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a b s t r a c t

We address the consensus-based distributed linear filtering problem, where a discrete time, linear
stochastic process is observed by a network of sensors.We assume that the consensus weights are known
and we first provide sufficient conditions under which the stochastic process is detectable, i.e. for a
specific choice of consensus weights there exists a set of filtering gains such that the dynamics of the
estimation errors (without noise) is asymptotically stable. Next, we develop a distributed, sub-optimal
filtering scheme based onminimizing an upper bound on a quadratic filtering cost. In the stationary case,
we provide sufficient conditions under which this scheme converges; conditions expressed in terms of
the convergence properties of a set of coupled Riccati equations.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Sensor networks have broad applications in surveillance
and monitoring of an environment, collaborative processing
of information, and gathering scientific data from spatially
distributed sources for environmental modeling and protection. A
fundamental problem in sensor networks is developing distributed
algorithms for state estimation of a process of interest. Generically,
a process is observed by a group of (mobile) sensors organized
in a network. The goal of each sensor is to compute accurate
state estimates. The distributed filtering (estimation) problem
has received a lot of attention during the past thirty years.
An important contribution was made by Borkar and Varaiya
(1982), who address the distributed estimation problem of a
random variable by a group of sensors. The particularity of
their formulation is that both estimates and measurements
are shared among neighboring sensors. The authors show that
if the sensors form a communication ring, through which
information is exchanged infinitely often, then the estimates
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converge asymptotically to the same value, i.e. they asymptotically
agree. An extension of the results in Ref. Borkar and Varaiya
(1982) is given in Teneketzis and Varaiya (1988). The recent
technological advances in mobile sensor networks have re-ignited
the interest for the distributed estimation problem. Most papers
focusing on distributed estimation propose different mechanisms
for combining the Kalman filter with a consensus filter in order
to ensure that the estimates asymptotically converge to the
same value, schemes which will be henceforth called consensus-
based distributed filtering (estimation) algorithms. In Saber (2005,
2007), several algorithms based on the idea mentioned above
are introduced. In Carli, Chiuso, Schenato, and Zampieri (2008),
the authors study the interaction between the consensus matrix,
the number of messages exchanged per sampling time, and the
Kalman gain for scalar systems. It is shown that optimizing the
consensusmatrix for fastest convergence and using the centralized
optimal gain is not necessarily the optimal strategy if the number
of exchanged messages per sampling time is small. In Speranzon,
Fischione, Johansson, and Sangiovanni-Vincentelli (2008), the
weights are adaptively updated to minimize the variance of
the estimation error. Both the estimation and the parameter
optimization are performed in a distributed manner. The authors
derive an upper bound of the error variance in each node which
decreases with the number of neighboring nodes.

In this note we address the consensus-based distributed linear
filtering problem as well. We assume that each agent updates
its (local) estimate in two steps. In the first step, an update
is produced using a Luenberger observer type of filter. In the
second step, called consensus step, every sensor computes a convex
combination between its local update and the updates received
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from the neighboring sensors. Our focus is not on designing the
consensus weights, but on designing the filter gains. For given
consensus weights, we will first give sufficient conditions for the
existence of filter gains such that the dynamics of the estimation
errors (without noise) is asymptotically stable. These sufficient
conditions are also expressible in terms of the feasibility of a
set of linear matrix inequalities. Next, we present a distributed
(in the sense that each sensor uses only information available
within its neighborhood), sub-optimal filtering algorithm, valid
for time varying topologies as well, resulting from minimizing
an upper bound on a quadratic cost expressed in terms of the
covariance matrices of the estimation errors. In the case where the
matrices defining the stochastic process and the consensusweights
are time invariant, we present sufficient conditions such that the
aforementioned distributed algorithm produces filter gains which
converge and ensure the stability of the dynamics of the covariance
matrices of the estimation errors.
Paper structure: In Section 2 we describe the problems addressed
in this paper. Section 3 introduces the sufficient conditions for
detectability under the consensus-based linear filtering scheme
together with a test expressed in terms of the feasibility of a
set of linear matrix inequalities. In Section 4 we present a sub-
optimal distributed consensus based linear filtering scheme with
quantifiable performance.
Notations and abbreviations: We represent the property of positive
definiteness (semi-definiteness) of a symmetric matrix A by A ≻
0 (A ≽ 0). By convention, we say that a symmetric matrix A is
negative definite (semi-definite) if−A ≻ 0 (−A ≽ 0) and we denote
this by A ≺ 0 (A ≼ 0). By A ≻ B we understand that A − B is
positive definite. We use the abbreviations CBDLF for consensus-
based linear filter(ing).

Remark 1. Given a positive integer N , a set of vectors {xi}Ni=1, a set
of non-negative scalars {pi}Ni=1 summing up to one and a positive
definite matrix Q , the following holds

N
i=1

pixi

′
Q


N
i=1

pixi


≤

N
i=1

pix′iQxi.

Remark 2. Given a positive integer N , a set of vectors {xi}Ni=1, a
set of matrices {Ai}

N
i=1 and a set of non-negative scalars {pi}Ni=1

summing up to one, the following holds
N
i=1

piAixi


N
i=1

piAixi

′
≼

N
i=1

piAixix′iA
′

i.

2. Problem formulation

We consider a stochastic process modeled by a discrete-time
linear dynamic equation

x(k+ 1) = A(k)x(k)+ w(k), x(0) = x0, (1)

where x(k) ∈ Rn is the state vector and w(k) ∈ Rn is a
driving noise, assumed Gaussian with zero mean and (possibly
time varying) covariance matrix Σw(k). The initial condition x0 is
assumed to be Gaussian with mean µ0 and covariance matrix Σ0.
The state of the process is observed by a network of N sensors
indexed by i, whose sensing models are given by

yi(k) = Ci(k)x(k)+ vi(k), i = 1, . . . ,N, (2)

where yi(k) ∈ Rri is the observation made by sensor i and vi(k) ∈
Rri is the measurement noise, assumed Gaussian with zero mean
and (possibly time varying) covariance matrix Σvi(k). We assume
that the matrices {Σvi(k)}
N
i=1 and Σw(k) are positive definite for

k ≥ 0 and that the initial state x0, the noises vi(k) and w(k) are
independent for all k ≥ 0.

The set of sensors form a communication network whose
topology is modeled by a directed graph that describes the
information exchanged among agents. The goal of the agents is to
(locally) compute estimates of the state of the process (1).

Let x̂i(k) denote the state estimate computed by sensor i at time
k and let ϵi(k) denote the estimation error, i.e. ϵi(k) , x(k)− x̂i(k).
The covariancematrix of the estimation error of sensor i is denoted
by Σi(k) , E[ϵi(k)ϵi(k)′], with Σi(0) = Σ0.

The sensors update their estimates in two steps. In the first step,
an intermediate estimate, denoted by ϕi(k), is produced using a
Luenberger observer filter

ϕi(k) = A(k)x̂i(k)+ Li(k)(yi(k)− Ci(k)x̂i(k)), i = 1, . . . ,N, (3)

where Li(k) is the filter gain.
In the second step, the new state estimate of sensor i is

generated by a convex combination between ϕi(k) and all other
intermediate estimates within its communication neighborhood,
i.e.

x̂i(k+ 1) =
N
j=1

pij(k)ϕj(k), i = 1, . . . ,N, (4)

where pij(k) are non-negative scalars summing up to one
(
N

j=1 pij(k) = 1), and pij(k) = 0 if no link from j to i exists at
time k. Having pij(k) dependent on time accounts for a possibly
time varying communication topology.

Remark 3. For notational simplicity, in what follows we will
ignore the time dependence of the parameters of themodel, i.e. the
matrices A(k), Ci(k), Σw(k), Σvi(k) and the probabilities pij(k).

Combining (3) and (4) we obtain the dynamic equations for the
consensus based distributed filter:

x̂i(k+ 1) =
N
j=1

pij

Ax̂j(k)+ Lj(k)


yj(k)− Cjx̂j(k)


, (5)

for i = 1, . . . ,N . From (5) the estimation errors evolve according
to

ϵi(k+ 1) =
N
j=1

pij

A− Lj(k)Cj


ϵj(k)+ w(k)− Lj(k)vj(k)


. (6)

Definition 4 (Distributed Detectability). Let the system (1)–(2)
togetherwith p(k) , {pij(k)}Ni,j=1 be time invariant.We say that the
linear process (1) is detectable using the CBDLF scheme (5), if there
exists a set ofmatrices L , {Li}Ni=1 such that the system (6), without
the driving and measurement noises, is asymptotically stable, i.e.
limk→∞ ϵi(k) = 0.

We introduce the following finite horizon quadratic filtering
cost function

JK (L(K)) =

K
k=0

N
i=1

E[∥ϵi(k)∥2], (7)

where by L(K) we understand the set of matrices L(K) ,
{Li(k), k = 0, . . . , K − 1}Ni=1. The optimal filtering gains represent
the solution of the following optimization problem

Lo(K) = argmin
L(K)

JK (L(K)). (8)
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In the case the system (1)–(2) and the probabilities p(k) ,
{pij(k)}Ni,j=1 are time invariant, we can also define the infinite
horizon filtering cost function

J∞(L) = lim
K→∞

1
K
JK (L) = lim

k→∞

N
i=1

E[∥ϵi(k)∥2], (9)

where L , {Li}Ni=1 is the set of steady state filtering gains. By solving
the optimization problem

Lo = argmin
L

J∞(L), (10)

we obtain the optimal steady-state filter gains.
In the following sections we will address the following

problems.

Problem 5 (Detectability Conditions). Under the above setup, we
want to find conditions under which the system (1) is detectable
in the sense of Definition 4.

Problem 6 (Sub-Optimal Scheme for Consensus Based Distributed
Filtering). Ideally,wewould like to obtain the optimal filter gains by
solving the optimization problems (8) and (10), respectively. Due
to the complexity and intractability of these problems, we will not
provide the optimal filtering gains but rather focus on providing a
sub-optimal scheme with quantifiable performance.

3. Distributed detectability

In this section we give sufficient conditions under which
the (time-invariant) system (1) is detectable in the sense of
Definition 4 and provide a detectability test in terms of the
feasibility of a set of LMIs. We start with a result that motivates
the intuition behind combining the consensus step with the
Luenberger observer for performing distributed filtering.

Proposition 7. Consider the linear time-invariant dynamics (1)–(2).
Assume that in the CBDLF scheme (5), we have pij = 1

N and that
x̂i(0) = x̂0, for all i, j = 1, . . . ,N. If the pair (A, C) is detectable,
where C ′ = [C ′1, . . . , C

′

N ]
′, then the system (1)–(2) is detectable as

well, in the sense of Definition 4.

Proof. Under the assumption that pij = 1
N and x̂i = x0 for all

i, j = 1, . . . ,N , it follows that the estimation errors respect the
dynamics

ϵ(k+ 1) =
1
N

N
i=1

(A− LiCi)ϵ(k) =


A−

1
N
LC


ϵ(k), (11)

where L = [L1, L2, . . . , LN ].
Since the pair (A, C) is detectable, there exists a matrix L∗ =

[L∗1, L
∗

2, . . . , L
∗

N ] such that A− 1
N L
∗C has all eigenvalues within the

unit circle and therefore the dynamics (11) is asymptotically stable,
which implies that (1) is detectable in the sense of Definition 4. �

The previous proposition tells us that if we achieve (average)
consensus between the state estimates at each time instant, and
if the pair (A, C) is detectable (in the classical sense), then the
system (1) is detectable in the sense of Definition 4. However,
achieving consensus at each time instant can be costly in both
time and numerical complexity. In addition, it turns out that
using consensus for collaboration does not guarantee stability
of the estimation errors, even in the case where the estimation
errors,without collaboration, are stable. For example, in the system
(1)–(2), let

A =


1 1.5
0.2 2


, C1 =


1 0
0 1


, C2 =


1 2
2 1


.

Two locally stabilizing filtering gains are

L1 =


1 −0.5
0.2 1.5


, L2 =


0.8333 −0.1667
1.9333 −1.8667


.

It can be checked that both A − L1C1 and A − L2C2 have stable
eigenvalues, and therefore the system is detectable when there is
no collaboration. However, if the two sensors do collaborate, using
as consensus weights p11 = p12 = p21 = p22 = 0.5, it can be
checked that (6) (without the noise) is unstable. Therefore, it is
of interest to derive (testable) conditions under which the CBDLF
produces stable estimation errors (in the mean square sense).

Lemma 8 (Sufficient Conditions for Distributed Detectability). If
there exists a set of symmetric, positive definite matrices {Qi}

N
i=1 and

a set of matrices {Li}Ni=1 such that

Qi =

N
j=1

pji(A− LjCj)
′Qj(A− LjCj)+ Si, i = 1, . . . ,N, (12)

for some positive definite matrices {Si}Ni=1, then the system (1) is
detectable in the sense of Definition 4.

Proof. The dynamics of the estimation errorwithout noise is given
by

ϵi(k+ 1) =
N
j=1

pij(A− LjCj)ϵj(k), i = 1, . . . ,N. (13)

In order to prove the stated result we have to show that (13) is
asymptotically stable. We define the Lyapunov function

V (k) =
N
i

ϵi(k)′Qiϵi(k),

and our goal is to show that V (k+ 1)− V (k) < 0 for all k ≥ 0. The
Lyapunov difference is given by

V (k+ 1)− V (k) =

N
i=1

 N
j=1

pij(A− LjCj)ϵj(k)

′Qi

 N
j=1

pij(A− LjCj)ϵj(k)

− ϵi(k)′Qiϵi(k)

≤

N
i=1

 N
j=1

pijϵj(k)′(A− LjCj)
′Qi(A− LjCj)ϵj(k)

− ϵi(k)′Qiϵi(k),

where the inequality followed from Remark 1. By changing the
summation order we can further write

V (k+ 1)− V (k) ≤
N
i=1

ϵi(k)′


N
j=1

pji(A− LjCj)
′Qj ×

(A− LjCj)− Qi


ϵi(k) ≤ −

N
i=1

ϵi(k)′Siϵi(k),

where the last inequality follows from (12). From the fact that
{Sj}Nj=1 are positive definite matrices, we get

V (k+ 1)− V (k) < 0,

which implies that (13) is asymptotically stable. �

The following result relates the existence of the sets of matrices
{Qi}

N
i=1 and {Li}Ni=1 such that (12) is satisfied, with the feasibility of

a set of linear matrix inequalities (LMIs).

Proposition 9 (DistributedDetectability Test). The linear system (1)is
detectable in the sense of Definition 4 if the linear matrix inequal-
ities in Box I, in the variables {Xi}

N
i=1 and {Yi}

N
i=1, are feasible, for
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4)

Xi

√
p1i(A′X1 − C ′1Y

′

1) · · ·
√
pNi(A′XN − C ′NY

′

N)
√
p1i(X1A− Y1C1) X1 · · · 0

...
...

. . .
...

√
pNi(XNA− YNCN) 0 · · · XN

 ≻ 0, (1

Box I.
i = 1, . . . ,N and where {Xi}
N
i=1 are symmetric. Moreover, a sta-

ble CBDLF is obtained by choosing the filter gains as Li = X−1i Yi for
i = 1, . . . ,N.
Proof. First we note that, by the Schur complement lemma, the
linear matrix inequalities (14) are feasible if and only if there exist
a set a symmetricmatrices {Xi}

N
i=1 and a set ofmatrices {Yi}

N
i=1, such

that

Xi −

N
j=1

pji(XjA− YjCj)
′X−1j (XjA− YjCj) ≻ 0, Xi ≻ 0

for all i = 1, . . . ,N . We further have that,

Xi −

N
j=1

pji(A− X−1j YjCj)
′Xj(XjA− X−1j YjCj) ≻ 0, Xi ≻ 0.

By defining Li , X−1i Yi, it follows that

Xi −

N
j=1

pji(A− LjCj)
′Xj(A− LjCj) ≻ 0, Xi ≻ 0.

Therefore, if the matrix inequalities (14) are feasible, there exists
a set of positive definite matrices {Xi}

N
i=1 and a set of positive

matrices {Si}Ni=1, such that

Xi =

N
j=1

pji(A− LjCj)
′Xj(A− LjCj)+ Si.

By Lemma 8, it follows that the linear dynamics (6), without
noise, is asymptotically stable, and therefore the system (1)–(2) is
detectable in the sense of Definition 4. �

4. Sub-optimal consensus-based distributed linear filtering

Obtaining the closed form solution of the optimization problem
(8) is a challenging problem, which is in the same spirit as the
decentralized optimal control problem. In this sectionweprovide a
sub-optimal algorithm for computing the filter gains of the CBDLF
with quantifiable performance, i.e. we compute a set of filtering
gains which guarantee a certain level of performance with respect
to the quadratic cost (7).

4.1. Finite horizon sub-optimal consensus-based distributed linear
filtering

The sub-optimal scheme for computing the CBDLF gains results
fromminimizing an upper bound of the quadratic filtering cost (7).
The following proposition gives upper-bounds for the covariance
matrices of the estimation errors.

Lemma 10. Consider the following coupled difference equations

Qi(k+ 1) =
N
i=1

pij


A− Lj(k)Cj


Qj(k)


A− Lj(k)Cj

′
+

Lj(k)ΣvjLj(k)
′


+Σw, (15)

with Qi(0) = Σi(0), for i = 1, . . . ,N. The following inequality holds

Σi(k) ≼ Qi(k), (16)
for i = 1, . . . ,N and for all k ≥ 0, where Σi(k) is the covariance
matrix of the estimation error of sensor i.

Proof. Using (6), the matrix Σi(k+ 1) can be explicitly written as

Σi(k+ 1) = E


N
j=1

pij

A− Lj(k)Cj


ϵj(k)+ w(k)−

N
j=1

pijLj(k)vj(k)

′ N
j=1

pij

A− Lj(k)Cj


×

ϵj(k)+ w(k)−
N
j=1

pij(k)Lj(k)vj(k)


.

Using the fact that the noises w(k) and vi(k) have zero mean, and
they are independent with respect to themselves and x0, for every
time instant, we can further write

Σi(k+ 1) =

E


N
j=1

pij

A− Lj(k)Cj


ϵj(k)

′ N
j=1

pij

A− Lj(k)Cj


ϵj(k)



+ E


N
j=1

pijLj(k)vj(k)

′ N
j=1

pijLj(k)vj(k)


+Σw.

By Remark 2, it follows that

E


N
j=1

pij

A− Lj(k)Cj


ϵj(k)

′ N
j=1

pij

A− Lj(k)Cj


ϵj(k)



≼

N
j=1

pij

A− Lj(k)Cj


Σj(k)


A− Lj(k)Cj

′
and

E


N
j=1

pijLj(k)vj(k)

′ N
j=1

pijLj(k)vj(k)



≼

N
j=1

pijLj(k)ΣvjLj(k)
′, i = 1, . . . ,N.

From the previous two expressions, we obtain that

Σi(k+ 1) ≼
N
j=1

pij

A− Lj(k)Cj


Σj(k)


A− Lj(k)Cj

′
+

N
j=1

pijLj(k)ΣvjLj(k)+Σw.

We prove (16) by induction. Assume that Σi(k) ≼ Qi(k) for all
i = 1, . . . ,N . Then

(A− Li(k)Ci) Σi(k) (A− Li(k)Ci)
′
≼ (A− Li(k)Ci)Qi(k) (A− Li(k)Ci)

′ ,

and

Li(k)Σi(k)Li(k)′ ≼ Li(k)Qi(k)Li(k)′, i = 1, . . . ,N
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and therefore

Σi(k+ 1) ≼ Qi(k+ 1), i = 1, . . . ,N. �

Defining the finite horizon quadratic cost function

J̄K (L(K)) =

K
k=1

N
i=1

tr(Qi(k)), (17)

the next corollary follows immediately.

Corollary 11. The following inequalities hold

JK (L(K)) ≤ J̄K (L(K)), (18)

and

lim sup
K→∞

1
K
JK (L) ≤ lim sup

K→∞

1
K
J̄K (L). (19)

Proof. Follows immediately from Lemma 10. �

In the previous corollary we obtained an upper bound on
the filtering cost function. Our sub-optimal consensus based
distributed filtering schemewill result fromminimizing this upper
bound in terms of the filtering gains {Li(k)}Ni=1:

min
L(K)

J̄K (L(K)). (20)

Proposition 12. The optimal solution for the optimization problem
(20) is

L∗i (k) = AQ ∗i (k)C ′i

Σvi + CiQ ∗i (k)C ′i

−1
, (21)

and the optimal value is given by

J̄∗K (L∗(K)) =

K
k=1

N
i=1

tr(Q ∗i (k)),

where Q ∗i (k) is computed using

Q ∗i (k+ 1) =
N
j=1

pij


AQ ∗j (k)A′ +Σw − AQ ∗j (k)C ′j ×


Σvj + CjQ ∗j (k)C ′j

−1 CjQ ∗j (k)A′

, (22)

with Q ∗i (0) = Σi(0) and for i = 1, . . . ,N.

Proof. Let J̄K (L(K)) be the cost function when an arbitrary set of
filtering gains L(K) , {Li(k), k = 0, . . . , K − 1}Ni=1 is used in (15).
We will show that J̄∗K (L∗(K)) ≤ J̄K (L(K)), which in turn will show
that L∗(K) , {Li(k)∗, k = 0, . . . , K − 1}Ni=1 is the optimal solution
of the optimization problem (20). Let {Q ∗i (k)}Ni=1 and {Qi(k)}Ni=1
be the matrices obtained when L∗(K) and L(K), respectively are
substituted in (15). In what follows wewill show by induction that
Q ∗i (k) ≼ Qi(k) for k ≥ 0 and i = 1, . . . ,N , which basically proves
that J̄∗K (L∗(K)) ≤ J̄K (L(K)), for any L(K). For simplifying the proof,
we will omit in what follows the time index for somematrices and
for the consensus weights.

Substituting {L∗i (k), k ≥ 0}Ni=1 in (15), after some matrix
manipulations we get

Q ∗i (k+ 1) =
N
j=1

pij

AQ ∗j (k)A′ +Σw − AQ ∗j (k)C ′j×

(Σvj + CjQ ∗j (k)C ′j )
−1CjQ ∗j (k)A′


,

Q ∗i (0) = Σi(0), i = 1, . . . ,N.
We can derive the following matrix identity:

(A− LiCi)Qi(Ai − LiCi)
′
+ LiΣviL

′

i

= (A− L∗i Ci)Qi(Ai − L∗i Ci)
′
+ L∗i ΣviL

∗

i
′
+ (Li − L∗i )×

(Σvi + CiQiC ′i )(Li − L∗i )
′. (23)

Assume that Q ∗i (k) ≼ Qi(k) for i = 1, . . . ,N . Using identity (23),
the dynamics of Qi(k)∗ becomes

Q ∗i (k+ 1) =
N
j=1

pij

(A− Lj(k)Cj)Qj(k)(A− Lj(k)Cj)

′Lj(k)×

ΣvjLj(k)
′
− (Lj(k)− L∗j (k))(Σvj + CjQj(k)C ′j )×

(Lj(k)− L∗j (k))
′
+Σw


.

The difference Q ∗i (k+ 1)− Qi(k+ 1) can be written as

Qi(k+ 1)∗ − Qi(k+ 1)

=

N
j=1

pij

(A− Lj(k)Cj)(Q ∗j (k)− Qj(k))×

(A− Lj(k)Cj)
′
− (Lj(k)− L∗j (k))(Σvj + CjQj(k)C ′j )×

(Lj(k)− L∗j (k))
′

.

Since Σvi + CiQi(k)C ′i is positive definite for all k ≥ 0 and i =
1, . . . ,N , and since we assumed that Q ∗i (k) ≼ Qi(k), it follows that
Q ∗i (k+ 1) ≼ Qi(k+ 1). Hence we obtained that

J̄∗K (L∗(K)) ≤ J̄K (L(K)),

for any set of filtering gains L(K) = {Li(k), k = 0, . . . , K − 1}Ni=1,
which concludes the proof. �

Since Proposition 12 holds for arbitrarily large values of K , we
summarize in the following algorithm the sub-optimal CBDLF
scheme.

Algorithm 1
1. Initialization: x̂i(0) = µ0,Qi(0) = Σ0

2.while new data exists
3. Compute the filter gains

Li ← AQiC ′i (Σvi + CiQiC ′i )
−1

4. Update the state estimates:
ϕi ← Ax̂i + Li(yi − Cix̂i)
x̂i ←


j pijϕj

5. Update the matrices Qi:
Qi ←

N
j=1 pij


(A− LjCj)Qj(A− LjCj)

′
+ LjΣvjL

′

j


+Σw

Note that the above algorithm does accommodate time varying
systems and time varying topologies since the previous results
do hold in the case where the matrices of the system and the
probabilities pij(k) are time varying, and can be implemented in a
distributedmanner, i.e., the agents use only information from their
neighbors.

4.2. Infinite horizon consensus based distributed filtering

We now assume that the matrices A(k), {Ci(k)}Ni=1, {Σvi(k)}
N
i=1

and Σw(k) and the weights {pij(k)Ni,j=1} are time invariant. We
are interested in finding out under what conditions Algorithm
1 converges and if the filtering gains are stabilizing. From the
previous section we note that the optimal infinite horizon cost can
be written as

J̄∗
∞
= lim

k→∞

N
i=1

tr(Q ∗i (k)),
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where the dynamics of Qi(k)∗ is given by

Q ∗i (k+ 1) =
N
j=1

pij

AQ ∗j (k)A′ +Σw − AQ ∗j (k)C ′j

×

Σvj + CjQ ∗j (k)C ′j

−1 CjQ ∗j (k)A′

, (24)

and the optimal filtering gains are given by

L∗i (k) = AQ ∗i (k)C ′i

Σvi + CiQ ∗i (k)C ′i

−1
,

for i = 1, . . . ,N . Assuming that (24), converges, the optimal value
of the cost J̄∗

∞
is given by

J̄∗
∞
=

N
i=1

tr(Q̄i),

where {Q̄i}
N
i=1 satisfy

Q̄i =

N
j=1

pij

AQ̄jA′ +Σw − AQ̄jC ′j (Σvj + CjQ̄jC ′j )

−1CjQ̄jA′

. (25)

Sufficient conditions under which there exists a unique solution
of (25) are provided by Proposition 16 (in the Appendix section),
which says that if (p, L,A) is detectable and (A, Σ

1/2
v , p) is

stabilizable in the sense of Definitions 13 and 14, respectively, then
there is a unique solution of (25) and limk→∞ Q ∗i (k) = Q̄i.

Appendix. Convergence of discrete-time coupled Riccati dy-
namic equations

Given a positive integer N , a sequence of positive numbers p =
{pij}Ni,j=1 and a set ofmatrices F = {Fi}Ni=1, we consider the following
matrix difference equations

Wi(k+ 1) =
N
j=1

pijFjWj(k)F ′j , Wi(0) = W 0
i ,

i = 1, . . . ,N. (A.1)

Related to the above dynamic equations, we introduce the
following stabilizability and detectability definitions.

Definition 13 (Costa & Fragoso, 1995). Given a set of matrices C =
{Ci}

N
i=1, we say that (p, L,A) is detectable if there exists a set of

matrices L = {Li}Ni=1 such that the dynamics (A.1) is asymptotically
stable, where Fi = Ai − LiCi, for i = 1, . . . ,N .

Definition 14 (Costa & Fragoso, 1995). Given a set of matrices C =
{Ci}

N
i=1, we say that (A, L, p) is stabilizable, if there exists a set of

matrices L = {Li}Ni=1 such that the dynamics (A.1) is asymptotically
stable, where Fi = Ai − CiLi, for i = 1, . . . ,N .

Remark 15. In the same spirit of Proposition 9, numerical tests
for checking the detectability and stabilizability properties, in
the sense of the above definitions, can be expressed in terms of
the feasibility of a set of LMIs. For more details, the interested
reader can consult (Costa & Fragoso, 1993, 1995; Costa, Fragoso,
& Marques, 2005).

Consider the following coupled Riccati difference equations

Qi(k+ 1) =
N
i=1

pij

AjQj(k)A′j − AjQj(k)C ′j (CjQj(k)C ′j

+Σvj)
−1CjQj(k)A′j +Σw


, Qi(0) = Q 0

i ≻ 0 (A.2)

for i = 1, . . . ,N , where {Σvi}
N
i=1 and Σw are symmetric positive

definite matrices.
Proposition 16. Let Σ
1/2
v = {Σ

1/2
vi }

N
i=1, where Σvi = Σ

1/2
vi

′

Σ
1/2
vi .

Suppose that (p, C,A) is detectable and that (A, Σ
1/2
v , p) is

stabilizable in the sense of Definitions 13 and 14, respectively. Then
there exists a unique set of symmetric positive definite matrices Q̄ =
{Q̄i}

N
i=1 satisfying

Q̄i =

N
i=1

pij

AjQ̄jA′j − AjQ̄jC ′j (CjQ̄jC ′j +Σvj)

−1CjQ̄jA′j +Σw


, (A.3)

for i = 1, . . . ,N. Moreover, for any initial conditions Q 0
i ≻ 0, we

have that limk→∞ Qi(k) = Q̄i.

Proof. The proof can be mimicked after the proof of Theorem 1 of
Costa and Fragoso (1995). Compared to our case, in Theorem 1 of
Costa and Fragoso (1995), scalar terms, taking values between zero
and one, multiply thematricesΣvj in (A.3). In our case, these scalar
terms take the value one, and therefore the result follows. �
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