JB 98-04

Entitled:

“Finite-Dimensional Methods for Computing the
Information State in Nonlinear Robust Control”

Authors:

J.S. Baras and R. Darling

Conference:

1998 IEEE Conference on Decision and Control
Tampa, Florida
December 16-18, 1998



gDecember 16-18, 1998
\ [ Hyatt Regency Westshore
Tampa, Florida USA

98CH36171

Produced by Sony Electronic Publishing Services



Proceedings of the 37th IEEE Conference on Decision & Control  Tampa, Florida USA » December 1998

WA12-1 10:00

Finite-Dimensional Methods for C()mputing the Information State
in Nonlinear Robust Control’

J.S. Baras’ and R.W.R. Darling®

Abstract

In nonlinear output robust control and in nonlinear risk-
sensitive partially observed stochastic control, the optimal
control is a memoryless function of the information state.
The information state dynamics are directly influenced by
the control performance metric, thus displaying a direct
linkage between control objectives and sufficient statistics
for control. It has been observed in several examples that
by modifying the control performance metric one can ren-
der the dynamics of the information state finite dimensional.
In linear robust control, it is well known that the informa-
tion state can be computed by a simple finite-dimensional
formula. Using the Lie theory for transformations of this
basic solution, we show how the information state for cer-
tain nonlinear control problems can also be obtained using
finite-dimensional calculations, e.g. via the solution of sys-
tems of ODEs. This is explained using fundamental results
on the invariance groups of the equations involved. An in-
tuitive interpretation of the significance of the result is also
provided.

1 Introduction

Recent developments in nonlinear output feedback robust
control have demonstrated the equivalence of three prob-
lems under very general nonlinear models [4-10}: (a) The
nonlinear output feedback robust control problem; (b) A
partially observed nonlinear dynamical game; (c) A par-
tially observed nonlinear stochastic control problem.

Furthermore, in these works the general structure of the so-
lution was determined. It consists of a, forward in-time,
nonlinear partial differential equation which describes the
dynamics of the information state, and of a backward infi-
nite dimensional dynamic programming equation. The dy-
namic programming equation can be solved off-line in prin-
ciple. However, the equation for the information state has
to be solved in real-time and this has been a major obstacle
in the application of the results; one has to resort to various
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approximations.

In several recent papers [11-12] it has been observed that
the two equations described above are coupled, in the sense
that the control performance metric enters explicitly in the
equation describing the information state. This is to be
contrasted with the framework of ordinary stochastic con-
trol problems where the information state is the conditional
probability measure of the state given the past of the obser-
vations. This later quantity satisfies the linear Zakai equa-
tion [13] or the nonlinear Kushner equation [13]. Neither
depends explicitly on the control performance metric in the
standard set-up. In the recent works cited [11-12] this cou-
pling has been used to construct examples where for appro-
priate choice of the integrand in the performance metric, the
infinite dimensional information state dynamics collapse to
finite-dimensions [11-12].

1t is the primary objective of this paper to explain why this
is possible in a general setting. This is accomplished using
the theory of Lie transformations on the information state
dynamics.

The focus of the method is similar to earlier work by one
of the authors on group invariance methods in nonlinear fil-
tering [13]. The latter work was inspired by the so-called
“similarity methods” for ordinary and partial differential
equations [2,14-16). In [13] we introduced the notion of
equivalence between two nonlinear filtering problems if the
solution of the one Zakai equation can be obtained from the
solution of the other (i.e. computed) via the following three
types of operations: (a) diffeomorphisms in time-space (i.e.
change of coordinates and time rescaling); (b) scaling of
the probability density by a variable factor; (c) solving a set
of ordinary differential equations. We linked in [13] this
equivalence to finitely computable nonlinear filtering prob-
lems and to the Lie-Bécklund transformations [16]. These
methods allowed us to prove then the converse to the well-
known results of V. Benes.

Here we use similar techniques to explain how the nonlinear
p.d.e. associated with the information state can be solved by
solving ODEs. Our results include earlier obtained results
along this line of inquiry [11-12].

Finally we will provide an intuitive interpretation of our re-
sults, inspired by the interpretation of those transformations
in the nonlinear filtering problem {13].
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2 Invariance properties of the Information State PDE

2.1 The Linear Control Problem

We shall omit the control parameter u from the notation,
since it plays no part in the following calculations; in other
words, instead of writing A(u(t)), we abbreviate to A(t).
The information state p(t, ) = p(t, 21, - - ,Zy) forthe lin-
ear control problem satisfies the scalar PDE

F(t,-’b”Pt,Vp) =p+Vp-(Az + b)
~|Vp?/2+2TGz/2+h-z+1=0, )

where G = G(t) is a symmetric matrix, 4 = A(t) is a
square matrix, b = b(t) and h = h(t) are n-vectors, and
I = I(2) is a scalar function. James and Yuliar (1995) point
out that there is a solution of the form

p(t,2) = ~(z —r(®)TWO) (= - r(t)/2+4(), @

with W symmetric. We call this the solution of the linear
control problem. Taking the gradient of (2), substituting in
(1) and equating coefficients of terms quadratic, linear, and
constant in  we obtain the ODEs

W = -WA-ATW-W?+@G,
Fo= WH-Wr+Wb- ATWr - W ~h),
¢ = rTTWr+Wr/2-Wb+W/2)—1. @3)
The last two equations can be rewritten as
f=Ar+b-W™(Gr+h), )
d=rT(WA~ATW - G)r/2 —rTh-~1. ®)

Now (5), (6), and (7) can be solved in sequence for given
initial values, and (2) follows.

2.2 Lie Transformation Theory for the Information
State PDE

We shall now consider the invariance of (1) under an in-
finitesimal transformation given by a vector field of the form
(note that we are not including a /0t term)

X= Z{’tz

i=l

a
(ta xap)"a’; . (6)

According to Bluman and Kumei (1989), Theorem 4.1.1-1,
the criterion for invariance is that

X F(,2,p, Vp) = 0 whenever
F(taz’PhVP) =07 (7)

where X() is the first extended infinitesimal generator,
namely

9 3
M = i (1)
X E”:az gt ap+;”

i=l
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where
o
pi = .6—1'- ) (8)
n
) (t:2,0,0,Vp) = Den— 3 (De&)p;,  (9)
i=1
M 1.
" (t,2,9,p, V) = Din— Y (Di€%)p;,
i=1
i=1,...,n, .10
0 o] 0
D= — —, D= — | =
1= 5 th ap’ D; oz, + pi 3’

i=1,...n. (11

Evaluating the entries of (6) term by term,

ZE' oF

i=1

= (AT(Vp)+Gz +h) - £,

8_F_
dp

(vp ‘ ft) )

=0,

(1 OF
o ap

Z M BF Z( - Z(D,-éf)pj)

=1 i=1 j=1

=N +DiMp —

(Az + b~ Vp)*
=(Az+b~-Vp) - (Vn+n,Vp— (Vp- V)¢).

Adding up all these terms shows that (6) gives

(AT(Vp)+ Gz +h) € +m +pmp — (Vp- &)
—(Az +b~Vp) - (Vn+n,Vp— (Vp- V)E) .

Grouping terms, we obtain:

2.2.1 Fundamental Transformation Relation:

T + (Az + b~ Vp) - Vn+ (pt + (Az + b — Vp) - Vp)np

= Vp-&—(ATVp+Gz+h)-€+
(Az +b-Vp) - (Vp- V)¢,

where p is given by (2). Note that only linear differential
operators acting on £ and 7 are involved, and Vp and p; are
quadratic in z. Hence for any choice of £ we may solve for
7) by the method of characteristics. That is given &, solving
for 7 involves only the solution of an ODE.

2.3 How to Use the Fundamental Transformation Rela-
tion

Let p(e;t,2,p)) = (t,Z(e,t,2),5(e, t,,p)) denote the
flow of the vector field

x=Y e, m)

i=1

a

g (13)
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where Z(¢, t, z) are the transformed state space coordinates
and p(e,t,z,p) = (%, T) is the information state for the
transformed problem. By definition of ¢,

do

p (e) = Xo(t, 2,), 0(0; (t,z,p)) = (t,z,p)- (14)

This breaks down into the system of ODEs
0%

% = £(t,3), 2(0,t,x) = (15)
together with the scalar ODE
op oo

= = n(t,3,7), 0, t,3,) = . ae)

What we have proved so far is:

2.3.1 Theorem Assume p satisfies (1).  Suppose

€ — I (g,t,z) is a one-parameter family of transforma-
tions of the space variable T satisfying the system of ODE
(15), for some choice of € = £(t, z), and that = n(t, z,p)
is chosen to satisfy the Fundamental Transformation Rela-
tion (12) in terms of &. Then the solution € — p(e, t, z,p) to
the ODE (16), if unique, is a one-parameter family of trans-
formations of the information state variable p, so that (1)
holds with (z, p) replaced by (Z, D).

3 A Case Permitting Explicit Computations

3.1 A Special Class of Infinitesimal Generators

The drawback of Theorem 2.3.1 is that it is too abstract to be
of immediate practical use. Therefore we consider a more
specialized situation admitting explicit computations. We
shall constrain the choice of 7 so as to satisfy

n=-TWE¢. an
This implies
m o= —x WE—gT W&, 1, =0,
Vn = —-(Wz -V){-W¢. (18)
Now (14) says

~2TWeE —2TWE — (Az +b—Vp) - (Wz - V)E+ WE)

=Vp-& — (ATVp+Gz +h)- €
+(Az+ b~ Vp) - (Vp- V)¢,

Rearranging terms gives

(ATVp+ Gz +h—Wz -W(Az +b— Vp)) - £
~(Vp+Wz)- &

0-7803-4394-8/98 $10.00 (c) 1998 |EEE
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=(Az+b-Vp) - (Vp+Wz)- V)¢,

(-ATW(z -r)+ Gz +h-Wz -
WAz +b+W(z —r1) - ¢ - (Wr)- &

=(Az + b+ W(z - 1)) - (Wr)- V).

The coefficient of z in the first bracket is ~ATW + G ~
W —~W)(A+ W) =0, by (3). Define the following vector
functions in terms of quantities determined above:

B =WrT{t) = A+W,y(t)=b-3, 19
at) = (AT +W)Wr+h-Wb= -4, (20)

where the last identity follows from (3) and (4), since

Wi+ Wr=WAr + Wb—Gr — h +
(-WA-ATW -W?+G)r

=—(ATW)r - W2r —h+ Wb.

Now the linear PDE which £(¢, z) must satisfy is:

Be-§—B-&—(Tz+7)-(B-V)E=0. @n

This can be put in an even more concise form:

3.1.1 Constraint on n when we assume 7n =
~-zTWeé: (tz) = B-€=rTWE = Vp- £ — n must
satisfy the linear first order PDE

G+ ((Tz+7)-V)(=0. (22)

Suppose ( is a polynomial of order N in z, i.e.

N

(ta)= Y EB @)@, (23)

k=0

where 8% = z ® - - - ® z(k factors), and Z(*) (¢) is a sym-
metric (0, k)-tensor. Then

N
Ve(t,z) = Y kEW(t)(- @ 2®*1) .
k=1

Now (22) becomes

N N
3 2Pk 4 N kW (Tz +9) @ 2®*D) =0.
0 1
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Equating coefficients for each power of z forces the
{E®(2)} to satisfy the following system of ODEs:

=M L NEM(T() @) =0; (24)

2R L ERT() @) = —(k+ 1)EF (v e )
’ fork=1,2,..., N-1; (25

g0 =2W(y). (26)

Notice the structure of this system of ODEs. Suppose
2©@(0),-- - ,E™)(0) have been chosen: first we solve (24)
for Z¥)(t); insert this solution in the right side of (25), and
solve (25) for 2N =1 (¢); and so on, down to (% (¢). Let
us summarize our results.

3.1.2 Fundamental Transformation Relation in the
Casen = —xTWE¢=Vp-£—(: Assume that

N
(o) =rTwe= ) EB () (). @7

k=0

Then ((t, ) is completely determined by the initial condi-
tions Z(9(0), - - ,E(™)(0) and ODEs (24)-(26). In partic-
ular, when n = 1 and Wr is never zero, (1, z) is uniquely
determined by £(0, z), assuming &(¢, z) is a polynomial of
arbitrary degree in ¢ with coefficients depending on ¢.

3.2 Procedure for Computation of the Transformed In-
formation State

The starting-point is the solution p given by (2) to
the linear control problem. Pick an initial condition
£(0(0), - - - 2™¥)(0), and solve for {(¢,z) using (24)-(26)
by solving for each of the {Z(*)(¢)}. Now pick

N
£(t,z) = ) OW(1)(z®) 28)

k=1

so that rTW§£ = (, in other words so that

OW (@) = W(t)r(t) - ¥ (2) . 29)

Now we repeat the steps described in Section 2.3 under the
assumption ) = —xTW¢ = Vp-£ — (. As before, we solve
the system of ODEs

0z

g = §(t,f),f(0, t, 2}) =T, (30)

(derived from (15)) to determine Z(e, t, z, p). Thus £(¢, %)
and {(t, Z) are now explicitly computable. Finally we deter-
mine p(g, t, z,p) by solving the following first order PDE

0-7803-4394-8/98 $10.00 (c) 1998 IEEE
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(derived from (15)) by the method of characteristics (see
Abraham et al. (1988), p. 287):

op _ i o
E = Vp ) £(t’ 3]) - C(ta Z),p(oa ta xfp) =p, (31)
which can be written out in full as

_ N
% =3 vr-oWH -z0@E. @)
k=0 :

3.3 Detailed Calculation of the First Order Case .

For the sake of illustration, let us restrict to the somewhat
trivial case N = 1, i.e. with coefficients Z(9 () € R and
Z(D(t) € R™. Thus (23) becomes

() =rTWE =20 20y (33)
and (24)-(26) simplify to the pair of ODEs:
=M +20@A+ W) =0,E0 =20 -wr), 34

which are explicitly solvable, given the initial conditions.
Now we can make any choice of

£(t,z) =00 + oz (35)

subject to the constraints

rTwek® ==k k=01, (36)

Now (30) becomes the first order ODE

oz
P =W +0WE 2(0,t,w) =1z,

with solution

E(e, t,x) = exp {0V} (z + p) — p,p = OW-100O) _ (37)

The PDE (32) becomes

_gl: =Vp- (@(0) + @(1)5) _ E(O) — 5(1)5 .

The characteristic vector field on R™*2 for this problem is:
d ; 0
== (0 Mz =
z 6€+Z.~:(e +6Wa) o +

— — 6
--(0) -1(1)_ —_
(Y +=Wz) R 38)

The initial condition is the n-dimensional submanifold in
R"*? given parametrically by

¥ ={(c,%,p) : £ =0,% = 5,p = p(t, 9)},
3= (51,..., 8a), © (39)
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for p(¢,2) as in (2). On this submanifold the following
(n+2) x (z+ 2) matrix always has rank n + 1, and
therefore the vector field Z is never tangent to W

F 1 g . e ¢

pe  Bx 88, O

B o B e |
e e
_375:.-5—?’% PR 3‘5"
1 & ... & ¢

0 1 ... 0 B
[0 0 ... 1 5

The flow 9(u; (¢, z, p)) of the vector field Z satisfies

W), ..., "2 (w)) = (e + u,E1,... , Zn, D)

where
g% = ((t,E(u,t,z)) = 5O + Wz

u
p=p+E0y 450 / #(v,t,z)dv
0

u

=p+EO0y 4+ 20 / lexp {r@W}((z + p) — pldv,
0

=p+[E@ - 20 plu + E® [exp {u0M} — 1]00 1 (z +p) .

Thus the submanifold swept out by ¥ along 1(u) is given
parametrically by

e(u,s) = u,5(u,t,s) = exp OB}z +p) —p

p=p + [5(0) - E(I)P]“’
+ EO fexp {u0W} — 6W-1(s + p) (40)

We eliminate u and s using u = ¢, s = exp{—u@W}(z +
p) — p, to conclude:

3.3.1 Explicit Transformation Formula in the Sim-
plest Case: When N = 1,£(¢,z) = 00 (t) + 08 (t)z
satisfies (34), and n = —zTWE, then there is a one-
parameter family (¢, Z{e, t, z), B(c, t, =, p)), indexed by ¢,
of solutions to the PDE (1), given by:

Z(e,t,z) = exp {e0W}(z +p) - p, (41)

p=p <+ [E(O) — E(l)p]g
+ TW [exp {u®W} = I}(z +p), (42)

where p = ©(W~-10), and p, W, and r are given by (2),
(3), (4), and (5).
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4 Infinitesimal Transformation Linear in the
Information State

Consider a transformation with infinitesimal generator
XE{-Vf+17%£,where

n(t, z,p) = 0(t,x)p + ¢(t,z) .

Then

N =P +0pr + o1, Vn=pV8+0Vp+ Vo,n, =0

The first line of (12) becomes

Pl +6pe + 91 + (Az +b—Vp) -
(pV8 +6Vp + Vo) +6(p; + (Az + b — Vp) - Vp)

= 20p; + pb; + ¢ + (Az +b— Vp) - (26Vp)
(20Vp+pVe+Vy). (43)

Take z(t,z) = = — r(t), and recall that

p=~2TWz/2+¢, Vp=-Wz,
pe =2 (W(Ar +b) ~(Gr+h)) —2TWz/2+ 6.

Then (43) becomes
20(zT[W (Ar + b) — (Gr + h)] - 2TWz/2 + ¢)

+(=2TWz/2+ )6 + 1 — 202TW (Ar + b+ (W + A)2)

+(Ar + b+ (W + A)2) - [(=2TW2/2 + ¢) V8 + V]

Suppose
N
ot,z) = Y 3B (8)(2®*), (44)
k=0
N-2
o(t,z) =y W (1)(z%F), 45)
k=0 ’

where 28 = z ® .- - ® z(k factors), and &) (¢), etc. are
symmetric (0, k)-tensors. Now (44) becomes simply a poly-
nomial of order N in z, with coefficients determined by (23)
and (45), namely

N-2
2 > 0BT (W(Ar +b) -
k=0
(Gr +h)) - zTWz/2 + 43)
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N-=2 N
H2TW2[2+ ) D OB (%) 4 5 () (,8k)
k=0 k=0

N2
+ (Ar+b+ (W + A)z) - (2 > 0B (k) (~wyz)
k=0

+ Y kW (@ 2k0) 4 (2 TWz/2 + ¢)
k=1

N-2
Z kO (. @ z®(k—1))>

k=1

Terms of order IV in z:

—-oN-2 g — 0WV-2 g w/2 + $*®)
-2 @ (W2WA) +...

According to (12),
20p: +pbi + o1 + (Axz +b— Vp) - (26Vp +pV + Vi)

=Vp-& - (ATVp+ Gz +h) - ¢
+(Az +b—Vp) - (Vp- V)¢,

and we can then take

N-1

&tx) = ) EW()(=®4)

k-0

and solve for the coefficients.

5 Conclusions

We have shown how Lie transformations applied to the in-
formation state for certain nonlinear robust control prob-
lems can reduce them solvable by ODEs. The theory and
computations suggest that in some cases this is similar to a
“gauge” transformation by the cost integrand. The resuits
are more general however. They suggest that the cost inte-
grand “weights” or “focuses” the sufficient statistic needed
for control.
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