
   ________________________2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14, 2003 
 

The experimentation and modeling of  
“satellite-friendly” HTTP (*)  

 
Aniruddha Bhalekar and John S. Baras 

 
Electrical and Computer Engineering Department  

and the Institute for Systems Research 
University of Maryland College Park 

College Park, MD 20742 
{anibha, baras}@isr.umd.edu 

 
 

 
Abstract: The demand for Internet access has been 
characterized by an exponential growth. The 
introduction of high-speed satellite communication 
systems providing direct-to-home Internet services is a 
response to this increasing demand. However, such 
systems suffer from high delay-bandwidth product 
and high bit-error-rate which causes degradation in 
the performance of HTTP, which is a request-response 
type, application-layer protocol over TCP. In this 
paper we investigate HTTP/1.0, HTTP/1.1 and analyze 
different mechanisms to reduce the user-perceived 
delay and improve the performance of Internet 
delivery over satellite links. The paper also suggests 
other mechanisms, such as multiple parallel 
connections and a delta encoding implementation to 
overcome the above-mentioned problem. We show 
that there is a marked improvement in Internet 
browsability and user-perceived delay, using these 
methods. 
 
1.   Introduction 

 
This paper presents a performance evaluation of World 
Wide Web (WWW) page retrievals, over a network path 
with a satellite component. The delay caused by this 
component, emphasizes the importance of the different 
developments of HTTP, along with the ones proposed 
here. 
 
Our first goal is to present a comparison of the 
performance of the different versions of HTTP and its 
various developments. We tested both HTTP/1.0 and 
HTTP/1.1 in our simulation scenario and describe here 
the pros and cons of the various developments, including 
persistent HTTP, the use of conditional statements, 
changing the underlying TCP protocol, changing the 
nature of the content of the WWW, data compression 
along with  delta encoding and adaptive connections. 
 

 
(*) Research supported by NASA under cooperative agreement 
NCC8235, Hughes Network Systems and the Maryland Industrial 
Partnerships Program. 
 

 
Our second goal is to focus on the most promising 
possible development, i.e. adaptive connections. We keep 
in mind the fact that the current and previous versions of 
the most popular internet browsers, namely Netscape and 
Internet Explorer, do not support pipelining [Wca98]. In 
our simulation, we use an underlying Split-Connection 
TCP Reno network. For the satellite segment, we used the 
Receiver Window Backpressure Protocol [ZBa02]. It is 
similar to TCP but does not have slow start and 
congestion avoidance. We show via our results that there 
is an improvement in the performance of the system. We 
note that the effect of this mechanism on the web server 
performance remains an open question. We also analyze 
the delta encoding of web pages and a method for its 
implementation. 
 
2.   HTTP/1.0 and /1.1 

 
HTTP/1.0 was developed as a better application-layer 
protocol for web transfers. The main problems with TCP 
over a satellite link are the Slow Start (SS) algorithm and 
accumulation of “time wait” states of the various 
connections [Spe94]. TCP requires a 3-way handshake 
and TCP packets are generally segmented. Typically, the 
MSS is 536 bytes. Now, TCP uses the SS algorithm to 
avoid traffic congestion. The HTTP requests are often 
longer than the TCP segment size. Thus the requests can 
take more than 1 round trip to be fully at the receiving 
end. The SS algorithm aggravates this delay as the second 
packet cannot be sent until the first has been 
acknowledged. Hence HTTP responses may require 
multiple round trips. This round trip delay in satellites is 
in the order of 500ms which is a major issue. Objects in 
HTTP/1.0 are downloaded back-to-back with each object 
requiring a separate HTTP connection. This method is not 
suitable for a network characterized by high delay-
bandwidth product, such as ours. As most web-pages 
comprise of many embedded objects, the additional 
overhead of setting up a new connection for fetching each 
object individually, has an adverse effect on how much 
time it takes to fetch the entire web page. HTTP/1.1, on 
the other hand, incorporates pipelining and persistent 



   ________________________2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14, 2003 
 

connections (p-HTTP). Pipelining does not require 
objects on a web page to be downloaded back-to-back 
with each object requiring a separate HTTP connection. 
All the objects embedded on the webpage are pipelined 
and can be sent over even a single HTTP connection. The 
flip side to this development, as mentioned earlier is the 
fact that none of the versions of the most popular 
browsers, namely, Netscape and Internet Explorer 
actually have implemented pipelining [Wca98]. We must 
remember that being HTTP/1.1 compliant does not mean 
implementing pipelined connections but implies only 
support for persistent connections. 
  
3.   HTTP Developments 
 
3.1  p-HTTP 
 
p-HTTP or persistent HTTP connections, which is used 
along with HTTP/1.1, avoids the cost of multiple opens 
and closes and reduces the impact of SS. Since the 
connections are now long lived, hence, “time wait” states 
required to be maintained are fewer in number. Also, the 
RTT's are also fewer in number due to fewer requests and 
hence fewer number of packets. This directly implies 
lower latency for the end user. 
 
Unfortunately, this does not substantially affect web 
access as only 11% improvement is observed for web-
access slower than 200 Kbps [THO96]. Also, connection 
establishment algorithms require that the requested file 
size ≤ delay-bandwidth product. p-HTTP also causes 
complexity at the application layer, since the 
responsibility of segmentation and reassembly now lies at 
that layer [KAG99]. 
 
3.2  Conditional Statements 
 
Using HTTP conditional statements along with cache 
validation instead of regular statements can save 
redundant data from being transmitted along the network. 
Considering our network, this results in a direct reduction 
in latency. For instance, using a Conditional GET instead 
of a normal GET statement along with cache validation 
saves up to 90% of the data from being transferred 
[PMo94]. Timestamps are used for cache-validation in 
HTTP, e.g. "if-modified-since" is used for a "conditional 
GET" in HTTP/1.1. There are other options such as, the 
GETALL, GETLIST statements. The GET statement gets 
just one object. ALL adds all the contents in one 
continuous connection. The GETALL statement can be 
easily implemented using a pragma. Since web pages are 
composed of several files, GETALL is more effective 
than using the GET command persistently [THO96]. 
Unfortunately, this is useful only when no images from 
that page are cached, hence for the first time only 
[PMo94]. The GETLIST statement is useful if we don't 

know what we are getting. This allows us to select what 
we want, instead of getting what we have cached, over 
and over again [PMo94]. A multitude of options in GET 
statements, however, lead to lack of an optimal algorithm. 
Also, cache bursting may occur.   
 
3.3  Transport Layer Protocol and Web Content 
 
Is there a transport layer protocol that HTTP performs 
better over? Transaction TCP (T/TCP) caches the state 
information of the session (i.e. RTT, control block 
parameters, etc.) and hence the SS algorithm is quicker 
the next time, hence permitting early delivery of packets 
[HOT97]. Shared TCP Control Blocks (S-TCB) functions 
on the same principle as T/TCP except that S-TCB can be 
used for both concurrent and serial connections, whereas 
T/TCP can be used only for the latter. Note that 
connection-caching protocols are very useful even for 
single web-page hits [JKJ97]. Unfortunately, this 
approach suffers from “change-the-world” syndrome! 
 
Altering the nature of web-content suitably, in order to 
make the web-page satellite friendly, will help reduce 
latency. These new technologies are typically smaller in 
size than the existing ones. Hence using Cascading Style 
Sheets (CSS) and Portable Network Graphics (PNG) 
embedded in our webpage instead of JPEG images will 
decrease the download time of the web page. This is 
being widely implemented these days and the advantages 
are obvious but are not immediately gratifying [NGS97]. 
 
3.4   Data Compression 
 
We believed that it might help to decrease the user-
perceived latency if the HTTP headers and/or web content 
are compressed using a simple compression utility such as 
gzip. Gzip is the most common coding accepted by most 
browsers [TMc02]. Both HTTP/1.0 and HTTP/1.1 
support compression via “Accept Encoding” header 
fields. HTTP/1.1 accepts both, hop-by-hop encoding via 
transfer encoding and also end-to-end compression via 
content encoding whereas HTTP/1.0 supports only the 
latter [FGM99]. Gzip currently uses the Lempel Ziv (LZ-
77) compression algorithm. Plain text and hence HTML, 
has tremendous potential for compression. The resulting 
page sizes have been shown to be 27% of the original 
using simple level 1 gzip compression [THO96]. Though 
images are pre-compressed, pages with several embedded 
images benefit immensely using simple gzip compression. 
The resulting page size is 33% of the original page. The 
advantages of data compression are as follows [TMc02]: 
1. Data compression along with T/TCP amounts in 

enormous savings in time and bandwidth. With 
T/TCP 93% reduction in the number of packets 
transferred and 83% savings in transmission time 
occurred [Sta98]. 



   ________________________2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14, 2003 
 

2. It alleviates the problems caused by TCP SS and the 
client is able to send newer requests for embedded 
images quicker than without compression. 

3. Most browsers perform streaming decompression 
and hence do not have to wait for the entire base 
HTML page to arrive before it can be decompressed 
and requests for the embedded objects are sent. 

[NGS97] shows that using high-level compression rather 
than standard modem compression (V.42bis /V.44 
protocols) resulted in a 64% reduction in the total 
transfer-time and a 68% reduction in the total number of 
packets transferred; hence was much more efficient. The 
HTML file, used in this experiment, was generated using 
data combined from the Microsoft and Netscape home 
pages and was transferred in an uncompressed and 
compressed form over a 28.8 kbps modem. 
 
HTTP/1.0 has a problem with the caching of multiple 
versions of the same resource i.e. compressed and 
uncompressed ones, in this case. This problem was solved 
by the inclusion of the “Vary” header in the HTTP/1.1 
response as this field was used to distinguish between the 
two. The drawbacks of using data compression are the 
following: 
1. Server and client computing overheads. A trade-off 

between the price of paying extra CPU cycles for 
reduced network latency must be struck. 

2. The lack of a specific standardized algorithm built 
specifically for web-content compression. 

3. The lack of expanded support for compressed transfer 
coding. Most browsers do not support this. 

4. The lack of expanded proxy support for the “vary” 
header. As of now, compression comes at the price of 
uncachebility in most instances [TMc02]. 

 
3.5   Delta Encoding 
 
A “delta” is the difference in the web page on the server 
and the page that is cached locally. Delta encoding by itself 
has proven to be an effective technique in reducing 
network latency. This mitigates TCP-SS for small HTTP 
responses and reduces the average number of bytes for 
large HTTP responses. The different possible delta 
generators are: 

1. diff-e: A compact format generated by UNIX diff 
2. compressed diff-e: Diff plus compression using gzip 
3. vdelta: A good delta algorithm that inherently 

compresses its output [MDF97] 
 
On the arrival of a request for a certain page, instead of 
transmitting the entire page, a delta is generated and sent 
by the server, if the client already has the page cached and 
there has been a change in the page since the time the page 
was cached. Cache validation is done using timestamps. 
The client, then locally generates the entire page using the 
cached copy and the delta. If there is no change in the web 

page, i.e. the cached copy is fresh, the server validates the 
copy in the cache and that is the one displayed. Due to this 
scenario, the server has to maintain several old versions of 
the document. The issue here is in how much time and how 
many updates since, should the old document be saved at 
the server for generating deltas [Sta98]. Deltas are useful 
only if the page is going to be accessed multiple times and 
the percentage of Internet traffic that is delta-eligible 
[MKF02] is high. The deltas can be further compressed, 
though repeated compression of deltas must be avoided as 
compression consumes time [MDF97]. Deltas are easy to 
generate as the generators exist as standard library 
functions. The deltas can also be pre-created and cached at 
the server, with each upgrade of the web page. The HTTP 
requests sent from the client to the server can also be delta-
encoded. Calculating the delta between URL requests does 
this, as many requests (successive or otherwise) have the 
same prefix [MDF97]. Moreover, the deltas must be at 
least less than half the original size of the object for delta 
encoding to be useful. To calculate deltas, the server has to 
cache various versions of updates of a document. This 
again may lead to cache bursting. 
 
Depending on the statistics obtained from traces, we can 
predict to a high degree of accuracy what web page a 
client will ask for next while viewing a current page. 
Also, a specific user tends to visit certain web-pages 
daily, if not just several times in a particular Internet 
session. Hence, in such cases we could let the client ask 
for the expected following pages while the user is looking 
at the current page displayed on his screen. On receiving 
the following pages, the client could cache them (if they 
have not been received earlier) or calculate the delta (if 
the same page has been displayed earlier) and cache the 
delta. When the user requests that expected following 
page, the page can be generated locally and almost 
instantaneously, using the cached delta, while the pre-
creating of further deltas is already again underway. This 
scheme leads to an increase in network traffic since some 
of the deltas may be unnecessarily created and cached. 
We believe that this pre-fetching scheme may prove to be 
extremely useful in case of high latency, high bandwidth 
satellite links, as in our case. The process at the server 
side needs to differentiate between requests that are being 
made for the future and requests that are made directly by 
the user and hence giving the latter, higher priority.  
 
Another possibility is to let an intelligent cache which 
supports many users at the client end, have the 
responsibility of regenerating pages from deltas and 
sending them to the respective user. This takes away the 
processing load on the user's machine. When the client 
requests a page, the locally cached version will be 
displayed. At the same time, the timestamp of this delta 
will be sent over the satellite segment for validation from 
the cached delta at the hybrid gateway (HG). If the HG 



   ________________________2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14, 2003 
 

has a delta with a higher time-stamp, it sends it over the 
satellite link to the client, where the client generates the 
new page and the browser auto-refreshes. At the same 
time the HG checks with the web-server and 
refreshes/upgrades the delta it has cached. If the delta 
cached at the HG is upgraded by the web server, the HG 
sends the newer delta to the client over the satellite 
segment resulting in the client generating the web page 
and the auto-refreshing of the browser. The HG 
refreshes/upgrades the delta in its cache irrespective of 
whether the client has the same delta or otherwise. This 
ensures the freshness of the cached delta at the HG and 
hence obviates the 2nd auto-refreshing of the client 
browser even in the worst-case scenario. A time-out 
scheme, an on-demand scheme and figuring out which 
would be the best suited for this type of hybrid gateway 
refreshing/upgrade along with an algorithm for the pre-
creating of deltas are open problems. 
 
4.   HTTP Model and Implementation 

 
We intended to use the meta-information field in the 
HTTP response header to tell us the number of embedded 
images on a page. This information could also be pre-
fetched. Upon this, the client decides how many 
connections it wants to set up with the server for the 
transfer of data, depending on the nature of the page. If 
the web page has several moderate-sized elements, we 
tested the use of multiple connections with a regular cwnd 
size. We expected that the set-up time for each connection 
would be the same since the setup would happen 
concurrently [KAG99]. Hence the maximum time for the 
entire page data to transfer to the client, in this case, 
would then be equal to the time required for the single 
largest element on the page to transfer and this scheme 
might prove to be beneficial. A larger cwnd helps in 
reducing time by 1-1.5 RTT and is hence better for those 
links where RTT is high, i.e. networks with a high delay-
bandwidth product segment, for pages with large objects. 
This can have adverse effects on the terrestrial TCP link 
performance [ELR02]. 
 
A certain threshold needs to be decided where we limit 
the number of connections and have more than one 
element on some connections using pipelining. In the 
implementation we assumed that the server knows the 
number of embedded images in the page beforehand. We 
did this to validate our conjecture that there would be an 
improvement in performance using this method, and then 
to follow up with the idea of exploiting the meta-data that 
we can get about the requested web page through the 
HTTP response headers. 
 
We used the OPNET Modeler 8 simulator to run 
experiments using an underlying Split-connection TCP 
Reno Network. The RWBP (Receiver Window 

Backpressure Protocol) protocol on the satellite segment, 
is based on TCP but does not have slow start and 
congestion avoidance. For simplicity, our network was a 
single server, a single client, and the satellite link 
comprised of the hybrid gateway and satellite gateway. 
The index page of one of the most popular websites, 
www.espn.com was the sample web page taken and 
modeled. Several other web pages were generated, which 
varied in the number of embedded objects and the sizes of 
these objects. Experiments were run using these pages 
and FTP, HTTP/1.0, HTTP/1.1 as the application layer 
protocols and the expected results were validated. We 
observed the active connection count, traffic sent and 
received over the link in packets/sec and bytes/sec, object 
and page response times as the global statistics. We also 
observed the link utilization, the throughput (bits/sec) and 
the queuing delay as the object statistics. 
 
The first experiment was run using HTTP/1.0 as the 
application layer request-response protocol. The 
simulation where the client requested the page from the 
server and this transfer was completed, was then run, and 
the desired statistics were collected. The existing scenario 
was then duplicated and the application layer protocol 
changed to HTTP/1.1. The simulation was then run again.  
 
We then changed the application layer protocol and 
defined the “MaxConn” and “ExactConn” scenarios in 
OPNET. MaxConn is defined as a scenario where the 
maximum number of TCP connections that can be set up 
between the client and the server is equal to the number of 
embedded objects in the web page. In our setup, this is set 
to be 50. The SS starts with 1 segment (small cwnd). The 
ExactConn scenario is defined as exactly one connection 
with a larger congestion window (cwnd) i.e. the SS 
algorithm starts with 4 segments instead of just 1. The 
idea of MaxConn was to reduce the latency in the 
network, by getting exactly one element per connection. 
Since, no pipelining or persistence was required; we used 
HTTP/1.0 for these connections. Theoretically HTTP/1.0 
can support a large number of connections. We simulated 
two web pages as two extreme cases, i.e. one with 1 large 
sized element and another page with 50 small sized 
elements.  
 
In the second experiment we transferred these two 
simulated web pages using the MaxConn and ExactConn 
scenarios as the application layer protocol instead of 
HTTP/1.0 or /1.1, respectively. Modifying the “profiles” 
module, in the simulation setup, accomplished this. 
 
In the third experiment we simulated a sample web page, 
i.e. www.espn.com, and transferred it from the web server 
to the client using HTTP/1.0, HTTP/1.1, MaxConn and 
ExactConn and compared the metrics. 

 



   ________________________2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14, 2003 
 

5.   Observations and Results 
 
The statistics from the two simulation runs of the first 
experiment were compared and the results stated in the 
literature survey were validated. 
 
The following observations were made with respect to the 
results of the second experiment using the MaxConn 
scenario and the page with many small elements. 
1. Traffic received per second was higher than with 

HTTP/1.1 and was much higher than with HTTP/1.0 
2. Traffic sent was the same as when using HTTP/1.1 
3. Page response time was lower than with HTTP/1.1 

and much lower than when HTTP/1.0 was used 
4. Object response time was as low or lower than 

HTTP /1.1 and much lower than HTTP/1.0 
In the ExactConn scenario of the second experiment, for 
the page with many small elements, traffic was high and 
moderate, though over a longer time period. The page 
response time was slightly higher than with HTTP/1.1 and 
MaxConn but much lower than with HTTP/1.0.   
 
In the second experiment, for the page with one large 
element, we observed unexpected results. We noted that 
all the 4 application layer protocol variations had identical 
performances in all considered metrics. This obviously 
meant that HTTP/1.0, HTTP/1.1, MaxConn and 
ExactConn use the same connection to transfer the page 
and its contents. We also noted a drastic improvement in 
the utilization, throughput (bits/sec) and especially the 
queuing delay, in object statistics. We hence concluded 
that multiple parallel connections are better for a page 
with multiple elements. Also, increasing the initial cwnd 
does not contribute to performance enhancement 
substantially for a page with a small number of larger 
objects. 
 
In the third experiment, with the ESPN page, we observed 
(Fig.1) that the traffic sent and traffic received per second 
(bytes/sec and packets/sec) was highest for MaxConn and 
considerably lower for HTTP/1.1. Both the scenarios 
required very little time for the entire transfer, though. 
The time required for this transfer using HTTP/1.0 was 
much higher and was extremely high when using the 
ExactConn scenario. 
 
The page response time (Fig.2) was lowest for MaxConn 
is was much better than all other scenarios including 
HTTP/1.1. The object response times (Fig.3) are identical 
for HTTP/1.0 and ExactConn and are slightly higher for 
MaxConn and higher than that for HTTP/1.1, but the 
performance of MaxConn is still by far better as most of 
the object response times (if not all) overlap. This is 
completely unlike the HTTP/1.0 or the ExactConn 
scenarios which bring in objects, back-to-back.   
 

 
 
 
 

 
 

 
We also ran experiments changing the number of 
elements on the page and observed that there was a 
definite and appreciable improvement in performance 
when a maximum of connections were used. When we 
increased the number of connections from zero through 
the number of elements on the page, the performance kept 
getting better and better as the number of connections 
approach the actual number of elements on the page. 
Identical results were observed even on increasing the 
number of connections above the number of elements on 
the page. A page with different number of elements has 
further validated these observations. 

Fig. 2 – Page Response Time 

Fig. 1 – HTTP traffic sent (packets/second) 



   ________________________2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14, 2003 
 

 

 
 

 
6.   Conclusions  
 
By means of our various experiments using different 
flavors of HTTP we observe that the setting up or 
multiple parallel connections achieved the best results in 
terms of link utilization, transfer time, page and object 
response time, queuing delay and throughput. When we 
do not use connections that support pipelining, setting up 
many connections is better than increasing the initial 
congestion window size of the connections. The 
performance of the system keeps increasing as the number 
of parallel connections approaches the number of 
embedded images on the web page. This is especially 
important since Netscape and IE browsers do not 
implement HTTP pipelining in spite of being HTTP/1.1 
compliant. Thus we conclude that using multiple parallel 
non-persistent connections, without pipelining, leads to 
best overall results, in the current scenario, where web 
pages typically have several embedded objects. 
 
7.   Future Work 
 
Future work in this area consists of, but is not limited to 
studying closely the effect of multiple parallel 
connections on server load and bandwidth utilization. We 
will also look into finding an optimal number of 
connections to be set up depending on the number of 
elements on the web page.  

 
References 
 
[AFP98] IETF-RFC 2414, M. Allman, S. Floyd, C. Partridge, 

"Increasing TCP's Initial Window", September 1998 
 

[CDi01]  IETF-RFC 3143, I. Cooper, J. Dilley, "Known HTTP 
Proxy/Caching Problems" June 2001 

 
[DFK97]  Fred Douglis, Anja Feldmann, Balachander 

Krishnamurthy, "Rate of Change and other Metrics: a Live 
Study of the World Wide Web", December 1997 

 
[ELR02]  Navid Ehsan, Mingyan Liu, Rod Ragland, "Measurement 

Based Performance Analysis of Internet over Satellites", 
2002 

 
[FGM99]  IETF-RFC 2616, R. Fielding, J. Gettys, J. Mogul, 

"Hypertext Transfer Protocol -- HTTP/1.1" June 1999 
 
[GPC98]  A.McGregor, M. Pearson, J. Cleary, "The effect of 

multiplexing HTTP connections over asymmetric high 
bandwidth-delay product circuits", November 1998 

 
[HOT97] John Heidemann, Katia Obraczka, Joe Touch "Modeling  

 the Performance of HTTP over Several Transport  
[JKJ97]  Protocols" June 1997 
 
[KAG99]  Hans Kruse, Mark Allman, Jim Griner, Diepchi Tran 

"Experimentation and Modeling of HTTP over Satellite 
Channels" 1999 

 
[KMK98]  Balachander Krishnamurthy, Jeffrry Mogul, David 

Kristol, "Key Differences between HTTP/1.0 and 
HTTP/1.1", December 1998 

 
[MDF97]  Jeffrey Mogul, Fred Douglis, Anja Feldmann, "Potential 

Benefits of Delta Encoding and Data Compression for 
HTTP" December 1997 

 
[MKF02] IETF-RFC 3229, J. Mogul, B. Krishnamurthy, A. 

Feldmann, "Delta encoding in HTTP", January 2002 
 
[NGS97]  Henrik Nielsen, Jin Gettys, Anselm Baird-Smith "Network 

Performance Effects of HTTP/1.1, CSS1 and PNG" 1997 
 
[NLL00]  IETF-RFC 2774, H. Nielsen, P. Leach, S. Lawrence, "An 

HTTP Extension Framework" February 2000 
 
[PMo94]  Venkata Padmanabhan, Jeffrey Mogul "Improving HTTP 

Latency" 1994 
 
[PMo98]  Venkata Padmanabhan, Jeffrey Mogul, "Using Predictive 

Prefetching to Improve World Wide Web Latency" 1998 
 
[Spe94]  Simon Spero “Analysis of HTTP Performance Problems" 

July 1994 
 
[Sta98]  Mark Stacy "Suggested Performance Improvements for 

HTTP" 1998 
 
[TMc02] Timothy McLaughlin “The Benefits and Drawbacks of 

HTTP Compression” 2002 
 
[THO96]  Joe Touch, John Heidemann, Katia Obraczka "Analysis of 

HTTP Performance" August 1996 
 
[Wca98]  Zhe Wang, Pei Cao, "Persistent Connection Behavior of 

Popular Browsers" 1998 
 

[ZBa02]  Xiaoming Zhou, John S. Baras, “TCP over satellite 
hybrid networks”, February 2002 

Fig. 3 – Object Response Time 


