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Abstract: 
The army is interested in using acoustic 
sensors in the battlefield to perform vehicle 
identijication usingpassive microphone and 
seismic arrays. The main advantages of 
acoustic arrays are that they are non-line of 
sight, low cost, low power, can be made 
small and rugged and can provide 360° 
coverage. Their capability includes target 
detection, bearing, tracking, class~fication 
and identification, and can provide wake-up 
and cueing for other sensors. 
Acoustic arrays can be deployed in an 
expandable tracking system: the outputs of a 
nework of acoustic arrays can detect, track, 
and idenrib ground targets at tactical range 
by triangulating the reports from several 
distributed arrays. 
Here, we present aprototype of vehicle 
acoustic signal classification. To analyze the 
signature ofthe vehicle, we adopt 
biologically motivated feature extraction 
models. Several uossible reuresentations are 
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algorithms are implemented and tested for 
real world vehicle acoustic signal, such as 
Learning VQ, Tree-Structured VQ and 
Parallel TSVQ. Experiments on the 
Acoustic-seismic Classification 
Identification Data Set (ACIDS) database 
show that both PTSVQ and L VQ achieve 
high classification rates. 
The VQ schemes presented here have the 
advantage of not having to choose explicitly 
the features that distinguish the targets. The 
burden is shijied to having to choose the 
"best" representation for the classifier. 

Introduction 
A. The problem: Our application involves 
an Acoustic Detection System (ADS) which 
consists in an omni-directional acoustic 
sensor system that uses an array of 
microphones and seismic detectors, and a 
simple processor to detect, track, and 
classify targets in the battlefield. The array 
we used consists in three microphones, in a 

used in a classification system. Different triangle 15 inches apart. When ;argets are 
vector quantization(VQ) clustering detected, the ADS determines lines of 
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bearing to the targets relative to the position 
of the array and can cue other systems to 
approaching targets, or report the results 
(Detection, Line of bearing and ID) to a 
central portal 

b Q . 
'Q'  

Figure 1: Schematic of the situation: 
two heavy vehicles go around a track while thei~ 

acoustic signature is recorded by an array of 
microphones. 

B: Tree Structured Vector Quantizer: 
TSVQ is an example of a classification tree 
where test vectors are classified stage by 
stage, each stage giving a better 
classification than the previous. Each node 
of the tree is associated with a centroid (a 
sort of paradigm for a particular class). All 
test vectors start out at the root node. Then 
the vector is compared with the centroids of 
all nodes which are children of the node it 
belongs to. The vector is classified into the 
child with the centroid that is closest to it. 
The vector ends up in a leaf node, and is 
assigned the class of the leaf node. 
Making a vector quantizer in the form of a 
tree has two advantages. I), if the tree is 
balanced, the number of comparisons to be 
made is q log  n) with n is the number of 
vector space partitions. This can be a big 
factor if is a large number of classes. We can 
also use parallel TSVQ techniques to further 
reduce search time. 2), the way the signal 
vector space is split at each node is 
indicative of natural partitions in the data- 
set. The challenge is to preserve fidelity in 
classification: substituting an optimal 
partitioning of signal space by a tree 

structured one reduces optimality. Our goal 
is to make this difference as small as 
possible. Proper choice of pre-processing 
and tree-growing algorithm is crucial. 

C: Multi-Resolution TSVQ (MRTSVQ) 
One special kind of VQ classifying tree is 
the Multi-Resolution TSVQ (MRTSVQ). 
Any particular test vector in an MRTSVQ is 
represented in multiple resolutions or scales. 
A method of creating such a representation 
is through affine wavelet transforms. We use 
auditory cortical filtering as an example of a 
multi-resolution transform. For a given 
vector we create a multi-resolution 
representation. At each level i in the tree, the 
ith resolution vector is compared against the 
centroids of the nodes in that level. The 
vector is classified into the node that has the 
nearest neighbor centroid. At the next level, 
the next higher resolution of the vector is 
used for the comparison. 
This method offers one advantage over the 
unembellished TSVQ: at higher levels, 
where more comparisons have to be made, 
we use a vector with fewer bits, thus doing 
many simple computations; progressively 
finer details are added until satisfactory 
performance is obtained. 
Cutting down on the data presented to the 
classifier in the early stages does not 
degrade performance much. In most cases of 
interest, one does not need all the available 
data to make simple classification. For 
example, for speaker ID, the decision 
whether the speaker is male or female can be 
made with a rather coarse representation of 
the sound. 
We use a tree-growing algorithm as used by 
Baras and Wolk (Baras 1993) for classifying 
radar returns. The tree algorithm uses the 
Linde-Buzo-Gray (LBG) algorithm (Linde 
et al, 1980) for VQ at each level of the tree. 
The algorithm starts with an initially fixed 
number of centroids. The LBG algorithm is 



used to find a distribution of centroids that 
correspond to a local minimum in the 
expected squared error distortion. Then an 
additional centroid is introduced and LBG 
applied again to find the expected distortion. 
If the change in distortion from the addition 
is greater than a fixed fraction of the total 
distortion, another centroid is introduced and 
the process repeated. If the change in 
distortion is lesser than then fixed fraction, 
the algorithm goes to the next level. The cell 
in the current level is fixed and the leaf node 
with the highest value of the distortion is 
then split at the next lower level (higher 
resolution). This process goes on until a 
stopping criterion is satisfied. The stopping 
criterion can be the final rate of the tree, the 
number of leaf nodes, the expected 
distortion of the tree, or any other criterion. 
This is a greedy method of tree growing, in 
that the cell with the highest distortion in the 
current leaf nodes is the one that is split. 
There are other ways of choosing the split 
node, among which are, node with largest 
change in distortion for given rate increase, 
node with highest entropy and so on. 

The representations 
A. The auditory representation: A 
functional view of the auditory pathway and 
its attending representations was presented 
at the previous FedLab meeting (Shamma 
99): The cochlea is viewed as a parallel bank 
of band-pass filters of specific shape and 
constant Q-factor. The cochlear filter output 
forms an affine wavelet transform of the 
stimulus, with the log(freq) spatial axis 
acting as scale parameter. The cortical 
representation which is used as a time- 
frequency decomposition preprocessing 
stage corresponds roughly to a tirne- 
frequency wavelet decomposition of the 
cochlear representation. Details can be found 
in Shamma et al 1989, see fig 2. 

B. The pitch extraction: Once the auditory 
spectrum is known, we can extract the 
possible pitches present in it (Shamma and 
Klein, 00). It might be assumed, for 
instance, that tanks have two main sources 
of sound: the tracks and the engine. Hence 
we would expect to see two pitches. An 
example of pitch extraction from a heavy 
track vehicle is shown in fig 3 for the same 
vehicle as in fig 2. In the bonom of fig 3, 
the main pitches are at 13.5 Hz, 27 Hz, 35.5 
Hz and 54 Hz. Since pitch is often defined 
with an octave ambiguity, we can assume 
that the (13.5,27,54) Hz values all 
correspond to the same set of harmonics, 
whereas the 27 Hz is from a different source. 

L 
u 

1 6 Auditory Representation 

O Time (s) 100 200 
Figure 2 Top: spectrogram for a heavy 

track vehicle of the ACIDS database. When one 
sees the details, there are two sets of harmonics. 

Bottom: the corresponding audito~y 
representation 
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Figure 3: Top: possible pitches present 

in the recording of fig 2. Bottom: section of the 
top graph at around 80 s. 

Note that because the representation used is 
based on a log-axis, a change in RPM or 
velocity (and therefore frequency of the 
track slap) corresponds to a translation on 
the log-freq axis. This is important for the 
training of the algorithm. It might also be 
possible to classify heavy vehicles according 
to the ratio of the pitches of the two main 
pitches present in the recording. This is 
currently under investigation. 
C The cortical representation: To use the 
properties of TSVQ we use a multi-scale 
representation of the acoustic signal. Such a 
decomposition is shown in fig 4 for a slice 
of fig 2. Horizontal slices are a multi-scale 
decomposition of an instantaneous auditory 
representation of fig 2, and are used to 
classify the target's auditory spectrum at 

different scales, from coarsest to finest. 

40 
Cochlear channel number 

Figure 4: Multi-resolution 
representation from a slice of the cortical 

representation 

The coarse scale (lower part of figure) 
captures the broad and skewed distribution 
of energy in the auditory spectrum, while the 
finer scale (upper part of figure) captures the 
detailed harmonics structure. In the other 
intermediate cortical scales, the dominant 
harmonics are highlighted while the weaker 
ones are suppressed. Thus intermediate 
scales emphasize the most valuable 
perceptual features within the signal. The 
cortical filter is a redundant representation, 
not all the scales are necessary for the 
classification algorithm. 

Results" 
In the ACIDS database, most vehicle are 
recorded for dozens of runs, corresponding 
to different speed and gear, different terrain 
(desert, arctic, normal roadway, and etc), 
and different recording systems. This 
database represents an ideal opportunity for 
classification research. 
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Figure 5: First two levels of the VQ tree for the 
cortical representation of fig 4 

Type 8: heavy track 
Type 9: heavy track 

Table 1: Different veh~cles in the ACIDS database. 

type of representation shown in fig 4 and 
have obtained a classification tree, the top of 
which is shown in fig 5. Preliminary results 
with this specific representation is shown in 
table 2. We will present results for other 
types of pre-processing and representations 
during the talk. 
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We have trained the TSVQ algorithm on the 

Table 2: Classification results with the representation of fig 4 


