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Abstract

The continuous growth in the demand for access to information and the increasing
number of users of the information delivery systems have sparked the need for highly
scalable systems with more efficient usage of the bandwidth. One of the effective
methods for efficient use of the bandwidth is to provide the information to a group of
users simultaneously via broadcast delivery. Generally, all applications that deliver the
popular data packages (traffic information, weather, stocks, web pages) are suitable
candidates for broadcast delivery and satellite or wireless networks with their inherent
broadcast capability are the natural choices for implementing such applications.
In this report, we investigate one of the most important problems in broadcast delivery
i.e., the broadcast scheduling problem. This problem arises in broadcast systems with
a large number of data packages and limited broadcast channels and the goal is to find
the best sequence of broadcasts in order to minimize the average waiting time of the
users.
We first formulate the problem as a dynamic optimization problem and investigate the
properties of the optimal solution. Later, we use the bandit problem formulation to
address a version of the problem where all packages have equal lengths. We find an
asymptotically optimal index policy for that problem and compare the results with
some well-known heuristic methods.
Keywords: broadcast scheduling, satellite data delivery, restless bandit problem.
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Figure 1: Typical architecture of a satellite information delivery system.

1 Introduction

The rapid growth in the demand for various information delivery services in recent
years has sparked numerous research works for finding more efficient methods for the
delivery of information. In many applications the flow of data is not symmetric. In
what we call a typical data delivery application, there are a few information sources
and a large number of users, thus, the volume of data transferred from the sources
to the users is much larger than that in the reverse direction. The short information
messages available on some cellular phones is an example of this type of applications.
The WWW traffic, which constitutes about 50% to 70% of the Internet traffic [12, 28],
can be also regarded as a data delivery application. The data transferred through these
applications is usually the information packages requested by many users as opposed
to applications with one-to-one information content like email. This property of the
data delivery applications and the fact that every information package is typically re-
quested by a large number of users at any time, makes the wireless broadcast systems
a good candidate as the transport media for those applications. In fact, the broad-
cast transmission via either wired or wireless media, makes a more efficient use of the
bandwidth by not sending the information through any path more than once. How-
ever, the wireless media, due to their inherent physical broadcast capability, have the
additional advantage of forming a one-hup structure where all the receivers share the
single download link and receive the requested information at the same time. Through-
out this report, we use the term broadcast system to refer to this type of system with
physical broadcast capability. Figures 1 and 2 show two examples of these type of
systems. In both systems, we assume that all the users who are waiting for a specific
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Figure 2: Typical architecture of a wireless information delivery system.

package will be directly served with a single transmission of that package over the
broadcast channel. This property, solves one of the major problems in the design of
any information delivery system, which is the scalability problem. The scalability of a
system depends on the relation between the resources of the system and its number of
users. In a satellite information delivery system, or any other system with broadcast
capability, the main resource of the system, which is the downlink, is insensitive to
the number of users and the number of users can be increased without any need for
an increase in the bandwidth of the downlink1. Therefore, the satellite and wireless
environments provide highly scalable systems for data delivery applications. Some of
the popular data delivery applications are as follows:

• Delivery of popular information packages: In this type of service, cer-
tain number of time-sensitive information pages like stocks, weather or traffic
information are broadcast by the system to the users upon their request. In this
application, the packages usually have a short fixed length. Also, in some cases,
deadlines may be introduced for some of the time-sensitive packages. The main
concern of the provider is to schedule the broadcast of the information packages
in order to minimize a measure of the delay experienced by the users of different
packages. Many cellular phones are currently capable of receiving the information
like news, weather and so on and the use and variety of these systems is expected

1There are of course other practical issues like the uplink bandwidth, geographical coverage, ... that need
to be taken into account. However, considering the highly asymmetric nature of the data and assuming
that the users are within the coverage area of the system, the downlink becomes the main bottleneck of the
system
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to grow with the advancements in the broadband wireless systems and mobile
computing field.

• Cache broadcast: This application is a method for fast delivery of the WWW
service from certain web servers to their users. The use of local caches to locally
store the popular information in various parts of the network is a common prac-
tice for reducing the response time of the system. A cache enables the system
to locally respond to the requests for popular web pages without the need for
accessing the main server on the Internet. In satellite networks, the cache is usu-
ally located at the Network Operation Center(NOC). Having a cache installed in
a satellite Internet delivery system, the performance can be further increased by
broadcasting the cached pages to all users who need the pages at the same time
or within certain time interval instead of serving all of them individually.

• Webcasting: This type of system is in fact quite similar to cache broadcasting.
The users of this system are the information providers or companies who already
have the necessary information for their users or employees on the WWW and
like to provide them with fast access to those pages. The difference between
this service and the regular Internet service is the fact that this service does not
necessarily provide access to the Internet, and the web site contents are locally
stored in the ground station. This system, like other WWW applications, works
as a client/server application and there is some type of uplink to transfer the
requests to the server(ground station) but the transmitted data is available to all
members of the group.

There are already a number of companies (e.g. Hughes Networks System [30],
Cidera [5]) that offer various data delivery services using satellite links and their num-
ber is expected to grow with the advances in the information technology and the in-
creasing number of users. The advances in wireless networks and the advent of mobile
computing applications suggest that there will be more room for taking advantage of
the potential benefits of broadcast systems for making more efficient networks.
The two main architectures for broadcast delivery are the one-way(or Push) and the
two-way(or Pull) systems. The two systems differ in the lack or presence of a return
channel to transfer the user requests to the server. In a push system, the server does
not actually receive the requests and schedules its transmissions based on the statistics
of the user request pattern (hence the term push). Conversely, in a pull system the
server receives all the requests and can schedule the transmissions based on the number
of requests for different data packages. A pull system is potentially able to achieve a
better performance than a push system but the cost of a return channel can gener-
ally overshadow this performance improvement. For this reason hybrid architectures,
those that combine push and pull systems, are commonly suggested in the literature
[17, 13, 9]. The main problem to address in both of the above broadcast methods is the
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scheduling of data transmissions. As we will mention in the next section, the problem
of scheduling in a push system is solved to a large extent. However, to our knowledge,
the problem of finding the optimal broadcast scheduling policy for a pull system has
not been solved yet.
Based on the nature of the applications supported by a data delivery system, different
performance metrics can be used to evaluate the performance of the system. However,
in most cases, the average waiting time is the parameter that is usually chosen. Other
parameters like the worst-case waiting time can also be of interest when strict deadlines
are assigned to the packages. In this work, we try to minimize the weighted average
waiting time of the users to allow more flexibility in assigning soft priorities to the
packages.
This report is organized as follows. Following the literature review in section 2, the
mathematical formulation of the problem is introduced in section 3. section 6 is dedi-
cated to reviewing the principles of our approach that is based on the Restless Bandit
problem formulation [33]. After proving the required properties, we find both the ex-
act and approximate index policies for that problem. Finally, in section 9, a detailed
investigation of the performance of our policy compared to other well-known heuristic
policies is presented.
It is worth mentioning that although our work on broadcast scheduling is motivated
by the problems in broadcast communication systems, our results are not limited to
communication applications. This work can be considered as the generic problem of
finding the optimal scheduling policy in a queueing system with a bulk server of infi-
nite capacity. It is easy to think of some applications of this problem in transportation
industry which has been the origin of many queueing and scheduling problems.

2 Related work

The series of works by Ammar and Wong are probably the first papers addressing the
broadcast scheduling problem in detail. In [21, 22] they consider various aspects of the
push systems by analyzing the problems associated with a Teletext system. They derive
a tight lower bound for the average waiting time of the users of a Teletext system with
equal-sized packages of data. They also showed that the optimal scheduling policy is
of the cyclic type where the frequency of appearance of every page in every broadcast
cycle is directly related to the square root of the arrival rate of the requests for that
page. They presented a heuristic algorithm for designing the broadcast cycle based
on the arrival rates. Vaidya and Hameed [31, 23] extended the so called square root
formula to cover push systems with unequal page sizes and also considered the systems
with multiple broadcast channels. They showed that the appearance frequency of a
page in the broadcast cycle is inversely related to the square root of its length and
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proposed an on-line algorithm for transmitting the requested pages. Moreover, they
investigated the role of channel errors and made provisions for the error probability
in their algorithm. Su and Tassiulas [29] proposed an MDP formulation of both the
push and pull delivery systems. They showed that the optimal policy for a push system
with two pages is of the cyclic type and derived an equation for the optimal content
of every cycle. They also proposed a heuristic indexing policy for the push broadcast
scheduling that dynamically chooses the page to be broadcasted at the beginning of
every broadcast period. In a separate work, Bar-Noy [1] finds the optimal broadcast
schedule for a push system with two pages under different choices of the request arrival
processes while allowing the page lengths to be different. There are also other papers
[10, 11] which address the scheduling problem for more complicated variations of a
push system by proposing different data delivery schemes.
Despite the wealth of resources about the push systems, the number of works addressing
the pull broadcast systems is limited. However, none of those papers (except [8] to our
knowledge) have tried to find the optimal scheduling policy and most of them have
suggested heuristic algorithms which despite their good performances in some cases
[7, 29] do not contain the notion of optimality. In [8], the problem of finding the
optimal scheduling policy for a pull system is formulated as a dynamic programming
problem. They attempted to numerically solve the problem for small systems and
made a number of conjectures about the properties of the optimal policy based on the
results. This work might be the first analytic approach for solving the pull scheduling
problem. However, the problem of finding the optimal policy still remains open. In
[17], a number of heuristic policies for a pull system are proposed and their resulting
average waiting times are compared. Valuable observations about the performances of
both push and pull systems are also made in that paper. In [29], an index policy called
the Performance Index Policy (PIP) was introduced. The PIP index associated with
each page is a function of both the arrival rate and the number of pending requests
for that page. After experimental tuning of the parameter of that function for the
case with Zipf distribution of the arrival rates, the PIP policy produced satisfying
results in a number of experiments. The work by Aksoy and Franklin [7] proposed
another index policy named RxW and reported a performance comparable to PIP in
different experiments. The two above works are probably the best known scheduling
methods for a pull system. However, the distance between their performances and
that of an optimal policy is unknown. All of the above works only consider the case
where all pages are of equal importance and have equal sizes and do not apply to
cases like cache broadcasting where the pages can have unequal lengths. Moreover,
due to the complete heuristic nature of the algorithms, it is difficult to extend them to
other possible scenarios. This is the main motivation behind our work. In this thesis,
we address the scheduling problem in a pull system. We aim to find a near-optimal
(with respect to the weighted average waiting time) scheduling policy via optimization
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methods and also provide a benchmark for evaluating current and possibly future
heuristic algorithms. We have approached the scheduling problem from a dynamic
optimization point of view. This formulation is similar to the formulation in [8] and [29]
but instead of using numerical methods for very simplified versions of the problem or
using this formulation in its initial form to find a few properties of the unknown optimal
policy, our goal is to reach an analytic solution and present an index policy through
optimization arguments. Using the Restless Bandit [33] formulation, our approach
naturally addresses the systems with multiple broadcast channels, or prioritized pages
and also provides guidelines for the case with unequal page sizes.

3 Problem formulation

In our formulation, we denote by N(> 1), the number of information packages stored
in the system. In this section we present the formulation of the case where all packages
have equal sizes. This assumption is also made in [29, 8, 7] and most of the other works
on this subject and is a reasonable assumption for many applications. Throughout this
thesis, we will use the terms page, package, and information package interchangeably
to simplify the notation. The fixed page size assumption naturally introduces a time
unit that is equal to the time required to broadcast a page on a channel and it can
be set to one without loss of generality. All of the broadcast times therefore, start
at integer times denoted by t; t = 0, 1, . . .. Here we assume that the system has
K(1 ≤ K < N) identical broadcast channels. In a pull broadcast system, the system
receives the requests for all packages from the users and based on this information the
scheduler decides which pages to transmit in the next time unit in order to minimize
the average waiting time over all users.
For the systems with a large number of users it is reasonable to assume that the
requests for each page i; i = 1, . . . , N arrive as a Poisson process and denote by
λi the rate of that process. The waiting time for every request is the time since the
arrival of the request to the system until the end of the broadcast of the requested
page. Due to the Poisson assumption for the request arrival process and given that
a request arrives in the interval [t, t + 1), its exact arrival time would have a uniform
distribution over this interval. Therefore, the waiting time from the time of arrival till
the start of the next broadcast cycle (t + 1) has a mean of 1/2 which, together with
an integer part (i.e. number of time units till the beginning of the broadcast of the
requested page) make the actual waiting time of the request. This constant value can
be omitted from our calculations without loss of generality and we can assume that
the requests for every page i arrive at discrete time instants t as batches with random
sizes having Poisson(λi) distribution. The system therefore, can be shown by a set
of N queues where each queue corresponds to one of the packages and holds all the
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Figure 3: The pull type broadcast as a queuing system.

pending requests for that package, and K servers as in figure 3. Due to the broadcast
nature of the system, the queues are of the bulk service type [4] with infinite bulk size
i.e. the requests waiting in a queue will be served altogether once the queue is serviced.
The state of this system at each time t is shown by X(t) = (X1(t), X2(t), . . . , XN (t)):
where Xi(t) is the number of pending requests for page i at time t. Also, let’s denote by
A(t) = (A1(t), A2(t), . . . , AN (t)) the discrete-time request arrival process for all pages
where Ai(t) represents the number of requests for page i during [t, t + 1) time interval.
Xi(t); i = 1, . . . , N is a Markov chain which evolves as

Xi(t + 1) = Xi(t) − Xi(t)1[i ∈ d(t)] + Ai(t) (1)

where d(t) ⊂ {1, . . . , N} is the set containing the indices of the K pages broadcasted
at time t. Figure 4 shows a sample path of the evolution of a system with three pages
and a single broadcast channel.
The weighted average waiting time over all users is defined by

W̄ =
N∑

i=1

ciλi

λ
W̄i

where W̄i is the average waiting time for page i requests and λ is the total request
arrival rate to the system. The ci coefficients are the weights associated with the pages
to allow more flexibility in assigning soft priorities to the pages. By Little’s law the
average waiting time can be written as

W̄ =
1
λ

N∑
i=1

ciX̄i. (2)
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Figure 4: Sample path of a system with three pages.

where X̄i is the average number of requests in queue i and the constant λ term can be
omitted in the minimization problem. Due to the discrete-time nature of the system,
and to avoid technical difficulties associated with the DP problems with average reward
criteria, instead of minimizing (2), we use the expected discounted reward criteria
defined as

Jβ(π) = E

[ ∞∑
t=0

βt
N∑

i=1

ciXi(t)

]
(3)

where π is the scheduling policy resulting in Jβ(π). Equations (3) and (1), with the
initial condition X(0), define the following DP problem with J∗ denoting the optimal
value defined as

J∗
β(π) = min

π
E

[ ∞∑
t=0

βt
N∑

i=1

ciXi(t)

]
. (4)

We have shown in appendix A that Jβ(π) satisfies the equation

(1−β)Jβ(π) = E

[
N∑

i=1

ciXi(0)

]
+βE

[ ∞∑
t=0

βt
N∑

i=1

ciAi(t)

]
−E


 ∞∑

t=0

βt
∑

i∈d(t)

ciXi(t)


 (5)

where d(t) is the set of the pages broadcasted at time t. Since the first two terms of
the right-hand side are independent of the policy π, the problem of minimizing Jβ(π)
would be equal to the maximization problem

Ĵ∗
β(π) = max

π
E


 ∞∑

t=0

βt
∑

i∈d(t)

ciXi(t)


 . (6)

This problem is in fact a DP problem with state space S = (S1, . . . , SN ) where Si =
0, 1, . . .; i = 1, . . . , N and decision space D = {d; d ⊂ {1, 2, . . . , N} & |d| = K} with
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|d| denoting the cardinality of set d. The decision space D is the set of all possible K

tuples of the indices 1 through N . The reward function for broadcasting of pages in
d ∈ D at state s = {x1, . . . , xN} ∈ S is

r(s, d) =
∑
l∈d

clxl (7)

and a stationary policy is a function π : S �→ D that maps every state to a decision
value. It can be shown (Theorem 6.10.4 [26]) that under mild conditions on the reward
function (which includes our linear function) and given the assumption of finite arrival
rates, the L operator defined as

L(V (s)) = max
d∈D


r(s, d) + β

∑
s′∈S

pd(s, s′)V (s′)


 ∀s ∈ S (8)

is a contraction mapping and therefore this DP problem with unbounded rewards has
an optimal solution. Here, pd(s, s′) is the stationary transition probability of going from
state s to state s′ under decision d and V (s); s ∈ S is the value function associated
with the optimal solution. This function satisfies the optimality equation

V (s) = L(V (s)) ∀s ∈ S. (9)

This maximization problem is the problem we will address in the sequel to find a non-
idling, stationary optimal policy for the pull broadcast environment. What we are
specially interested in is an index-type policy that assigns an index νi(xi) to queue
i; i = 1, . . . , K and the optimal decision is to service the queue(s) with the largest
index value(s). If the index for each queue only depends on the state of that queue,
the computation load for every decision would be of order N which is important from
a practical point of view for systems with a large number of stored pages.
Since in our formulation there is no cost for serving a queue, we expect the optimal
policy to serve exactly K non-empty queues at each time. This can be better seen via
a sample path argument. Suppose that {d1, d2, . . .} is the decision sequence dictated
by policy π when the system starts from initial state x and the arrivals occur according
to sequence A = {a1, a2, . . .}. Suppose that, at some time instant t, there are M > K

non-empty queues in the system and π opts to serve K ′ < K of them. We can construct
a new policy π∗ which serves the same queues as π plus K −K ′ additional non-empty
queues. Let’s suppose one of the additional queues j have xj requests at time t, and
t′ > t is the earliest time policy π will serve that queue. In this system, the reward
function is linear and the arrivals are independent of the state of the system. Hence,
if Sπ

A(x) is the total discounted reward generated by policy π with initial state x and
arrival sequence A, then we will have Sπ∗

A (x) ≥ Sπ
A(x) + cjxj(βt − βt′). This argument

shows that for every idling policy π, we can construct a non-idling policy π∗ which will
result in a greater total discounted reward for every sample path and therefore, in a
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greater expected discounted reward. Henceforth, from now on, we only focus on the
set of non-idling policies for finding the optimal policy.
Also, it should be mentioned at this point that in the discrete-time setting of the above
problem, the arrival process is only modelled as an i.i.d. sequence with a specific pmf.
Although our initial Poisson assumption for the request arrival process implies that
the corresponding pmf would be that of a Poisson distribution, our analysis below is
quite general and holds for other distributions as well.

3.1 Properties of the optimal policy

As in many other problems, the DP formulation of our problem provides a mathe-
matical characterization of the optimal solution but does not necessarily lead to a
closed-form or analytical expression for it. The range of the results that we can get
by working with equation (9) is limited to a few properties of the optimal solution.
However, since the methods for proving those properties are similar to what we will
use in the following sections where we introduce our main approach for solving this
problem, it is constructive to point to some of the results in this section.

The properties we tried to prove show that the optimal policy is of the threshold
type and the decision surfaces (in the N-dimensional space with each dimension rep-
resenting the length of one queue) are non-decreasing with respect to all coordinates.
This approach has a limited range and only gives us ideas about the form of the optimal
policy. We first need the following lemma to prove the properties.

Lemma 1 Let Sd
p(x) denote the resulting discounted reward sum when the initial con-

dition is x and arrivals occur as sample path p and the fixed(independent of state)
decision sequence d is applied to the system. Then we have

Sd
p(x) ≤ Sd

p(x + ei) ≤ ci + Sd
p(x). (10)

where ei = (0, . . . , 1, . . . , 0) is the unit vector in RN with ith element equal to one.

Proof: Consider two identical systems one with initial condition x and the other with
initial condition x + ei defined as above. If the same fixed policy is applied to these
two systems, the reward would be the same before the first broadcast of i. At that
point, the second system receives a reward that is 1ci units more than that received
by the first system. Since the dynamics of the system forces the length of the serviced
queue to zero, it in fact erases the memory of the queue after each service. Therefore,
the resulting rewards even for queue i in both systems would be the same afterwards.
Therefore, the first inequality holds(ci > 0). The presence of the discount factor
0 < β < 1 causes the additional instantaneous reward in the second system to result
in at most a ci unit difference between the two discounted sum of the rewards(if i is
served at time t = 0), hence the second inequality holds.
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The first property can be proved using the above lemma. suppose

• x = (x1, x2, . . . , , xN )

• y = x + ei; i ∈ 1, 2, . . . , N

then

Theorem 1 For x and y defined as above and function V (.) being the value function
of the optimal policy of our maximization problem, we have
(a) V (y) ≤ V (x) + ci.
(b) V (x) ≤ V (y)

Proof: Let d∗ be the optimal policy and denote by dx
p the deterministic sequence of

decisions dictated by d∗ when the arrivals occur according to a deterministic sample
path p and the initial condition is x. According to lemma 1 we have

S
dy

p
p (y) ≤ S

dy
p

p (x) + ci (11)

If we take the expectation of both sides with respect to the sample path probability
P (p), we get

V (y) ≤ ci +
∑
p

P (p)Sdy
p

p (x). (12)

Also, according to the definition of optimality of policy d∗ we have

V (x) =
∑
p

P (p)S
dx

p
p (x) ≥

∑
p

P (p)Sdy
p

p (x). (13)

inequality (a) follows by combining the two above results.
Also, according to lemma 1 we have

S
dx

p
p (x) ≤ S

dx
p

p (y) (14)

If we take the expectation of both sides with respect to the sample path probability
P (p), we get

V (x) ≤
∑
p

P (p)S
dx

p
p (y). (15)

Also, according to the definition of optimality of policy d∗ we have

V (y) =
∑
p

P (p)Sdy
p

p (y) ≥
∑
p

P (p)S
dx

p
p (y). (16)

Hence inequality (b) follows.
The second property can also be proved using the following discussion.
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Theorem 2 If d∗ is the optimal policy and d∗(x) = i then d∗(y) = i with x and y
defined as above.

Proof: Since i is the optimal policy for state x, we have

cixi + β
∑
A

P (A)V (x + A − xiei) ≥ cjxj + β
∑
A

P (A)V (x + A − xjej) j = 1, . . . , N.

(17)
We need to show

ciyi+β
∑
A

P (A)V (y+A−yiei) ≥ cjyj+β
∑
A

P (A)V (y+A−yjej) j = 1, . . . , N (18)

or since y is different from x just in the ith element,

cixi+ci+β
∑
A

P (A)V (x+A−xiei) ≥ cjxj+β
∑
A

P (A)V (y+A−xjej) j = 1, . . . , N j 	= i.

(19)
From 17 we have

cixi+ci+β
∑
A

P (A)V (x+A−xiei) ≥ ci+cjxj+β
∑
A

P (A)V (x+A−xjej) j = 1, . . . , N.

(20)
Also , from lemma 1 part(a) we have

V (y + A − xjej) ≤ ci + V (x + A − xjej) (21)

or
β

∑
A

P (A)V (y + A − yjej) ≤ ci + β
∑
A

P (A)V (x + A − xjej). (22)

From (20) and (22), equation (19) follows, that proves the theorem.

The last property shows that the optimal policy is of the threshold type. In other
words, once i becomes the optimal decision for an state x, it remains the optimal
decision for all states x + kei; k = 1, 2, . . ..
As it was mentioned before, equation (9) only reveals limited properties of the optimal
policy. Our main approach in this report requires some background from the Bandit
problems and also a few properties of the bulk service queueing systems. Therefore,
we explain our main approach in section 6 after providing the necessary material in
the following section.

4 Some properties of a single controlled bulk

service queue

Queues with infinite bulk service capability posses a number of interesting properties.
A generic single-server bulk service queue with Poisson arrivals and general service
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distribution is shown by the M/Gb
a/1 notation [4] where the subscript a is the minimum

number of customers in the queue needed by the server to start a service and superscript
b is the bulk size i.e., the number of customers which will be served by each service.
Since here we deal with controlled queues in a dynamic programming setting, we do
not present our results about the regular continuously serviced bulk service queues.
However, some results are included in appendix D for the interested reader. Imagine
one of our bulk service queues with Poisson arrivals and constant service times as before.
If we assume that all the arrivals that arrive during a service period are counted only
at the end of that period, the system would be a pure discrete-time system. The
sub-problem we would like to consider for a single queue is to find the optimal policy
that results in the maximum expected value of the discounted reward given that the
reward obtained by serving the queue at any time is equal to the number of customers
in the queue and there is also a fixed cost ν for each service. The optimal policy is
the optimal assignment of active or passive actions to every state. More precisely, the
objective function is:

Jβ = E

[ ∞∑
t=0

βtR(t)

]
.

where R(t) is the reward at time t that is

R(t) =

{
cs(t) − ν if d(t) = 1
0 if d(t) = 0

and d(t) is the indicator function that is 1 if the queue is served and 0 otherwise. s(t) is
the state of this system at time t and is the number of customers in the queue waiting
to be serviced. A property that is crucial in later discussions is as follows

Property 1 The optimal policy is of the threshold type with respect to the state space
ordering. In other words, if it is optimal to serve the queue at state x, then it is also
optimal to serve the queue if it is at any state y > x.

The proof of this property can be found in appendix B where we use an induction
argument. This property shows that for every fixed value of the service cost ν∗, the set
of states where it is optimal not to serve the queue (S0(ν∗)) contains all the states less
than or equal to a threshold state sth(ν∗). The optimal policy is so far to compare the
state of the queue at each decision instant with the threshold state and serve the queue
if the state is larger then the threshold. The threshold state sth(ν∗) is the largest state
for which it is still optimal to leave the queue idle. The threshold state also has the
following property

Property 2 For the single bulk service queue discussed in this section, the threshold
state sth(ν) is a non-decreasing function of the service cost ν (figure 5).
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Proof: Appendix C.
Instead of finding the threshold state for every value of ν, we can assign to every state
s(figure 5), a corresponding service cost value ν(s) that is the minimum service cost
needed to keep state s in the idling set. Therefore, if the system is in state s, it is
optimal to serve the queue if the service cost is smaller than ν(s), leave the queue
idle if it is larger and equally optimal to serve or to remain idle if it is equal to ν(s).
The function ν(s) can be considered as the index associated with state s which, when
compared to the actual value of the service cost ν∗, determines the optimal action.
This is the characteristics of an index policy in the dynamic optimization context as
will be discussed below.

5 Stochastic scheduling and Bandit problems,

review

In a typical stochastic scheduling problem there is a system that is composed of a
number of controllable stochastic processes and a limited amount of available control
should be distributed between the projects during the operation of the system in such
way to maximize the total reward generated by them. Manufacturing and computer
communication systems might be the most important examples of such systems. There
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is no unified and practical method to find the optimal solution to all the problems that
fit into the above general definition. However, many such problems can be formulated
in the framework of dynamic programming. Although the straightforward numerical
application of this method does not necessarily result into useful results (due to the
usually large size of the formulations), its framework sometimes helps to reveal struc-
tural properties of the optimal policy. One of the well known models for the dynamic
programming formulation of the stochastic scheduling problems with known structural
results for the solution is the Multiarmed Bandit model. In the basic discrete-time
version of the Multiarmed Bandit problem, there are N independent reward processes
(called projects) and a single server. At each discrete decision instant t = 1, 2, . . .,
the server can be allocated to activate only one of the projects and the other projects
remain idle. Each project i; i = 1, 2, . . . , N , when activated, changes its state si(t) ac-
cording to its stationary state transition probability matrix. Also the activated project
generates an immediate reward R(t) = ri (si(t)) which is a function of its state. The
idle projects neither change their states nor produce any rewards. The optimization
problem is to maximize the expected discounted value of the total reward defined as

E

[ ∞∑
t=1

βtR(t)

]
(23)

where 0 < β < 1 is a constant discount factor and the initial state is known. This
problem has received considerable attention since it was formulated about 60 years
ago. The most important result appeared in 1970s where Gittins and Jones [16, 15]
found that the optimal policy is of the index type. More specifically, they showed that
at each decision instant t, there is a function called the index associated with each of
the projects defined as

νi(si(t)) = max
τ≥t

E
[∑τ

l=t βlri (si(l))
]

E [
∑τ

l=t βl]
(24)

and the optimal policy at time t is independent of the previous decisions and is to
activate the project with the largest index value. The significance of this results is
in exploring the indexing structure of the optimal policy which converts the original
N dimensional problem into N one-dimensional problems, a property that is crucial
to the applicability of this method for practical applications with large values of N .
All of our effort throughout this work is also focused on finding policies of the index
type even if they do not result in the optimal solution. The interpretation of the above
index function is simple. It is the maximum expected discounted reward per unit of the
discounted time for each project and intuitively it makes sense to activate the project
which can potentially produce the maximum reward. In a number of other significant
works on this problem, other interpretations of the index function [14, 35, 18] as well
as extensions to the original problem [34, 32, 20, 19] were introduced and studied by
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other researchers.
The main restriction of the Multiarmed Bandit problem is the one that requires the
passive projects to remain frozen and do not change their states which is not necessarily
the case for many problems and particularly our problem. If we consider the N queues
in our problems as the N projects in the above formulation, the state of the projects
will be the length of each queue and the reward function for serving a queue will
be the number of serviced customers. Obviously, the idle queues keep receiving new
arrivals and their state keeps changing even during the idle state. This restriction is
somehow alleviated in the Multiarmed Bandit formulation of the scheduling problem
in regular single-service queueing systems [34, 32] which resulted in the so-called cµ

rule as the optimal policy (also through other approaches e.g. [2, 6]). However, we
were not able to use any of those formulations for our bulk-service scheduling problem.
We therefore use what Whittle [33] introduced as an extension to this problem which is
called the Restless Bandit problem and allows the passive projects to produce rewards
and change their states too. Unfortunately, with this generalization, the existence of
an index-type solution is no longer guaranteed. However, as Whittle showed, in some
cases an index-type solution can be found for a relaxed version of this problem that
results into reasonable conclusions about the optimal policy for the original problem.

6 Restless Bandits formulation

In this section we explain the Whittle’s method for use in the discrete time version of
the dynamic optimization problem and will give the formulation of the β-discounted
version of the Restless Bandit problem in a way to match our problem and refer the
reader to [33, 24, 3, 25] for more detailed information.
In this formulation, the dynamic optimization problem is treated as a linear optimiza-
tion problem using the linear programming formulation of the MDPs. Let us call the
state space of queue i by Si and the total N dimensional state space of the problem by
S. Also, let us show the decision space of the problem with D and suppose that α(j)
is the probability distribution of the initial state of the system.
The linear programming(LP) formulation of the MDP [26] converts the original dy-
namic programming problem

V (s) = max
d∈D


r(s, d) + β

∑
j∈S

pd(j|s)V (j)


 ∀s ∈ S (25)

to the (dual) LP problem

Maximize
∑
s∈S

∑
d∈D

r(s, d)z(s, d)
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subject to

∑
d∈D

z(j, d) −
∑
s∈S

∑
d∈D

βpd(j|s)z(s, d) = α(j) ∀j ∈ S

and z(s, d) ≥ 0 for d ∈ D and s ∈ S.
Here, α(.) is the initial probability distribution of the states and

z(s, d) = E

[ ∞∑
t=0

βtI[x(t) = s & d(t) = d]

]
(26)

where I(.) is the indicator function of the event defined by its argument. In other
words, z(s, d) is the discounted expected value of the number of times that action d is
taken at state s.
For our scheduling problem, the state space S is the product of the N state spaces
S1, S2, . . . , SN . Therefore, the objective function of the dual problem can be written
as

Maximize
N∑

n=1


 ∑

s∈Sn

rn(s, 0)zn(s, 0) +
∑

s∈Sn

rn(s, 1)zn(s, 1)


 (27)

subject to

∑
l∈{0,1}

zn(j, l)−
∑

s∈Sn

∑
l∈{0,1}

βpl
n(j|s)zn(s, l) = αn(j) for n = 1, . . . , N and j ∈ Sn. (28)

where

zn(s, 1) = E

[ ∞∑
t=0

βtI[xn(t) = s & n ∈ d(t)]

]
(29)

and

zn(s, 0) = E

[ ∞∑
t=0

βtI[xn(t) = s & n /∈ d(t)]

]
(30)

and p1
n(j|s) (

p0
n(j|s)) is the probability of queue n going from state s to state j when it

is activated(idle). Obviously, in our problem we have rn(s, 0) = 0 and rn(s, 1) = cns.
An additional constraint implicit to this scheduling problem is that at any time t,
exactly K queues should be serviced. This constraint is in fact the only constraint
that ruins the decoupled structure of the dual problem and the following relaxation
removes this limitation. This relaxation assumes that instead of having exactly K of
the projects activated at any time, only the time average of the number of activated
projects be equal to K. This assumption in the discounted case can be stated as the
following additional constraint to the dual problem

N∑
n=1

∑
s∈Sn

zn(s, 1) = K/(1 − β). (31)
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To exploit the structure of the solution to the new problem, Whittle used the La-
grangian Relaxation method to define a relaxed problem which, in our case, is

Maximize
N∑

n=1


 ∑

s∈Sn

rn(s, 1)zn(s, 1)


 + ν


K/(1 − β) −

N∑
n=1

∑
s∈Sn

zn(s, 1)


 (32)

subject to

∑
l∈{0,1}

zn(j, l) −
∑

s∈Sn

∑
l∈{0,1}

βpl
n(j|s)zn(s, l) = α(j) for n = 1, . . . , N and j ∈ Sn.

the above problem can be stated as

Maximize
N∑

n=1


 ∑

s∈Sn

(rn(s, 1) − ν)zn(s, 1)


 + Kν/(1 − β) (33)

subject to

∑
l∈{0,1}

zn(j, l) −
∑

s∈Sn

∑
l∈{0,1}

βpl
n(j|s)zn(s, l) = α(j) for n = 1, . . . , N and j ∈ Sn.

Therefore, multiplier ν works as a constant cost for activating a project. Whittle
termed ν as a constant subsidy for not activating a project, but in the queuing theory
problems the service cost interpretation seems more familiar. Problem (33) can be
decoupled into N separate problems

Maximize
∑

s∈Sn

(rn(s, 1) − ν)zn(s, 1) (34)

subject to

∑
l∈{0,1}

zn(j, l)−
∑

s∈Sn

∑
l∈{0,1}

βpl
n(j|s)zn(s, l) = α(j) for n = 1, . . . , N and j ∈ Sn. (35)

The solution to the Lagrangian Relaxation problem (33) is a function of the parameter
ν and is an upper bound to the solution of problem (27) and for a specific value ν∗ the
solutions to both problems are equal. Suppose that ν∗ is known, then, the problem
becomes finding the optimal policies for each of the N problems in (34). Here for
each queue n we have the problem of serving or not serving the queue at each state
s ∈ Sn, given that the reward for serving a queue is cns − ν∗ and the reward for not
serving it is zero, so that the total discounted expected reward is maximized. This is
the problem we studied in section 4 and found that the optimal policy, for a fixed value
of the service cost ν, is an index policy with the index being a function of the current
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state of the system and it is optimal to serve the queue if the index is larger than ν.
the optimal policy for each queue is therefore to calculate the value of index for that
queue and activate the queue if it is larger than the service cost.
Whittle used this idea and gave a logical heuristic to address the original problem with
the strict constraint on the number of active projects. The heuristic policy is to find
the critical cost value(index) νn(sn(t)) for each queue n at decision time t and serve the
queues with K largest index values. He conjuctured that this policy is asymptotically
optimal and approaches the real optimal point as K and N increase. Weber and
Weiss [27] showed that this conjecture is not necessarily true in all cases and presented
a sufficient condition for it to hold. They also presented a counterexample for this
conjecture. However, based on their results, they argued that such counterexamples
are extremely rare and the deviation from optimality is negligible. We remind that
the above heuristic would not have been meaningful if our projects did not have the
monotonicity property that resulted in an index type optimal solution for the single
queue problem.
The significance of this result is in the fact that it reduces the original problem to
the simpler problem of finding the optimal policy for a single-queue system, which is
potentially much easier to solve and to get either an analytical or experimental solution
for it. So far, we have shown that our problem have certain properties that make the
above heuristic an acceptable indexing policy. The complexity of this indexing policy
is hidden in the form of the ν(s) function for each queue and in the following section
we present a recursive method to calculate ν(s) for each queue.

7 Calculation of the index function

The index ν associated with state s ∈ Sn is the amount of the service cost that makes
both the active and idle actions equally favorable at that state under the optimal policy.
Using the results of appendix B, it can be easily shown that for that value of ν, the
optimal policy would be to serve the queue for states larger than s and to remain idle
for states smaller than s. Therefore, the following set of equations characterizes the
value function V s(.) for ν(s).

V s(0) = β
∞∑
i=0

p(i)V s(0 + i) (36)

V s(1) = β
∞∑
i=0

p(i)V s(1 + i) (37)

...

V s(s) = β
∞∑
i=0

p(i)V s(s + i) (38)
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V s(s) = −ν(s) + cs + β
∞∑
i=0

p(i)V s(i) (39)

V s(s + 1) = −ν(s) + c(s + 1) + β
∞∑
i=0

p(i)V s(i) (40)

...

This system of equations has all the V s(.) values plus ν = ν(s) as unknowns. In other
words we fix the border state to s and need to find the corresponding ν(s). To find the
complete ν(s) index function, this set of equations should be solved for every s. In the
following, we will try to exploit the properties of this system of equations to find an
easier method for calculating the ν(s) function. Due to the special form of the V s(.)
function we have

V s(s + i) = V s(s) + ci; i = 0, 1, . . .

Therefore the set of unknowns reduces to V s(0), . . . , V s(s), s, ν(s). The last term in
equation (39) is equal to V s(0) therefore we have

ν(s) = cs + V s(0) − V s(s). (41)

Equation (38) can be written as

V s(s) = β
∞∑
i=0

p(i)V s(s + i)

= β
∞∑
i=0

p(i)(V s(s) + ci)

= βV s(s) + βcλ.

Therefore we have
V s(s) =

βcλ

1 − β
(42)

and
V s(s + i) = ci +

βcλ

1 − β
. (43)

Substituting (42) in (41) gives

ν(s) = cs + V s(0) − βcλ

1 − β
. (44)

According to this equation we only need to find V s(0) in order to calculate ν(s). The
reduced set of equations for finding V s(x); x = 0, . . . , s − 1 is therefore

V s(x) = β
∞∑
i=0

p(i)V s(x + i)

= β
s−x−1∑

i=0

p(i)V s(x + i) + β
∞∑

i=s−x

p(i)V s(x + i)
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= β
s−x−1∑

i=0

p(i)V s(x + i) + β
∞∑
i=0

p(s − x + i)V s(s + i)

= β
s−x−1∑

i=0

p(i)V s(x + i) + βV s(s)
∞∑
i=0

p(s − x + i)

+ βc
∞∑
i=0

ip(s − x + i)

= β
s−x−1∑

i=0

p(i)V s(x + i)

+ βV s(s)h(s − x − 1) + β(λ − m(s − x − 1) − (s − x)h(s − x − 1)

= β
s−x−1∑

i=0

p(i)V s(x + i)

+ βh(s − x − 1)(V s(s) − c(s − x)) + βc(λ − m(s − x − 1))

where h(.) and m(.) are functions of the Poisson distribution defined as

h(n) =
∞∑

i=n+1

p(i) (45)

and

m(n) =
n∑

i=0

ip(i). (46)

Defining Ws = (V s(0), . . . , V s(s − 1)), we can write the above system as

AsWs = Bs (47)

where

As =




1 − βp(0) −βp(1) . . . −βp(x) . . . −βp(s − 1)
0 1 − βp(0) . . . −βp(x − 1) . . . −βp(s − 2)
...

...
...

...
0 0 . . . 1 − βp(0) . . . −βp(s − x − 1)
...

...
...

...
0 0 . . . 0 . . . 1 − βp(0)




(48)

and

Bs = β




h(s − 1)
[

βcλ
1−β − cs

]
+ cλ − cm(s − 1)

h(s − 2)
[

βcλ
1−β − c(s − 1)

]
+ cλ − cm(s − 2)

...
h(s − x − 1)

[
βcλ
1−β − c(s − x)

]
+ cλ − cm(s − x − 1)

...
h(0)

[
βcλ
1−β − c

]
+ cλ − cm(0).




(49)
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An immediate observation of the role of the weight coefficient c in the above equations
shows that it only results in a solution Ws(and so V s(0)) which is c times larger than
the solution for c = 1 case. Taking this observation into account, from equation (44)
it can be seen that the index function satisfies

Property 3 If νc(s) is the index function for a bulk service queue with the reward
function at state x defines as R(x) = cx, we have νc(s) = cν1(s); ∀s ∈ S.

Hence, without any loss of generality we will continue our analysis for c = 1.
By solving equation (47) the value of ν(s) is found and for every value of s a similar
s × s system needs to be solved. However, a closer look at the structure of As and Bs

matrices shows that As+1 is formed by adding an additional first row and first column
to As and also Bs+1 is formed by adding an additional first row to Bs. The new system
has of course s+1 unknowns shown as Ws+1 = (V s+1(0), V s+1(1), . . . , V s+1(s)). Since
matrix A is upper triangular, the subsystem defining the V s+1(1), . . . , V s+1(s) values
is the same as the previous system defining the V s(0), . . . , V s(s− 1) values. Therefore,
we have

Property 4 If V s(.) is the value function of the optimal policy for the case where s is
the border state and V s+1(.) the similar function for s + 1 being the border state, then
V s+1(x + 1) = V s(x); x = 0, . . . , s − 1.

Also using the above property it is easy to show that

Property 5 For V (0) values we have
V s+1(0) = β

1−βp(0)

[
p(1)V s(0) + . . . + p(s)V s(s − 1) + λ + h(s)( βλ

1−β − s − 1) − m(s)
]
.

Therefore, once the values of the V s(x); x = 0, . . . , s − 1 are found, the values of
V s+1(x); x = 0, . . . , s can be easily calculated using the V s(.) values. The index
function can therefore be efficiently computed using this recursive method.

We can also use the above relations to prove a number of properties of the index
function. The results are for c = 1 and the extension to c 	= 1 is trivial.

Theorem 3 The index function ν(s) is a non-decreasing function of s such that
(a) ν(s) ≤ ν(s + 1).
(b) ν(s + 1) ≤ ν(s) + 1

Proof: Based on equation (44) we have

ν(s + 1) − ν(s) = 1 + V s+1(0) − V s(0) (50)
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but

V s+1(0) − V s(0) = β
∞∑
i=0

p(i)[V s+1(i) − V s(i)]

= βp(0)[V s+1(0) − V s(0)] + β
∞∑
i=1

p(i)[V s+1(i) − V s(i)]

= βp(0)[V s+1(0) − V s(0)] + β
∞∑
i=1

p(i)[V s(i − 1) − V s(i)]

Therefore

V s+1(0) − V s(0) =
β

1 − βp(0)

∞∑
i=1

p(i)[V s(i − 1) − V s(i)]. (51)

Since V s(i − 1) ≤ V s(i) ≤ V s(i − 1) + 1; i = 1, 2, . . .(Lemma 1), we have

−β(1 − p(0))
1 − βp(0)

≤ V s+1(0) − V s(0) ≤ 0. (52)

Using equation (50), we have

1 − β(1 − p(0))
1 − βp(0)

≤ ν(s + 1) − ν(s) ≤ 1 (53)

and since β < 1 the left hand term is always greater than 0 which completes the proof.
This property was used in section 6 to establish the indexing argument and tells that
the ν(s) curve is monotonic increasing with a maximum slope of 1(c in the general
case).

8 Index function in light traffic regime

In the previous section we calculated the index function via a recursive method for a
Poisson arrival with arbitrary rate but we failed to present a closed form formula for
that function due to the complexity of the equations. An interesting case to consider
is when the arrival rate is low so that we can model the arrivals in every period to be
according to an iid Bernoulli sequence with p the probability of having one arrival and
1−p the probability of zero arrivals. It is worth noticing that this assumption is not as
restrictive as its name may imply. It only needs the arrival rate to be enough low with
respect to our time unit which is the distance between successive decision instances.
Therefore for a system with small page sizes or equivalently large download bandwidth,
this can be a reasonable assumption. Consider again the bulk service queuing system
with infinite capacity for the server and assume that we have the option of serving or
not serving the queue at equally spaced decision instances of time t = 0, 1, . . . where the
service time of the server is a constant 1. Using the same method as the last section, if
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ν is the amount of service cost that makes state s equally favorable for both idle and
active decisions, then the value function of the optimal policy satisfies the following
system of linear equations

V (0) = β(1 − p)V (0) + βpV (1) (54)

V (1) = β(1 − p)V (1) + βpV (2) (55)
...

V (s) = β(1 − p)V (s) + βpV (s + i) (56)

V (s) = −ν + cs + β(1 − p)V (0) + βpV (1) (57)

V (s + 1) = −ν + c(s + 1) + β(1 − p)V (0) + βpV (1) (58)
...

where V (x) is the expected reward of the optimal policy given the initial state x. Here
again we have

V (s + i) = V (s) + ci; i = 0, 1, . . .

and we can verify that the following equations hold

ν(s) = cs + V (0) − V (s)

V (0) =
(

βp

1 − β(1 − p)

)s

V (s)

V (s) =
βcp

1 − β
.

Therefore
ν(s) = cs +

βcp

1 − β

[(
βp

1 − β(1 − p)

)s

− 1
]
. (59)

It can be shown that this function is monotonic increasing with a slope between 0 and
1. Since p is the probability of a single arrival for a Poisson process with a low rate,
it is in fact the rate of the process and can be replaced with λ keeping in mind that
the formula is only valid for small values of λ < 1. We expect the new index function
to be very close to the original index function for small rates and deviate from that
as the rate increases. To observe the degree of match between the two functions, we
plotted the functions for several rate values in figure 6. According to these results, as
we expect, the two functions are very close for small values of λ and their difference
increases with λ. However, there is an acceptable match even for a range of λ > 1
values. Therefore, for practical purposes, the closed form function might be used for
small rates.

9 Results

In this section some of the results we obtained from simulation studies about the per-
formance of different broadcast scheduling policies are presented. We have compared
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Figure 6: The exact index function and the light traffic approximation.

the performances of the following policies in different experiments.

• MRF or Maximum Requested First, This policy serves the queue with the largest
number of pending requests.

• FCFS , this policy is the simple First Come, First Serve policy where the queue
with the oldest request is served first.

• PIP or Priority Index Policy, this policy introduced in [29] is the best known
indexing broadcast scheduling policy. The index function is defined as x/λγ

where x is the queue length, λ the arrival rate and γ is a constant. It is found by
trial and error that a value of γ around 0.5 is the optimum value. Therefore, in
the following simulations we have used x/

√
λ as the PIP index function.

• NOP or Near-Optimal Policy which is the index function defined by our method.

In the first set of simulations, we used 100 queues with the arrival rates distributed
according to the Zipf distribution. The total rate was varied from very low to very
high values to show the performances of the policies for a wide range of the input rate.
The service times were set to one time unit and the total average waiting times were
calculated for each simulation. Figure 7 shows the results of these experiments. As
we observe, the performance of our policy is much better than MRF and FCFS and
identical to PIP. Also in figure 8 the performances of PIP and NOP policies are com-
pared with the light traffic approximation of the NOP index which we call NOPL. It
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Figure 7: Comparison of the total average waiting time for different scheduling policies with
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can be seen that, for the range of arrival rates tested in these experiments, there is no
difference in the performances of NOP and NOPL policies and the closed form index
can be used in practical purposes. In order to further compare the performances of
PIP and NOP policies, we performed two other sets of simulations each with different
distribution of the input rates among the queues. Since the Zipf distribution defines a
convex distribution, we used a linearly decreasing distribution in one group of experi-
ments and a concave shaped distribution in another group and ran the simulations for
different values of the total input rate(figure 9). Figures 10 and 11 show the results of
these experiments only for the PIP and NOP policies. We can see that the results are
extremely similar. It was mentioned before that once we find a proper index function,
any monotonic increasing function of that index can be used as an index as well. The
results suggest that what Su [29] found as an index by trial an error is in fact very close
to a monotonic increasing function of the index we have calculated using optimization
arguments. Figure 12 shows the individual average waiting times experienced by the
requests for each page under PIP and NOP policies for an specific arrival rate. The
close matching of the two results confirms the close relation between PIP and NOP
policies. In another set of experiments we compared the performances of PIP and NOP
policies for the case where the pages have different weights. We showed in previous
sections that the effect of weight C in the index function ν(s) is in the form of a simple
multiplicative factor. PIP, in its original form, does not address the case with weights.
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with the distribution of the arrival rates having a linear shape.
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with the distribution of the arrival rates having a concave shape.
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Therefore, we tried to use the same analogy and extend its definition so that the weight
coefficient appears in the index function as well. In the first extension, which we call
EPIP1 for notational convenience, we define the index function as ν(x) = cx√

λ
and in the

second extension(EPIP2) we define it as ν(x) =
√

cx√
λ

. We performed the experiments
on a system with 100 pages with Zipf distribution of the arrival rates and assigned a
weight of 5 to the first 10 pages. The weights of the other pages were set to 1. Figure 13
shows the performances of all four policies under different arrival rates. As we can see,
PIP by itself does not perform very well which is not unexpected. EPIP1, which uses
the same multiplicative form as NOP to incorporate the effect of weights, also does not
perform as good as NOP. However, EPIP2 have exactly the same performance as NOP
and suggests that the effect of weight in the PIP index should be through a square
root multiplicative factor. The NOP policy and the method we used for its derivation,
in addition to having the notion of optimality, has the advantage of being more flexi-
ble because this method allows us to define the index function for the general case of
weighted priorities assigned to the packages and moreover, we are currently using it
for dealing with the unequal file size case which is not studied yet.
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10 Conclusion

In this report, the problem of optimal broadcast scheduling was addressed. We pre-
sented a MDP formulation of this problem for the case where all files have equal sizes.
This formulation allowed us to use the restless bandit problem approach after prov-
ing the necessary properties of the single-queue problem. We also derived a recursive
method for the calculation of the index function for our near-optimal policy and a closed
form formula for the light traffic case. The experimental results show that our policy
outperforms or matches the results of all other heuristic policies in all the experiments.
Moreover, our approach naturally allows for the assignment of distinct weights to dif-
ferent pages as a form of soft priority assignment in the system. The above method has
also been used to address the extended version of this problem where the restriction of
equal file sizes is removed and the results will be published in future reports.

A Derivation of the maximization problem

Assuming initial condition X(0), the objective function of the minimization problem
can be written as

Jβ = E

[ ∞∑
t=0

βt

[
N∑

i=1

ciXi(t)

]]
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= E

[
N∑

i=1

ciXi(0)

]
+ E

[ ∞∑
t=0

ββt

[
N∑

i=1

ciXi(t + 1)

]]

but if d(t) is the set of pages transmitted at time t we have

Xi(t + 1) =

{
Xi(t) + Ai(t) i /∈ d(t)
Ai(t) i ∈ d(t)

(60)

with Ai(t) being the number of new requests for page i. therefore Jβ can be written as

Jβ = E[
N∑

i=1

ciXi(0)] + βE


 ∞∑

t=0

βt[
N∑

i=1

ciAi(t) +
N∑

i=1

ciXi(t) −
∑

i∈d(t)

ciXi(t)]




= E[
N∑

i=1

ciXi(0)] + βE

[ ∞∑
t=0

βt[
N∑

i=1

ciAi(t)]

]

+ βE

[ ∞∑
t=0

βt[
N∑

i=1

ciXi(t)]

]
− βE[

∞∑
t=0

βt
∑

i∈d(t)

ciXi(t)].

We also have

βJβ = βE

[ ∞∑
t=0

βt[
N∑

i=1

ciXi(t)]

]
(61)

therefore

(1 − β)Jβ = Jβ − βJβ

= E[
N∑

i=1

ciXi(0)] + βE

[ ∞∑
t=0

βt[
N∑

i=1

ciAi(t)]

]
− βE[

∞∑
t=0

βt
∑

i∈d(t)

ciXi(t)].

The first two terms of the right hand side of the equation are independent of the policy.
Therefore, since 1 − β > 0, minimizing Jβ is equal to maximizing

Ĵβ = E[
∞∑

t=0

βt
∑

i∈d(t)

ciXi(t)] (62)

which completes the derivation.

B optimality of the threshold policy

In this part we prove that the optimal policy is of the threshold type and moreover,
the idling region is a convex set on the state space of the queue containing the origin.
We show the value function of the optimal policy π∗ by V (.) and we first prove some
properties of this function.

We need the following lemma:
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Lemma 2 Let Sd
p(x) denote the resulting discounted reward sum when the initial con-

dition is x and arrivals occur as sample path p and the fixed(independent of state)
decision sequence d is applied to the system. Then we have

Sd
p(x) ≤ Sd

p(x + 1) ≤ c + Sd
p(x). (63)

Consider two identical queues one with initial condition x and the other with initial
condition x + 1 defined as above. If the same fixed policy is applied to these two
systems, the reward would be the same before the first service epoch. At that point,
the second system receives a reward that is c units more than that received by the
first system. Since the dynamics of the system forces the length of the serviced queues
to zero, it in fact erases the memory of the queues after each service. Therefore, the
resulting rewards even for both queues would be the same afterwards. Therefore, the
left hand inequality holds(c > 0). The presence of the discount factor 0 < β < 1 causes
the additional instantaneous reward in the second queue to result in at most a c unit
difference between the two discounted sum of the rewards(if queues are served at time
t = 0), hence the right inequality holds.

The first part of the theorem can be proved using the above lemma.

Theorem 4 For the value function V (.) of the optimal policy of our maximization
problem, we have
(a) V (x + 1) ≤ V (x) + c.
(b) V (x) ≤ V (x + 1)

Proof: Let dπ∗ be the optimal policy and denote by πx
p the deterministic sequence of

decisions dictated by π∗ when the arrivals occur according to a deterministic sample
path p and the initial condition is x. According to lemma 2 we have

S
πx+1

p
p (x + 1) ≤ S

πx+1
p

p (x) + c (64)

If we take the expectation of both sides with respect to the sample path probability
P (p), we get

V (x + 1) ≤ c +
∑
p

P (p)Sπx+1
p

p (x). (65)

Also, according to the definition of optimality of policy π∗ we have

V (x) =
∑
p

P (p)S
πx

p
p (x) ≥

∑
p

P (p)S
dY

p
p (X). (66)
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inequality (a) follows from combining the two above results.
Also, according to lemma 2 we have

S
πx

p
p (x) ≤ S

πx
p

p (x + 1) (67)

If we take the expectation of both sides with respect to the sample path probability
P (p), we get

V (x) ≤
∑
p

P (p)S
πx

p
p (x + 1). (68)

Also, according to the definition of optimality of policy d∗ we have

V (x + 1) =
∑
p

P (p)Sπx+1
p

p (x + 1) ≥
∑
p

P (p)S
πx

p
p (x + 1). (69)

Hence inequality (b) follows.
Now, we can prove the following property:

Theorem 5 If π∗(x) = 0, i.e. it is optimal to remain idle at state x, then it is also
optimal to remain idle at state x − 1 i.e. π∗(x − 1) = 0.

Proof: since π∗(x) = 0, we have:

cx − ν + β
∞∑
i=1

p(i)V (i) ≤ β
∞∑
i=1

p(i)V (x + i) (70)

Starting with the above property, we have

V (x + i) ≤ c + V (x − 1 + i) (71)

or

β
∞∑
i=1

p(i)V (x + i) ≤ c + β
∞∑
i=1

p(i)V (x − 1 + i) (72)

Using the hypothesis, we have

cx − ν + β
∞∑
i=1

p(i)V (i) ≤ c + β
∞∑
i=1

p(i)V (x − 1 + i) (73)

or

cx − c − ν + β
∞∑
i=1

p(i)V (i) ≤ β
∞∑
i=1

p(i)V (x − 1 + i) (74)

that is, d(x − 1) = 0 which completes the proof.
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C Relation between the threshold state and the

service cost

We showed that for every value of the service cost ν there exist a threshold state s(ν)
with the set of idling states under the optimal policy being S0 = 0, . . . , s. Here we will
show that s(ν) is a non-decreasing function.
Let us assume that u is the stationary optimal policy for service cost ν with threshold
state s and denote by V ν(.) the value function associated with that policy. Based on
the optimality principle, function V ν(.) satisfies:

V ν(0) = β
∞∑
i=0

p(i)V ν(0 + i) ≥ −ν + 0 + V ν(0) (75)

V ν(1) = β
∞∑
i=0

p(i)V ν(1 + i) ≥ −ν + c + V ν(0)

...

V ν(x) = β
∞∑
i=0

p(i)V ν(x + i) ≥ −ν + cx + V ν(0)

...

V ν(s) = β
∞∑
i=0

p(i)V ν(s + i) ≥ −ν + cs + V ν(0)

V ν(s + 1) = −ν + c(s + 1) + V ν(0) ≥ β
∞∑
i=0

p(i)V ν(s + 1 + i)

...

Now, take a new value for the service cost ν ′ > ν and show by V ν′
(.) the value function

obtained by applying policy u(with threshold s) with this new value of the service cost.
Function V ν′

(.) satisfies:

V ν′
(0) = β

∞∑
i=0

p(i)V ν′
(0 + i) (76)

V ν′
(1) = β

∞∑
i=0

p(i)V ν′
(1 + i)

...

V ν′
(x) = β

∞∑
i=0

p(i)V ν′
(x + i)

...

V ν′
(s) = β

∞∑
i=0

p(i)V ν′
(s + i)

V ν′
(s + 1) = −ν + c(s + 1) + V ν′

(0)
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...

Let’s denote the difference between the two value functions by ∆(.) i.e. ∆(x) = V ν(x)−
V ν′

(x) x = 0, 1, . . .. It is easy to show that function ∆(.) satisfies the following
equations:

∆(x) = β
∞∑
i=0

p(i)∆(x + i) for x ≤ s (77)

and

∆(x) = β
∞∑
i=0

p(i)∆(i) + ∆ν = ∆(0) + ∆ν for x > s (78)

where ∆ν = ν ′ − ν > 0. After some simplifications we have

∆(x) = β
s−x∑
i=0

p(i)∆(x + i) + β(∆(0) + ∆ν)h(s + 1 − x) for x ≤ s (79)

where h(x) =
∑∞

i=x p(i). The following simple lemma asserts that all ∆(0), . . . ,∆(s)
values are positive.

Lemma 3 All ∆(i) i = 0, 1, . . . values defined above are positive and are of the form
∆(i) = ki(∆(0) + ∆ν) where 0 < ki < 1 for 0 ≤ i ≤ s and ki = 1 for i > s.

Proof: From the above equations ∆(s) can be written as

∆(s) = βp(0)∆(s) + βh(1)(∆(0) + ∆ν)

or
∆(s) =

βh(1)
1 − βp(0)

(∆(0) + ∆ν).

We also have
βh(1) = β(1 − p(0)) < 1 − βp(0)

therefore, ∆(s) can be written as

∆(s) = ks(∆(0) + ∆ν)

where 0 < ks < 1. Now we show that all ∆(x) values for x < s have the same form by
using full induction. Suppose that all ∆(i) values for i = x + 1, . . . , s are of the form

∆(i) = ki(∆(0) + ∆ν) 0 < ki < 1.

Using equation (79), the value of ∆(x) can be calculated

∆(x)(1 − βp(0)) = βp(1)∆(x + 1) + . . . + βp(s − x)∆(s) + βh(s + 1 + x)(∆(0) + ∆ν)

= β[p(1)kx+1 + . . . + p(s − x)ks−x + h(s + 1 − x)](∆(0) + ∆ν)

Since the ki i = x + 1, . . . , s − x values are all less than one, we have

∆(x)(1 − βp(0)) < β(1 − p(0))(∆(0) + ∆ν)
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or
∆(x) = kx(∆(0) + ∆ν) 0 < kx < 1.

Therefore, by induction, all ∆(i) i = 0, . . . , s are of the above form. Specifically, for
i = 0 we have

∆(0) = k0(∆(0) + ∆ν)

or
∆(0) =

k0∆ν

1 − k0
> 0.

Since ∆ν > 0, we conclude that all ∆(i) i = 0, . . . values are positive which completes
the proof.

Now, we go back to equation (76) and try to find under what conditions the policy
u is also optimal, i.e. satisfies the optimality equation for all states, when the service
cost is ν ′. For every state 0 ≤ x ≤ s we have from equation (75)

V ν(x) = β
∞∑
i=0

p(i)V ν(x + i) ≥ −ν + cx + V ν(0) (80)

also from the above lemma we have

∆(x) < ∆ν + ∆(0) (81)

therefore, subtracting (81) from (80), we have

V ν′
(x) > −ν ′ + cx + V ν′

(0) (82)

that is, the u policy is optimal for 0 ≤ x ≤ s states. For x > s states from equation
(75) we have

cx − ν + V ν(0) ≥ β
∞∑
i=0

p(i)V ν(x + i)

= β
∞∑
i=0

p(i)[cx + ci − ν + V ν(0)]

= β[cx − ν + V ν(0)] + βcλ (83)

Obviously, this inequality strengthens as x increases. Also, due to the optimality of
state x = s as the largest state of the idling set, no value of x < s + 1 can satisfy (83).
Therefore, x = s + 1 is the smallest integer(state) which satisfies (83). We know from
lemma (3) that for policy u, V ν(0) is a non-increasing function of ν(since ∆(0) > 0).
Hence, inequality (83) weakens as ν increases and the maximum value of ν for which
the inequality still holds for x = s + 1 is the one satisfying

c(s + 1) − ν∗ + V ν∗
(0) = β[c(s + 1) − ν∗ + V ν∗

(0)] + βcλ (84)
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Figure 14: A bulk service queuing system.

or
ν∗ = c(s + 1) + V ν∗

(0) − βcλ

1 − β
. (85)

Therefore, as long as the value of the service cost is smaller than ν∗, state x = s+1(and
so the larger states) stay in the active region and the policy u with threshold state s

remains optimal.
To summarize the above arguments, we showed that if policy u with threshold state
s is optimal for a service cost ν(and produces a value function V ν(.)), then it is also
optimal for all values of the service cost ν ′ where ν ≤ ν ′ ≤ ν∗. But comparing equations
(85) and (44), we find that ν∗ is the value of the service cost that makes state s+1 the
threshold value of the optimal policy. therefore for ν′ > ν∗ values, the same argument
can be repeated for the optimal policy u′ with its threshold state being x = s + 1 and
so the property is proved.

D Properties of some bulk service queues with

continuous service

In our broadcast system the bulk size is infinite and service time is a constant. Let
us for example consider a single discrete-time broadcast queue of type M/D∞

1 /1 with
arrival rate λ and service time d where the service occurs only at discrete time instants
of distance d (figure 14). Here we denote by Q1 and Q2 the number of customers in the
queue and in service respectively and by W1 and W2 the corresponding waiting times.
The total queue length and waiting time (Q and W ) will be the sums of the the two
terms. By definition, the value of W2 is fixed and is equal to d. Also, since the waiting
room in the queue is completely emptied at the beginning of every service period, the
number of customers who will be waiting for the beginning of the next period (Q2) will
have a Poisson distribution with rate λd. The distribution of the waiting time of the
customers in the queue is also easily obtained by considering the fact that by PASTA
the residual time (of the current period) seen by the arrivals is Unif[0, d]. Therefore,
the average waiting time in the queue (W1) is d

2 . The average value of the number
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of waiting customers(Q1) is easily obtained from W1 using the Little’s law and is λd
2 .

Since we assume that the queue never becomes empty, at the start of each service
period Q1 becomes zero and starts increasing according to a Poisson process with rate
λ after that until the start of the next service which occurs d seconds later. Q1 is
therefore a cyclostationary process with period d and is Poisson(λ) inside every time
interval of the form (kd, (k + 1)d] with k ∈ N . Therefore , we have

P [Q1(τ + kd) = n] =
e−λτ (λτ)n

n!
0 < τ ≤ d, k = 0, 1, . . . (86)

and

P [Q1 = n] =
∫ d

0

1
d

e−λτ (λτ)n

n!
dτ. (87)

We use the following algebraic lemma to simplify the above integral:

Lemma 4 For n = 0, 1, . . . and λ and d positive real numbers, we have:

∫ ∞

d

λe−λτ (λτ)n

n!
dτ =

n∑
i=0

e−λd(λd)i

i!
. (88)

proof: We use induction to prove the result. The equality obviously holds for n = 0.
Now, if the equality holds for n, for n + 1 we have:

∫ ∞

d

λe−λτ (λτ)n+1

(n + 1)!
dτ =

[
−λe−λτ (λτ)n+1

(n + 1)!

]∞

d

+
∫ ∞

d

λe−λτ (λτ)n

n!
dτ. (89)

If the equality holds for n, the second term is the sum from 0 to n and the first term
is the same term for n + 1. Hence, the lemma follows.
Equation 87 can now be written as

P [Q1 = n] =
1
λd

∫ d

0

λe−λτ (λτ)n

n!
dτ = (90)

1
λd

[
1 −

∫ ∞

d

λe−λτ (λτ)n

n!
dτ

]
= (91)

1
λd

[
1 −

n∑
i=0

e−λd(λd)i

i!

]
= (92)

1
λd

P [X > n] (93)

with X being a Poisson(λ) random variable.
Table 1 summarizes these properties. As we see, the waiting times are finite and inde-
pendent of the arrival rate. This is a direct result of the infinite bulk capacity of the
server. This fact can also be seen in a queueing system of the M/M∞

1 /1 type where the

39



Parameter Distribution Mean

W1 Unif[0, d] d
2

Q1
1−F (n)

λd
λd
2

W2 constant d

Q2 Poisson(λd) λd

Table 1: Properties of a bulk service queue (F (.): CDF of Poisson(λd) distribution)

service times are exponentially distributed with parameter µ and a service can start
as soon as an arrival lands on the empty queue. This queue is Markovian and has
a 2-dimensional Markov chain representation which we have analyzed and found the
average total queue length and the average total waiting time to be

Q̄ =
ρ(2ρ2 + 2ρ + 1)

ρ2 + ρ + 1
;

and

W̄ =
Q

λ

where ρ = λ
µ . Here, it can also be easily seen that as we expect, W̄ approaches the

finite value 2
µ as λ → ∞. In general, for a M/G∞

1 /1 queue, an arrival is either served
immediately (if it arrives to the empty queue), or will be served at next service which
will be right after the end of the current service. If we denote by p0 the probability of
queue being empty, X̄ the average service time and, by R̄ the average residual service
time seen by the (Poisson) arrivals, we have

W̄ = X̄p0 + (1 − p0)(X̄ + R̄) (94)

Since 0 < p0 < 1 and R̄ ≤ X̄, we can bound the average waiting time by

X̄ < W̄ < 2X̄. (95)

In other words, the infinite service capacity of the server never allows the waiting time
to be more than two service periods.
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