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In this paper, we discuss a social behavior model in cellular automata. This model
came as a result of research in dynamical structures of networks as these were con-
structed out of game theory and statistical physics. We define it a dynamical system
on the planar grid and study it’s behavior by varying it’s parameters under different
initial configurations.

1 Introduction

Cellular automata are perhaps the simplest mathematical representations of
complex dynamical systems and networks. They are spatially and temporally
discrete, deterministic models characterized by local interaction and an inher-
ently parallel form of evolution. Although the history of cellular can be traced
back to 1948, with the work of J. L. von Neumann [5], the widespread pop-
ularization of these systems was achieved in the 1980s through the work of S.
Wolfram. Based on computer experiments, he gave a full classification of cel-
lular automata as mathematical models for self-organising statistical systems
(collected papers in [11]) that can get related to all scientific fields.

In this paper, we will introduce a new model (we shall call it the F-rule) which
came as a result of comprehensive research in dynamical structures of networks
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as these were constructed out of game theory and statistical physics. The F-rule
is an outgrowth of the Prisoner’s Dilemma game [6]. A detailed numerical inves-
tigation on a Game Theory perspective of this model was first done in [9]. Here,
the model is redefined as a cellular automaton whose dynamics are discussed.
It is implemented on the plane and initiates from simple or disordered initial
configurations. It’s behaviour is observed and classified as some of it’s parame-
ters vary. Thorough analysis and discussion, on the amount of complexity this
automaton produces in space and time, is carried out. Some preliminary results
of this approach are presented in [2].

1.1 Notations and Definitions

The State Space We define a Euclidean space £ : N, where N is the set of
natural numbers, as the discrete state space. This is the lattice of d-dimensional
sites upon which the automata live, and their dynamics unfold. Every individual
site can be defined by a (1 x d) vector x. Here the d = 2 case is considered.

Neighbourhood of a cell Let us now define the regime of the local interac-
tions. Every cell changes it’s state after communicating with it’s neighbouring
cells. We note by N (x,r) the range-r neighbourhood of x,without x itself, and
by N (x,r) the range-r neighbourhood, including x, i.e.

N,r)={yeL:0<|x—yl|lew <7} (1)
Nx,r)={y € L:0<[|x —y|le <7} (2)

where ||+ ||oo : N — N is the infinity norm. 7 = 1 means that the neighbourhood
of a given centre site x, is the set of sites which are immediately adjacent to x
(see Fig. 1). This is called the Moore’s scheme [12].

Local Value Space Each cell x € L can assume a finite number of distinct
values:

ox;t) € ¥={0,1,2,...,k—1} xN (3)

where o(x;t) is the value of x at time ¢ € N. In our paper, we set k = 2. The
set of states at time t can be either 0 = 0 or ¢ = 1. Here, a black-colored site
means a site in 0 state, and a white-colored site is in state 1.
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Boundary Conditions Various types of boundary conditions have been pro-
posed in the literature (see [11], [3]).Here we consider exclusively periodic bound-
aries.

Initial Conditions Two types of initial configurations are considered. The
simple seeds. The system starts from a pattern full of cells at state 1 (white)
except one single cell that is in state 0 (black). The growth of cellular automata
from such setup should provide models for a variety of physical and other phe-
nomena, such as symmetric growths like crystal or snow-flake growth [11],[7].
The random seeds. The system starts from a disordered configuration where
each cell is at state 1 or 0 with equal probability p = 1/2. This setup reflects
the notion of arbitrary initial conditions as it is known in the dynamical system
theory and helps us observe the model’s self-organization properties as well as
the collective behaviour of cells.

Behavioural Classes Different initial configurations give rise to patterns
which differ in the details of their appearance the gross overall characteristics
of a given pattern appear unchanged: each particular automaton rule yields its
own unique recognizable space-time pattern. It is generally believed that all au-
tomata rules evolving from disordered initial states fall into one of the following
four basic qualitative behavioural classes [11]:

cl : All sites eventually attain the same value.

c2 : Simple stable states or periodic and separated structures emerge.
c3 : Chaotic, non-periodic patterns are generated.

c4 : Complex, localized propagating structures are formed.

In our simulations, the model appears to exhibit class ¢1, ¢2 and ¢3 behaviour.
Class c4 was not observed.

The F-Rule The update rule is defined as follows: To each x € L, we assign
a cost function V(x,N(x);t) : X2 x N - W = {a,b,¢,d} C R such that:

a if o(x;t) =0(y;t)=0
Vix,yit) = b if o(x;t) =0,0(y;t) =1 @)
e c if o(x;t) =1,0(y;t) =0
d if o(x;t)=0(y;t)=1

These costs reflect the tension of local interactions between individual cells. So,
the initial step of our rule is that for a fixed value o(x;t) and for every o(y;t) of
y € N(x) we adjust a number w € W to x. Finally, for a fixed arrangement
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of states in N (x), site x receives an overall cost:

Vixit)= Y V(xyii)

YEN (%)
<1a<x;t>>{ > [a(la(y;t»wa(y;t)}} %)
yEN (%)
+olx; t){ > [et—o(yit) +do(y:n)] }
YEN (%)

Finally, Vx € £,z € N (x) the update rule is defined to be:

o(x;t+1) = Flo(z:t)) = oz t)s.. {z € N(x), V(1) = max {V(z;t)}}
zeN (x
In case there are more than one neighbours with same maximum ) but in dif-
ferent state we avoid the conflict by setting x to ’follow’ the white neighbour.
We note by F4p,c,a) the F — rule for fixed parameters.

Properties and Remarks It can be easily shown that the rule is invariant
under additivity, positive multiplication. It also invariant under the inverse of
opposite costs, i.e Fqpc.d) = L£1D2F(d,c,b,q)- As for the nature of the model, the
F-rule is completely deterministic. The a and d costs reflect the local interaction
among cells in the same state (we will call them equal-state costs), while the b
and ¢ costs reflect the local interaction among cells with opposite states (cross-
state costs). In fact, the local interactions are within a range r = 2 rather than
r = 1. The decision of o(x;t+ 1) depends on the values of V(z € N (x);t), but
every cost V is, a result of local interaction between the neighbours of the centre
site and their own neighbours. An analytical approach for solving this model
is extremely difficult. For this reason, the rule is simulated and every possible
combination of the pay-off parameters a, b, c and d is examined. In the simple
seed initial conditions we will work as follows: At first, we assume a < d. Then
additivity invariance implies that we can only consider positive values of the
parameters. Additionally, from the multiplication invariance also implies that
we can set a =0, d =1 and let b, ¢ free. Similarly, then we consider the a > d
Varying the cross-interaction parameters we will see how differently the system
behaves and how, for some critical values, the system alters from “regular” to
“irregular” behaviour. In the random set-ups we will work in a similar manner.

2 The 2-d F-rule

2.1 Evolution from Simple Seeds

Given the initial setup, the evolution of our automaton depends on the relative
values of the b and ¢ parameters as they were set by the V-costs. We moves on
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from [2] to further examine the effect of these pay-off values. In that preliminary
paper, we took a few analytical steps in order to sketch the mechanism of the
rule as a function of the pay-offs. Only the case a < d was examined and led to
a phase-transition diagram among regular and irregular patterns. Here together
with @ > d we also examine the case a < d. For the simple-seed setup, nine
different schemes are identified (Figs. 2,3):

)

Figure 2: The case a = 0,d = 1. (a)A parameter window of the (b, c)-plane, were
we have sketched a rough phase transition. While regions P0,P1,PT1,P2 P3 and B
show regular dynamics, region C is rich in irregular behavior. (b)The phase transi-
tion focused on the C region (1.6 < b < 2.9). See text for explanation. The linear
boundaries were numerically estimated. The calculation’s precision is 1073,
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Figure 3: The case a = 1,d = 0. (a)A window of the (b — ¢) parameter subspace as it
is numerically calculated. (b) Here a magnification of the rectangular area of Fig. 4(a).
All regions have been assigned to a symbol characterizing the generated patterns. See
text for more.

PO : The system directly (i.e. without transient states) evolves to homoge-
neous state where all cells attain the same value (i.e. o = 1).
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Figure 4: Patterns of regular behavior of the F-rule. When a < d, PO, P1, PT1,
P2, P3 and B appear, while in ¢ > d PO, PT0, P2, PT4 and B appear.
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PTO : The system, after two transient steps, evolves to the homogeneous state
oc=1

P1 : The system directly evolves to periodic behavior of period 1.
PT1 : The system expands in the first iteration and remains static ever after.
P2 : The system directly evolves to periodic behavior of period 2.
P3 : The system directly evolves to periodic behavior of period 3.
PT4 : The system, after a transient behavior, evolves to period 4.
C : The system exhibits an irregular complex behavior.

B : The systems grows uniformly. At each time step, a regular patter with
a fixed density of zero sites is produced.

In Fig. 3(a), we present a raw phase transition pattern on the (b, c) plane for
a < d and in Fig. 3(b) a window of the region denoted by C (see below for
more). The phase-transition diagram when a > d is sketched in Fig. 4. Moving
along the diagrams’ boundary lines we deal with the set of critical (bifurcation)
values. For instance, in Fig. 3(a) at the PT1, C boundary we step on the
critical vertical line of b = 8/5. Similarly, the C to B boundary consists of the
connected lines b = 8/3 and ¢ = b —5/3 [2]. Tt is obvious that PO, PTO0, and B
belong to the c1 class, P1, PT1, P2, P3, PT4 are in c2 and C is of ¢3 type.

2.2 The C region

Contrary to the other sections, C is a parameter subspace, where the automaton
appears to exhibit extraordinary dynamics. The F-rule in this region generates
only expanding patterns. In Fig. 4 we put a few of these patterns with snap-
shots of their evolution is presented. Every sub-figure contains the plane pattern
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as well as a space time evolution of the lattice’s main diagonal (the line that
includes the initial black cell). Unlike the other regions, these carpets have no
simple faceted form and in most cases non-uniform interior. Additionally, due to
symmetric initial states, they are invariant under all the rotation and reflection
symmetry transformations. In order to identify part of the C dynamics, we im-
plemented various techniques that we present below. We numerically estimated
the transition phase space for a < d (The a > d case is discussed in [2]).

Global dynamics on a fixed lattice £L We keep the lattice size constant
(N = 50) with periodic boundaries and explore the system’s long term be-
haviour. Each simulation test was run for at most 20,000 iterations. The dy-
namic behaviour is, classified in three qualitative families:

Cy After a transient behaviour, all sites of £ attain the same value. A class
similar to PTO type but with much longer and more complicated transient
time. The patterns begin to expand until their frontiers meet.

Cy After a transient behaviour, all sites of L, converge to strictly periodic
(period-T" > 1) motion. By strictly periodic of period T we mean that
AT, T € N: o(x;t) =o(x;t+T)Vx € L,t>T". The difference from
C; is, obviously, in the system’s final state.

C3 The dynamic evolution does not converge to any of the previous two classes.
A typical class C3 behaviour is the one that after a sufficiently large number
of iterations (= 20,000) the pattern neither, strictly, repeats itself, nor
turns out to a homogeneous state.

2.3 Complexity

In this section, we will discuss the complexity of our model. The cost parameters
belong to C classes. The system initiates from a simple-seed configuration and
evolves on a large size matrix L.

Growth Dimensions The limiting structure of patterns generated by the
growth of cellular automata from simple seeds can be characterized by various
growth dimensions. The type of dimension we will make use of depends on the
boundary of the pattern. The boundary may be defined as the set of sites that
can be reached by some path on the lattice that begins at infinity and does not
cross any non-zero sites. This set of limiting cells can thus be found by a simple
recursive procedure:

D, = lim 7l09(#0<t>)

t—oo  log (1)

(6)

where #o(t) is the number of black cells generated at time ¢. In general,
growth dimensions describe the logarithmic asymptotic scaling of the total sizes
of patterns with their linear dimensions. Since the limit may not exist, one
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defines the upper and lower spatial growth dimensions D;', D, in terms of the
upper and lower limits of (6), respectively. In Fig. 5 we present log — log plots
of some rules: In case (a) where we have dendritic boundary growth (see Fig.
4(a)) Dy = 1.98+0.01. In case (b) (Fig. 4(b)) there is both non-uniform interior
and boundary evolution and we have Dy = 2.1 4+ 0.02. In case (c) (Fig. 4(e))
the expanding pattern creates non-uniform interior while the boundaries remain
faceted and D = 1.9 £ 0.01. Finally, in case (d) (Fig. 4(d)) log#o(t) varies
irregularly with log (t) the most; there D = 2, D, = 0. We also note that
almost all C-type rules follow one of the four growth curves presented in Fig. 5.

Space-Time Patterns A direct technique for examining the asymptotic be-
havior of cellular automata is through a state subspace analysis. One may
choose to define Poincaré-like sections and study the dynamic evolution of this
subspace. We chose the diagonal of the two-dimensional lattice with time (as
in Fig. 4). The reason this specific section is selected is that it is the axis of
symmetry along which the system expands more rapidly than any other direc-
tion. One might also consider the main horizontal axis [2]. Moreover, we surely
prefer to deal with one-dimensional patterns since such automata are, more ef-
fectively, handled. In Figs. 4(a)-(e) we present examples of space-time sections
which reflect the dynamics of the 2D F-rule in a one-dimensional projection. Of
course, Eq. (6) can also be applied here: (a) Dy = 1, (b) D = 0.947 +0.002,
Dy = 0.8629 £ 0.001 (c) Dy = 0.99 £0.01 (d) Dy = 1.161 £ 0.003 (it is noted
here that the space-time section is the Sierpinski gasket, a self-similar object
with Drectar = log3/log2 « 1.58). The C-region generates patterns of com-
plex behavior typical members of the c3-class as the non-integer values of the
growth dimensions suggest.

3 Evolution from Random Seeds

Completely disordered setups are members of the set of all possible configura-
tions. Patterns generated from them are thus typical of those obtained with
any initial state. The presence of structure in these patterns is an indication of
self-organization on the lattice [12]. Consider the average fraction of white cells

defined as p(t) = #o(ﬁ:‘(;zl(t) = #Ji,(;) where #;(t) is the number of cells that are
at state ¢ at time ¢. Qualitatively speaking, three types of collective behavior

are identified.

Equal-State costs greater than Cross-State costs (a,d > b,c) In this
case, the evolution favors the interaction among cells with the same states. The
final state of the system is a static equilibrium where the occurring pattern is
an assembly of black and white “ghettos” as in Fig. 6(a). We see there that
the system starts from the, completely disordered, state at t = 0. The system
reaches the equilibrium within the first seven time steps. The last diagram
presents index p(t) (see figure comments for more). If we increase one of the two
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leading parameters, say a, we will observe the increase of the black sites over
white. In fact, for a > a. = 8/7 all sites attain the same (black) state. The
same holds, of course, if we turn d over a. The role of b, ¢ parameters, as long
as they do not exceed a and b, is that of controlling the average number of black
and white cells respectively. For such non-zero values of the intermediate costs
we have the critical inequality 7a 4+ b > 8d instead of a..

Cross-State costs greater than Equal-State costs (b,c > a,d) . Com-
pletely different patterns occur when “cross-state” costs b,c are larger than
“equal-state” costs a,d. The typical code for this family is Fo1,1,0) a simu-
lation of which is presented in Fig. 6(b). The system after a transient mode
of 65 time steps, settles down to a period-10 cycle. One may notice the black
and white regions inside of which there are white and black kernels, respectively.
They are these cellular kernels that, actually, motivate this oscillation. In gen-
eral, an F(q ) Where b,c > a,d generates orbits that after a transient time
converge to periodic attractors. The transient time, the period of the attractor
and the magnitude of oscillation p(t)/(1 — p(t)) are random quantities (they
depend on the initial state). What we are only sure of, is that the system will
converge to even-period limit sets. The role of a, d costs is, as long as they
remain lower than cross-state costs, similar to the first family. They merely
stabilize the mean amount of black and white cells respectively, in other words,
the mean value of p in steady state.

One Equal-State parameter is between the Cross-State parameters.
(d <b<ac< c) The last case is studied by fixing d = 0,b = 0.5,¢ = 1 and
vary a. We then increased parameter a from a = 0. The moment a jumps over
b a new type of behavior appears. In particular, for:

(a) 0 < a < b=1/2. The system behaves like in the previous case since we
have b, ¢ > a,d. The attractors are of even period and the mean value of
p(t) is around 0.63.

(b) 1/2 < a < 2/3. The system does not converge. Here a typical rule is
F0.5001,0.5,1,0) Which we present in Fig. 6(c) and study ever after. Like
in the case of simple seeds we have simulated the model for about 20,000
iterations. The system neither converges to a static equilibrium nor to a
periodic circle. This “aperiodic” evolution in a deterministic model like
ours resembles chaos. In the following, we will further support this idea.

(¢) 2/3 < a < c=1. The system converges to periodic attractors.
(d) a > 1. All sites attain the zero state.
Stability An important tool to characterize the evolution of an automaton,

is the discrete Green function. We can get a glimpse of the form of the Green
functions for a selected rule by plotting the difference pattern. These are pattern
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of difference between two evolutions of the same rule starting from two different
initial states. The rate of growth of these patterns is defined to be

A(n) = Fo(G1;0)] © F"[o(Ga; 0)] (7)

This rate gives an idea of the speed with which various features in a cellular
automaton evolution may propagate through the lattice. The information we
are interested in, is the small perturbation in the initial setup. The asymptotic
rate is a number analogous to the Lyapunov exponents in the dynamical systems
theory. (for a consistent approach see [8]). In this work, two random setups
that differ in one site are generated. We let them run under the same F-rule
and used (7) to see the resulting effect. We used three different rules; one
of each category. The results are presented in Fig. 7. In Fig. 7(a) there is
the simulation result of F(; ,1). The initial perturbation was directly either
eliminated or stabilized to a plastic difference like in Fig 7(a). This dynamic
behavior signifies of the system’s expected robustness in initial perturbations.
So in (a) F(1,0,0,1), any noticeable difference will not expand for long and will
remain plastic for all times. In (b) F1,1,0)- In this case the initial difference
expands during the transient steps. As soon as the patterns converge to periodic
attractors, the difference pattern will converge too. Hence the range of the effect
is expected to be a function of transient length. Global instability is reported
for the family of §IVC rules. In Fig. 7(c) we present the difference pattern of
F(0.5001,0.5,1,0)- In this category a single site perturbation is enough to lead to two
totally different orbits (see 11(c),(iv) and (v)) which, nevertheless, evolve with
the same p. From space time sections we observe the linear growing difference
which implies exponential divergence (asymptotic in case of infinite lattice) of
nearby configurations [3],[12], i.e. chaos.

4 Discussion and Concluding Remarks

In this paper, we introduced a cellular automaton model capable of exhibiting
multifarious dynamic behavior. We examined the model using two types of ini-
tial configurations, two space dimensions and two space topologies, as well. In
each case, we valued it’s cost parameters and attempted to shed light upon differ-
ent aspects of the model’s dynamics by classifying the collective and asymptotic
behavior of the emerging patterns. In this work we have adopted the Moore’s in-
teracting scheme but be assured that with another scheme, new phase transition
properties will take place. We then tested the model with disordered initial se-
tups and explored the collective behavior. The three types of behavior reported
are: A coarsening evolution that leads to labyrinthine patterns. The second
type is this of the system’s convergence to periodic cycles and is characterized
by strong self-organization. The system starts from an arbitrary initial state
and follows a finite transient time and settles down to periodicity. Moreover,
the system seems to have limited sensitivity to initial conditions only during the
transient mode. This phenomenon is known in the dynamical system theory
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as transient chaos [?]. The last case we met is this when one equal-state cost
(a) gets in the middle of the cross-state costs (b, ¢ with b < ¢). The result is
a structurally unstable system which behaves aperiodically and is characterized
by sensitivity to small perturbations. Regarding the deterministic nature of our
model we have every reason to believe that this is a chaotic behaviour.

Growth Inhibition So far, we have thoroughly discussed the 2-D model’s
transition from smooth to complex behaviour. We have an idea of what happens
but still do not know why this happens. Complex patterns occur is because of
the Growth Inhibition phenomenon. This is very common in the way some
crystals grow as well as in many physical and biological systems [12],[10]. At a
microscopic level the crystallization occurs when a liquid or gas is cooled below
its freezing point. The procedure always start from an individual seed and
unfolds by adding more frozen atoms to their surface. In some cases, whenever
a piece of ice is added to the snowflake, there is some heat which is released
averting the addition of further pieces in the vicinity. So, instantly, freezing
is allowed at some directions while it is inhibited at the rest. This effect can
be simulated by a cellular automaton that updates cells to black if they have
exactly one black neighbor and white if they have more than one black neighbor.

A deterministic Ising Model There are striking similarities of the F-rule
evolving from random seeds and the Ising Model from Statistical Physics [4]. In
that model there is the same grid of cells and at each global configuration of the
cell’s states (up/down spins), an energy is assigned as a function of the cell’s
neighbors state. Finally a probability measure is defined for the global state
space and three classes of collective behavior are identified. The ferromagnetic
case where the interaction tends to keep neighboring spins aligned the same; the
antiferromagnetic where the system tends to reinforce pairs in which the spins
are of opposite orientation, and the noninteracting case. Varying some system
parameter’s the Ising Model goes through these three phase transitions similarly
to the transitions reported here. In fact, the ferromagnetic case is similar to the
coarsening evolution that leads to labyrinthine patterns (Eq. (12)). This is what
the family of (1 <1 c<1,1) Tules generates and is represented by Fig. 7(a). The
antiferromagnetic case is similar to F(,<1,1,1,a<1) presented in Fig. 7(b). The
noninteracting case bears a resemblance to F(1/2<a<2/3,0.5,1,0) (Fig. 7(c)).

Applications If we consider £ to be a compact society of citizens (cells),
then white, 0 = 1, state would adjust to a good man while the black, o = 0,
would adjust to the bad man. Our lattice is, thus, a collection of concrete
neighborhoods which interact, according to a cost function (eq. (6) or Fig.
2(a)). So suppose that x is a good man with s also good neighbors and (8 — s)
bad neighbors. Then, for every good y € MN(x), x gains a reward of d units
while for every bad, our hero may get a penalty of ¢ units. Variations of the
rule could be a good models for simulating the market interaction. Economics
is a subject of social networks, in which the procedure of learning or imitation



1341

and then reply among interacting individuals is fundamental (a game theory
approach can be found in [1]). In F-realm, sites would be sellers and buyers.
To make this more intriguing one could raise the number of possible states
and then separates them in two categories: people who sell certain goods, and
of people who buy them. Cost values would form the relative value between
goods. Although strictly deterministic, the F-rule produces patterns that bear
great resemblance to stochastic models. It may have applications in physical
(statistical mechanics - lattice gas theory) [4] or biological (interaction between
malignant and non-malignant cells) networks as well as in computer networks.
However, further research on this model is required.
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main diagonal line of cells.
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Typical C-type patterns.
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(a)F(0,1.65,1.0834,1), (DP)F(0,1.65,0.2375,1)5
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Figure 7: The F model starting from random seeds. (a) F(1,0,0,1) - the system
reaches a static final state. (b)F(o,1,1,0)- the system oscillates in a period-10 cycle. (c)
F(0.5001,0.5,1,0)- the system behaves aperiodically.

Figure 8: Difference patterns of the F-rule starting from random seeds. (i): the
difference pattern after 100 iteration. (ii),(iii): space-time sections of the horizontal
and the diagonal line of the state space.(iv), (v): the p(t) index of the resulting orbits.




