for a hidden Markov

model with parameterization �� minimizes the Kull�
back Leibler measure

J��� � E�log f�y��k j �� j �
���

Here f�y��k j �� is used to denote the distribution
function induced by the parameter � on the sequence

of random variables y��k� It turns out that J��� is not
an easy quantity to calculate� however an equivalent
condition can be stated in terms of the functions

Qk��
�� �� � E�log f�x��k� y��k j �� j y��k� �

��
���

�Qk��
�� �� � E�Qk��

�� �� j ���

Krishnamurthy and Moore show that �Qk��
�� �� 

�Qk��
�� ��� implies that J���  J����� and proceed to

write down the stochastic gradient algorithm�

�k�� � �k � I��k����k�
�Qk����k � ��

��

����
���k

Where Ik is the Fisher information matrix for the
combined state and output process

Ik��k� � ���Qk�����
�j���k �

and Qk����k� �� is the empirical estimate for Q��k� ��
based on the �rst k observations�
The central part of the estimator is a �nite bu�er

containing the last � values of the input and out�
put processes �the length is chosen to be the same
as the length of the controller bu�er in order to sim�
plify the presentation�� This bu�er is used to update
smoothed recursive estimates of the various densities
from which the function Q and its derivatives are cal�
culated� These densities are �k � f�xk�� j y��k���
which is calculated with the recursion

�k�j� �

P
ihej �

�Byl��i �Aul�����ij�k���i�P
j

P
ihej �

�Byl��i �Aul�����ij�k���i�
�
���

�k � f�yk�����k j xk��� is computed with the back�
wards recursion

�l�i� �
X
j

�l���j� �Aul���ijhei� �Byl����i�

�k � f�xk��� xk����jy��k� and 	k � f�xk�� j y��k�
are given in terms of � and � by

�ljK��k �i� j� �
�l�����i�Aul�����ij�l�����j�P
i�j �l�����i�Aul�����ij�l�����j�

	ljK��k �i� �

P
j �l���j�Aul���ij�l���i�P

i

P
j �l���j�A

ul�����ij�l���i�
�

and the empirical estimates of state frequency and
pair frequency are given by the random variables Zk �
��k ���

P
�l�ul and  k � ��k ���

P
	l�yl �

The result of the formal derivation is an algorithm
that can be written in the standard form

�k�� � �k �


k
H�Xk� �k� ���

�The �k are actually constrained to lie on �



where X � fxk� uk���k� yk���k� �k�k��� Zk� kg is
a Markov chain� and the parts of H that correspond
to the updates of Au and B are given by

	A�u�ij
Zl
i�j�


PN
r��

	A�u�ir
Zl
i�r��

�
�kjK��k


i�j�

	Au�ij

�
�kjK��k


i�r�

	Au�ir

�
PN

r��

	A�
u�ir

Zl
i�r�
��

and

	B�
im

�l
i�m�

�PN
r��

	B�
ir

�l
i�r�

�
�kjK��k


i�	
yk�fm�

	Bim

�
�kjK��k


i�	
yk�fr�

	Bir

��
PN

r��

	B�
ir

�l
i�r�
���

respectively�

� Convergence of Estimates

Let Pnx�a denote the distribution of �Xn�k� �n�k�
when Xn � x� and �n � a then the convergence of
the estimation algorithm ��� is governed by the fol�
lowing theorem�

Theorem �� If the matrices A and B are primitive�
and the policies � satisfy

��yk���k� uk�����k���fug  � for all u � U
���

Then� there exists a neighborhood system N of ��

such that for any F � N � and for any compact set
Q � � there exists a constants B  � and � � ���� �
such that for all a � Q and all X � X

Pn�X�af�k converges to Fg � �B

�X
k�n��

�k���

���

where �k is the sequence that is computed by the re	
cursion ����

The proof of the theorem is a non�trivial applica�
tion of the results from part II� chapters  and � of
Benveniste et al� ���� Similar results are proved for
a related problem by Arapostathis and Marcus in ��
who use Stochastic Approximation results of Kush�
ner� and then� in greater generality� by Le Gland and
Mevel ��� who also use the theory from ���� The major
di�erence between the problems treated in the works
cited and the problem treated here is the introduc�
tion of control to give a combined control�estimation
problem� From the point of view of the stochastic
approximation analysis the control policy a�ects the
transition kernels of the underlying Markov chain� by
introducing a dependency on the current estimates�
The restriction made in the premise of the theorem
on the space of randomized control policies ensures

that conditional expectations associated with the evo�
lution of the Markov chain are Lipschitz continuous
with respect to the parameter estimates�
The central feature of the theory in ��� is the Pois�

son equation associated with the chain Xk

�I �!���� � H��� ��� h�

The function h� is the generator for the ODE that
governs the asymptotic behavior� and regularity of
the solutions �� ensures that the sequence �k con�
verges to a trajectory of the ODE� When applying
the theory� �� does not have to be calculated explic�
itly� its existence and regularity can be inferred from
ergodic properties of the transition kernel !� for chain
Xk� The �rst major task in proving Theorem � is to
establish that bounds of the form

j!n
� g�X���!n

� g�X��j � K�Lg�
n

j!n
� g�X��!n

��g�X�j � K�Lgj� � ��j

hold for any Lipschitz function g and for all �� ��� X�

and X�� whereK� and K� are constants� and � � � 

� The condition on the admissible control strategies
in the premise of Theorem � is key to establishing the
second bound�
The second major task is establishing that the ODE

converges asymptotically to the maximum likelihood
estimate� To accomplish this a Lyapunov function
type argument is used� An appropriate choice of Lya�
punov function in this case is the function U��� �
�Q���� ��� Arguments similar to those used by Baum
and Petrie ��� to show prove regularity properties of
J��� are used to establish the required local proper�
ties for U����

� Conclusions and FutureWork

This paper presents a combined control�estimation al�
gorithm for a hidden Markov model plant� It follows
from the structural properties of the value function
that the value function is a continuous function of
the plant parameters Au and B� Consequently con�
vergence of the parameter estimates ensures conver�
gence of the value function and convergence of the
control policy to the optimal policy within the pre�
scribed set�
We see the results that we present here as prelimi�

nary� Maximum likelihood techniques do not perform
well when the number of parameters being estimated
increases and the domains of attraction shrink� We
are looking at approaches that bypass the model es�
timation stage and work directly with the estimation
of the information state recursion for the separated
controller�
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