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Abstract— Inspired by military tactical, civil help-and-rescue
applications, it is desirable yet challenging to develop net-
worked systems of autonomous vehicles and sensors in dynamic,
resource-constrained and adversarial environments. An essen-
tial aspect of designing such collaborative systems is to address
the communication needs of the vehicles in order to perform
a given mission. The vehicles’ communication network should
maintain a connectivity pattern based on the requirements of
the mission.

In this paper, we consider both the control and commu-
nication aspects for coordinated path planning of a group
of autonomous vehicles in an adversarial environment. We
propose distributed algorithms to control the vehicles’ trajec-
tories over a wireless vehicle-to-vehicle network. Distributed
control algorithms both with and without collaboration between
the vehicles are presented. We study the performance of the
wireless network over the distributed controlled autonomous
vehicles. Simulation results show that collaboration between
vehicles results in better performance for path planning and
wireless inter-vehicle communications. However, contention-
based communication protocols are likely to fail due to severe
channel conditions.

I. INTRODUCTION

Collaborative control of groups of autonomous agents

(robots, unmanned vehicles, etc.) has gained a growing

amount of attention recently. Collaborative robotics, au-

tomated highway services, mobile sensor networks, and

disaster relief operations are examples of applications in

which advances in wireless and other technologies has led

engineers to design groups of unmanned mobile vehicles

[1]. In all of the above applications there is a strong in-

centive to come up with efficient decentralized control and

decision-making schemes. Decentralization is preferred due

to lack of expensive central coordination and robustness

to single node failure. A challenging issue in design of

collaborative swarms of autonomous vehicles is the need

to implement efficient communication mechanisms. In many

control theoretic studies, certain communication capabilities

are implicitly assumed to hold [2]–[5].

The main contribution of this paper is to explicitly ad-

dress the effects of communication on the performance of

the networked system with emphasis on maintaining group

connectivity. We study both the control and communica-

tion problems for a group of autonomous vehicles that are

maneuvering with little or no direct human supervision in

an adversarial environment. The mission is to explore the

terrain, cover a target area while avoiding any possible ob-

stacles or threats, and finally send information about features

of the area to a command center. Building on our earlier

work [5], [6], we use gradient flow based artificial potential

methods for path planning [7], [8] in a kinematic setup.

Despite their limitations, artificial potential based navigation

functions have been found lots of applications in collabora-

tive control [2], [3], [9], [10]. Hybrid stochastic methods

have been proposed to overcome local minima problems

[6]. We study the effects of communication between nodes

on the group’s path planning by comparing two schemes.

In one scheme the vehicles only process their sensed local

information whereas in the second scheme they collaborate

by communicating among themselves. We study the perfor-

mance of the wireless inter-vehicle network based on the

IEEE 802.11 media access mechanism. Simulation results

show that collaboration between vehicles results in better

performance for path planning and wireless inter-vehicle

communications. However, contention-based communication

protocols are likely to fail due to severe channel conditions.

We address challenges in maintaining group connectivity

under such circumstances and suggest some future directions

based on our work in [11]–[13]. Related work includes [14]

in which the authors consider a localized notion of connect-

edness and study its relationship to the global connectivity of

a network of vehicles, and [15] in which the authors address

the problem of controlling the motion of a network of agents

while preserving k-hop connectivity, and [16] in which the

authors discuss maintaining connectivity between multiple

mobile agents with bounded inputs.

This paper is organized as follows. After introducing

our system model in Section II, we present our distributed

control algorithms and describe the wireless network based

on inter-vehicle communications in Section III. We show

our simulation results in Section IV. Finally conclusions and

future work are addressed in Section V.

II. SYSTEM MODEL

We consider a group of n autonomous ground vehicles that

are maneuvering within an area A ⊂ R2, e.g. a battlefield

or a building with unknown potential dangers. There is very

limited knowledge available regarding the internal structure

or the topology of A besides its boundary. In fact, it is

the mission of these vehicles to explore A under little or
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no direct human supervision, cover some target T ⊂ A
while avoiding any possible obstacles or threats, and finally

send information about features of A to some server, e.g. a

command center.1 Throughout this paper, we assume there

is only one target T for all vehicles.

The main constraints during the maneuvering of the ve-

hicles come from the obstacles and moving threats that are

distributed in A. An obstacle is a closed area that cannot be

entered by any vehicle. A moving threat is an object that

moves along an unpredictable trajectory with an unknown

speed. A vehicle must keep at least a distance of Re away

from any moving threat, otherwise it will be destroyed. In

addition to the obstacles and moving threats, vehicles should

keep a safety distance from each other in order to avoid

collisions while maintaining communications with nearby

vehicles. We further assume the size of an obstacle is much

larger than that of a vehicle or a moving threat, hence we

denote a vehicle or a moving threat as a point in A for

simplicity.

Before starting to maneuver, each vehicle is given the

initial position of the target T . However, the position of the

target can be changed during the maneuver, which is either

because better motion planning results are available after

collecting certain amount of information, or a new target is

necessary after the environment has changed considerably.

We assume the change of the target position can only be

initiated from the server. The server sends the message

of target update to one or several vehicles depending on

links available, and the message is gradually spread to all

vehicles via vehicle-to-vehicle communications. Since the

environment in A is highly dynamic, we assume there is

no global information available about the positions of other

vehicles, obstacles or moving threats. Instead, each vehicle is

equipped with devices for short-range detection, i.e. a vehicle

can discover another vehicle, an obstacle or a moving threat

within a distance of Rd.

The vehicles also have other devices such as sensors or

cameras to capture various features of A, which are later

delivered to the server. However, due to the highly dynamic

nature of the environment, the server can only access limited

number of vehicles at any time. From time to time, the

server may change the vehicles from which data are pulled.

Hence it is necessary that a vehicle can deliver its data

to any other vehicle via vehicle-to-vehicle communications.

On the other hand, since each vehicle only has information

about the position of the neighboring objects from local

detections, they need to exchange these information between

themselves. These information are time-sensitive, since each

vehicle can have a better trajectory if it collects more in-

formation regarding the position of other vehicles, obstacles

and moving threats. We denote these information items as

control information,2 and the data that are delivered to the

server as data traffic.

1We will use the term server or command center interchangeably through-
out this paper.

2The message regarding target update in Algorithm 2 is also treated as
control information.

Practical considerations of the terrain makes it impractical

to implement such a system based on wired links. Hence

it is desirable to build our networked control system based

on wireless media. It is well known that wireless channels

are vulnerable to fading and interference. The mathematical

modeling of the wireless channels for our application is very

challenging due to highly dynamic nature of the terrain which

blocks the line-of-sight (LOS) between the communication

vehicles and results in reflection and scattering among many

other physical phenomena which affect the transmitted sig-

nals [17], [18]. We mainly consider the shadowing effects

and model the path loss based on the obstruction that lie in

the first Fresnel zone and the Fresnel zone radius. Interfer-

ence happen when more than one pair of vehicles attempt

to communicate simultaneously within a short distance and

thus lead to conflict in the wireless media.

III. COLLABORATIVE CONTROLLED VEHICLES OVER

WIRELESS NETWORKS

We consider the general high level kinematic path planning

problem for the group of vehicles over a wireless network.

The algorithm generates a sequence of waypoints to follow

by each vehicle. The algorithm uses artificial potential navi-

gation functions and is based on our previous work [5]. The

potential functions are chosen to lead the vehicles towards

the target while avoiding collision and moving threats. In the

sequel we briefly mention the framework of [5].

A. Potential Functions

We assume time is slotted. At time t, let V(t) denote the

set of vehicles that are alive, O(t) the set of obstacles, and

M(t) the set of moving threats. Let pi(t) = (xi(t), yi(t))
be the position of the i-th vehicle at time t. We let N i

v(t)
denote the set of vehicles known to the i-th vehicle at time

t3

N i
v(t) = {j ∈ V(t) : j 6= i, i knows the position of j}.

Similarly, we define the set of the obstacles and moving

threats known to the i-th vehicle at time t as

N i
o(t) = {j ∈ O(t) : i knows the position of obstacle j}

and

N i
m(t) = {j ∈M(t) : i knows the position of threat j},

respectively. We denote by T i(t) the target area at time t as

far as the i-th vehicle knows.

To maneuver the vehicles, a potential function is con-

structed for each vehicle consisting of several terms, each of

which reflects a goal or a constraint. The potential function

Ji,t(pi(t)) for the i-th vehicle at time t is

Ji,t(pi(t)) = λgJ
g
t (pi(t)) + λnJn

i,t(pi(t))

+ λoJ
o
t (pi(t)) + λmJm

t (pi(t)), (1)

3We define N i
v(t) in this way instead of a set of neighboring vehicles

within the detection range Rd, i.e. N i
v(t) = {j ∈ V(t) : j 6= i, ‖pi(t) −

pj(t)‖ ≤ Rd}, since the i-th vehicle knows the positions of some vehicles
beyond Rd in Algorithm 2.
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Fig. 1. Neighboring potential function

where Jg
t , Jn

i,t, Jo
t and Jm

t are the component potential func-

tions relating to the target, neighboring vehicles, obstacles

and moving threats respectively, and λg , λn, λo and λm

are weighting factors. The potentials are chosen such that

they encode the intended behavior of the vehicles regarding

obstacle avoidance, keeping distance from neighbors and

target finding correctly. For example, the target potential

function is Jg
t (pi) = fg(ρ(pi, T i(t))), where ρ(pi, T i(t)) =

infa∈T i(t) ‖pi − a‖ is the smallest distance from pi to the

target area T i(t). Here fg(·) is a strictly increasing function

with fg(0) = 0. This function guarantees that the i-th
vehicle will move toward the target T i(t) in absence of

other objects. We use fg(r) = r2 in our simulations. The

threat and obstacle avoidance potentials are on the contrary

strictly decreasing functions of the vehicles’ distance to

threats and obstacles, and tend to infinity as this distance

approaches 0. The neighboring potential is more involved,

since it is designed to make the vehicles maintain some

optimal distance. Fig. 1 provides the shape of the neighboring

potential function that we use. For the detailed discussion of

these components and the effects of the weights, we refer the

reader to our earlier work [5]. The velocity of the i-th vehicle

at time t is derived from the gradient descent equation:

ṗi(t) = −∂Ji,t(pi)

∂pi

(2)

B. Networked Control of the Vehicles

We now describe two distributed algorithms to control

the trajectories of the autonomous vehicles. It should be

noted that in both cases the optimization is performed locally

at each vehicle. However, we will show later that better

performance can be achieved through collaboration even with

the same optimization algorithm.

1) Distributed Control of the Vehicles with Only Local

Information: We first introduce the distributed algorithm

with only local information. In this case, the i-th vehicle

performs a local detection and identifies all neighboring

vehicles, obstacles, and moving threats within Rd and update

its N i
v(t), N i

o(t) and N i
m(t). All other vehicles, obstacles

or moving threats which are beyond the range Rd are

completely unknown to the i-th vehicle, and thus are not

included in Ji,t(pi(t)). For the sake of simulations, we have

considered discretization of the system with time steps small

enough to preserve the stability of the original continuous

algorithm. We also assume a prearranged synchronization

scheme. The algorithm can be described as Algorithm 1.

Algorithm 1 Distributed Control with Only Local Informa-

tion

1: The initial position of the target T is loaded into each

vehicle;

2: t← 0;

3: while V(t) is not empty and some vehicle in V(t) is

outside the target T (t) do

4: for all vehicles in V(t) do

5: The i-th vehicle identifies its local information set

N i
v(t), N i

o(t) and N i
m(t) through a local detection

procedure;

6: The i-th vehicle starts an optimization algorithm to

minimize Ji,t(pi(t)) and finds an optimal solution

p∗i (t) based on N i
v(t), N i

o(t) and N i
m(t);

7: The i-th vehicle moves to the new position p∗i (t);
8: end for

9: t← t + 1;

10: Update the set of alive vehicles V(t);
11: end while

From Algorithm 1 we can see the local information set

N i
v(t), N i

o(t) and N i
m(t) that can be obtained by the i-th

vehicle highly depends on the detection range Rd, which

is limited by the device and energy constraint. Hence the

benefits of the application of Algorithm 1 to highly adver-

sarial environments are limited, since local information may

not be sufficient to provide the vehicles with appropriate

maneuvering capabilities.

2) Distributed Collaborative Control of the Vehicles: We

notice if the i-th vehicle can access the position information

of the objects that are beyond its detection range Rd, then

a better performance is expected even with the same local

optimization procedure to derive p∗i (t). This can possibly

be done through local vehicle-to-vehicle communications.

In our algorithm, at each time t, the vehicles exchange

this control information before they start to transmit the

data traffic. We note that the amount of data for control

information is much smaller than that of the bulk data traffic.

Hence the control information can spread rapidly among

the vehicles, either by using the control channel when the

wireless connections are established, or through other local,

epidemic or gossip based protocols [19], [20]. The details of

the algorithm are shown in Algorithm 2.

Algorithm 2 shows that not only a vehicle can get the

position information of the objects beyond its detection

range, but the server can also update the target position

by communicating with only one or several vehicles. This

is very useful when more accurate position estimates of

the target is calculated at the server after collecting more

information, or the target position must be changed due to
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Algorithm 2 Distributed Collaborative Control

1: The initial position of the target T is loaded into each

vehicle;

2: t← 0;

3: while V(t) is not empty and some vehicle in V(t) is

outside the target T (t) do

4: for all vehicles in V(t) do

5: The i-th vehicle performs a local detection proce-

dure and updates its local information set N i
v(t),

N i
o(t) and N i

m(t) accordingly;

6: The i-th vehicle updates T i(t) if notified;

7: The i-th vehicle exchanges the local information set

T i(t), N i
v(t), N i

o(t) and N i
m(t) with the vehicles

that have connections between them, and updates

the local information set accordingly;

8: The i-th vehicle starts an optimization algorithm to

minimize Ji,t(pi(t)) and finds an optimal solution

p∗i (t) based on T i(t), N i
v(t), N i

o(t) and N i
m(t);

9: The i-th vehicle moves to the new position p∗i (t);
10: end for

11: t← t + 1;

12: Update the set of alive vehicles V(t);
13: end while

discovery of hazardous objects nearby. Algorithm 2 can be

used in more adversarial and highly dynamic situations.

C. Wireless Inter-Vehicle Networks

The communication module in our system is responsible

for both inter-vehicle control information and data traffic

transmission to and from the command center. Note that the

control information is more time-sensitive but needs much

less bandwidth compared to the bulk data traffic. In light

of that, we assume that either the transmission of control

information can be accomplished via control channels, or

the bandwidth that is consumed by the control information

is negligible compared to that of the bulk data traffic.

Hence, in this paper we assume that the exchange of control

information can be finished before the transmission of bulk

data traffic in each time slot. With this assumption, the

transmission of control information and data traffic can be

well separated.

Hereafter we only consider the data transmission when

discussing the performance of the wireless vehicle-to-vehicle

network. We assume each vehicle always has data to transmit

whenever communication opportunities are available.

Modeling the physical layer loss for wireless networks of

moving vehicles is very challenging. The physical loss is

highly environment dependent. Since the vehicles’ motion

in our scenarios are generally slow enough, we can simplify

the problem by only considering the shadowing effects.

The concept of Fresnel zone clearance has been used to

analyze interference caused by obstacles near the path of

a wireless transmission [21], where the first zone must be

kept largely free from obstructions. We model the physical

layer path loss by considering the obstructions occurring in
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Fig. 2. Simulation results of Algorithm 1, where there are 9 obstacles in
the area A.

−5 0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

x

y

Node 0

Node 1

Node 2

Node 3

(a) Trajectories of the 4 vehicles.

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

14

16

18
x 10

4

snapshot

T
h

ro
u

g
h

p
u

t 
(b

p
s
)

 

 

Flow 1

Flow 2

Flow 3

(b) Throughputs of the 3 wireless
links.

Fig. 3. Simulation results of Algorithm 1, where there are 10 obstacles in
the area A.

the first Fresnel zone and the Fresnel zone radius. We use

the IEEE 802.11 based medium access protocol. Under this

assumption, the wireless medium is shared between vehicles

using the CSMA/CA mechanism. We use an ad hoc routing

protocol at the network layer, e.g. Dynamic Source Routing

(DSR) routing [22]. We assume UDP protocol at the transport

layer. This is because smaller delays are desirable for timely

decision making at the server in our application, where

certain level of packet transmission errors can be overcome

by aggregating data traffic from all vehicles.

IV. SIMULATION AND DISCUSSION

In this section, we show our simulation results for the

distributed control algorithms and the performances of the

vehicle-to-vehicle wireless network. In our simulations, the

optimization of the trajectories is done in MATLAB, and the

simulation of the wireless network is carried out in NS-2.
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the area A.
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Fig. 5. Simulation results of Algorithm 2, where there are 10 obstacles in
the area A. The position of the target is initially set to (20, 30), and then
set to (30, 30) at snapshot 20.

We consider a group of autonomous vehicles in an 40m×
40m area A. We choose a scenario in which there are 4

vehicles maneuvering in an areaA with 9 obstacles randomly

distributed for illustration purposes. The target T is a point,

whose position is (30, 30). There are 6 moving threats that

are circling around to protect T , where 4 of them are on a

circle centered at the target (30, 30), 1 of them is on a circle

centered at (28, 24), and 1 of them is on a circle centered at

(24, 28). The detection range is Rd = 3 and the minimum

safety distance to a moving threat is Re =
√

2/2. There are

three UDP flows in our simulation, i.e. Flow 1 from vehicle

0 to 3, Flow 2 from vehicle 2 to 0, and Flow 3 from vehicle

1 to 2.

We first show simulation results for the distributed control

algorithm (Algorithm 1) in Fig. 2, where the trajectories

of the 4 vehicles are shown in Fig. 2(a). We can see that

the vehicles are successfully maneuvering to reach T . In

particular, two nearby vehicles are maintaining some optimal

distance according to the neighboring potential Jn
i,t(pi).

When there is enough distance from a vehicle to any other

object, the vehicle is almost directly shooting toward the

target. However, when a vehicle approaches an obstacle, it

then maneuvers along the contour of the obstacle and keeps

a small distance to the contour of the obstacle. The trajectory

of a vehicle becomes more dynamic whenever it is close to

a moving threat. The throughput of the wireless network is

shown in Fig. 2(b). We can see that Flow 3 (from vehicle 1 to

2) has the best performance, with very small degradation dur-

ing the whole maneuver. This is because vehicle 1 and 2 are

close to each other, and thus there is no shadowing between

them. The other two wireless flows, however, experience

significant performance degradation from snapshot 3 to 29.

This is due to the shadowing effects which directly come

from the obstacles centered at (6, 6), (10, 15) and (20, 20).
The second major performance degradation happens between

snapshot 35 and 45, where severe interferences arise when

4 vehicles are maneuvering within a very small area.

To better see the impact of shadowing due to large

obstacles, we increase the radius of the obstacle centered

at (10, 15) from 3 to 5 and add another obstacle centered

at (10, 20) with a radius of 4. The simulation results are

shown in Fig. 3, where vehicle 0 changes its trajectory

significantly to accommodate the topology change in Fig.

3(a). This forces the trajectory of vehicle 0 to move further

away from the other vehicles. We can thus expect an even

larger performance degradation when vehicle 0 is moving

in the shadowing area shaped by the obstacles centered at

(10, 15) and (10, 20). Fig. 3(b) supports this observation

well. During snapshot 5 and 27, the throughputs of Flow

1 and Flow 2 further drop to 2 × 104 bps, which shows a

deeper shadowing compared to Fig. 2(b).

Next, we compare results from the totally distributed

algorithm (Algorithm 1) and the distributed collaborative

control algorithm (Algorithm 2). We run simulations using

Algorithm 2 under the same settings and show the results

in Fig. 4. We observe that the performance of Flow 1 and

Flow 2 during snapshot 40 and 43 improves significantly in

Fig. 4. This explains the benefit from collaboration between

vehicles. However, we can also see that collaboration here

doesn’t help with the performance drop between snapshot 5

and 27 due to deep shadowing.

Finally we show simulation results where the position

of the target changes during the maneuver in Fig. 5. The

position of the target is mistakenly set to (20, 30) at the

beginning of the simulation, which is marked with a diamond

in Fig. 5(a). After snapshot 20, the target position is set to

the correct coordinate (30, 30). The server sends the message

about target change to vehicle 1 at snapshot 20. Vehicle

1 then spreads this information to other vehicles via local

information exchange. We can see that the trajectory of

vehicle 3 is redirected to the one close to vehicle 0, and

all vehicles successfully maneuver to the correct target at the

end of the simulation. However, due to the incorrect position

information of the target, larger performance degradation is

observed in Fig. 5(b). A noticeable performance degradation

between snapshots 41 and 44 appears even with collaboration

between the vehicles. This shows that the more accurate the

target position information is available, the better maneuver-

ing can be achieved.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented distributed algorithms to

control the trajectories of a group of autonomous vehicles

over a wireless vehicle-to-vehicle network. Using potential

functions as the objective functions, we proposed distributed

algorithms both with and without collaboration to maneuver

the vehicles to a target area in an adversarial environment.

We studied the performance of the wireless network over the

distributed controlled autonomous vehicles. We showed that

collaboration between vehicles results in better performance

for path planning and wireless inter-vehicle communications.

However, our simulations also showed that contention-based

communication protocols are likely to fail due to severe

channel conditions.

A way around this problem is to use aerial vehicles (AVs)

which act as relays in the absence of LOS communica-

tion between ground vehicles. Since AVs are expensive, a

mechanism should be implemented that 1) requires minimum

number of AV interventions, and 2) requests interventions
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only when necessary. The first requirement, i.e. to find the

minimum number of AVs and their locations so that the

resultant network (both the network between the ground

vehicles and the AVs and the network between the AVs

themselves) is connected, is addressed in [11], [12] as

a constrained clustering problem with a summation form

distortion function D(K,A) involving the distances between

the ground vehicles K and the distances between AVs

A and a summation form cost function C1(A) involving

only A. The resultant clustering problem was then solved

using Deterministic Annealing (DA) to obtain near-optimal

solutions. In order for the ground vehicles and the AVs to

form a connected network, the following constraints were

employed in the DA formulation: a) At least one ground

vehicle from each cluster should be within a radius of R1

from an AV, and b) Each AV should be within a radius of R2

from some other AV (i.e., the AVs form a connected graph

themselves). Here R1 and R2 are constant radii determined

by the loss exponents characterizing communication link

performance decay.

The second requirement is satisfied by an event triggered

approach, which is addressed in [13]. The ground vehicles

are able to send distress messages (help request signals) to

the command and coordinating unit, if they think AV inter-

vention is necessary to save the graph connectivity. However,

since AV intervention is costly, it should be considered only

if the link losses affect the connectivity in a serious manner.

Each agents’ problem of whether to call for intervention or

not, was addressed in [13] by using neighborhood discovery

methods (see [23], [24]) and a collaborative local scheme to

find the importance of particular links for the connectivity

of the network.

Once the AVs are assigned to maintain the connectivity

between ground vehicles, it is necessary that this connectivity

is maintained in the course of the whole mission. In a

forthcoming paper, we address the dynamic connectivity of

the AVs where merging and splitting may occur as a result

of the dynamic changes in the terrain.
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