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“Abstract

In this paper we consider multi-agent stochastic op-
timization and control problems, with partial infor-
mation. The agent can operate in a distributed and
asynchronous fashion, We investigate new problerms
that arise out of the interaction between observations
and control actions by the agent. We show that hew
non-classical and non-commutative probability mod-
els are needed in order to properly formulate such
problems. The models we develop here are inspired
by models developed for dynamical physics problems.
We establish a series of fundamental results forfthe
trade-off between information and control patterns
in distributed stochastic control, detection and esti-
mation.

'

1 Introduction

In stochastic control problems, the main ebjective
is Lo achieve satisfactory performance of a system
operating in an uncertain cnvironment. Typichlly,
perforinance is measured by the expected value :nf a
performance criterion {or cost function). In classical
stochastic control, there is one controller (controlista-
tion, control agent) and one perforinance measure.
The controller employs sensors to perform measure-
ments on the system, collects and stores the regult-
ing data (observations), which are subsequently pro-
eessed in actuators to produce the decisions (inputs)
that optimize the performance criterion. This pro-
cess is customarily identified as employing feedback
(more precisely, information feedback) from the sys-
tem.

The mathematical formulation of this classical
stochastic control problem i3 thought to be wall;un-
derstood to date [14, 15], but explicit solutions are
known only for few special cases. The case where the
information available to the controller is explicitly
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generated by some sort of noisy obgervation of the
“state” (i.e., the case of so-called partially observ-
able stochastic systems) is treated in [8, 14, 15, 18].
In classical stochastic control, there is no concern for
the interaction between information (and its trans-
mission) and control. Furthermore, there is no in-
teraction between measurement process and system
dynamics, and typically selection of measurements
(or observations) is not part of the problem. If we
can obtain an explicit solution, there is not much dif-
ficulty in implementing the optimal controller which
does not depend explicitly on the observation model
(in the sense that the latter is fixed). Available in-
formation is modelled by o-algebras, the system’s
“state” by a vector valued stochastic process, but is
not in general wel! defined and understood.

Serious complications arise, however, when one con-
siders the control of a stochastic system by various
controllers with different available information and
possibly different criteria. Such problems go un-
der the categories of non-classical information pat-
terns, stochastic control of large systems, decentral-
ized or hierarchical control, etc. Thus seemingly
sirtiple problems lead to major departures from clas-
sical stochastic control results (c.f.,, Witsenhausen’s
well known and often quoted counterexample [25}).
It is fair to state that despite many worthwhile
and enlightening contributions by several people
[2, 3, 10, 23, 24], the major questions still remain
unanswered. In our opinion, there are two fundamen-
tal problems whose resolution is widely recognized as
key to further progress:

{a) The interreaction between information and con-
trol.  Under this heading are such problems
as comimunication between controllers via “sig-
naling strategies”, “information neighborhoods”
for controlers, cost of information versus cost of
control [2, 3, 23, 24, 26]. Despite the pioneer-
ing work of Witsenhausen {25, 26], who devel-
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oped a number of important formulations and
results about the separation of the use of infor-
mation (i.e., estimation) and control, it is the
author’s opinion that there does not exist to
date an agreed upon and satisfactory formula-
tion of the joint “optimization” problem in in-
formation flow and control. It is important to
develop theories that treat control strategies and
information patterns in a balanced manner.

(1) The concept of “state” for such a system is not
well understood, although Witsenhausen gave
resnlts towards a resolution of this problem. The
problen stems primarily from the fact that in
multi-agent stochastic problems there need not
be a preassigned total time order of actions.
{n fact, action times may depend on observa-
tions and controls by the same or other agents.
This problem is also rclated to the availabil-
ity {theoretically, despite the obvious computa-
tional complexity) of a dynamic programming
algorithm for solution. |t is important to de-
velop local state descriptions. Glohal state de-
scriptions are equivalent to centralized control.
Local state models, and the dssociated local
times, permit the consideration of‘asyncl}mnous
actions by varicus controliers.

A third major preblem that may appear in stochas-
tic control problems with many agents, which has not
been emphasized to date, is centered around the pos-
sible énteractions between meusurements by different
agents and between systerm dynamvics and measure-
ments. We shall sce that these concepts are related
to some of the difficulties encountered to date and
are akin to very strong interaction between informa-
tion and control. This is typically the case where
one canuot prove existence of an optimal control law
{or strategy or design). We pointed out in |7} that
stmilar problems appear in communication problems
with quantum mechanical signal and noise models.
Pursuing further the similarities between these two
different problems, we develop certain new formu-
tations for the problems of interaction between in-
formation and contrel, and system dynamics and
measurement inspired by the methodologies used in
quantum cominunication theory [4, 8, 18]. We show
that & “non-commutative” probability theory (in the
sense the term is used in the axiomatic foundation
of quantun mechanics [1, 18, 19, 21, 22|) is neces-
sary for some of these problems. Motivation for this
work comes from the fellowing problems: control of
networked systems, distributed and asynchronous co-
operative control, sensor selection and scheduling in
distributed state estimation schemes, efficient coor-
dination of mobile wireless networks.

2 Multi-Agent Stochastic Control Problems

We are interested in decentralized control problerns
where one wishes to specify an optimal design, in
Witsenthausen’s terminology, but with the additional
characteristic that there is some flexibility over the
information pattern. By that, we mean that there
are several alternatives for the information available
to each controller, on which decisions have to be
based. What can be said abstractly about the joint
selection of information and control patterns? Obvi-
ously, we are not interested in an exhaustive search
between all possible information patterns. We are
also interested in problems where there is no strict
preassigned order of action times to be followed by
the various controllers {or agents). Thus in economic
systems, each agent {which can be an individual or
an organization) has ample choice of sets of data on
which to base decisions (consider, for example, the
various economic indicators or statistical data reduc-

_ tion results available to the public and the govern-

ment). Furthermore, it does not appear that there
exists a strict preassigned order of action times in
econoinic systems. 1n systems with such properties,
we encounter a new .kind of difficulty. Mainly, since
control actions by one controller affect the measure-
ments (or observations) of another, there may very
well exist situations where efforts by two agents (by
choice of information and control) to obtain as ac-
curate as possible values for two critical (for their
actions) variables will be in conflict, resulting in the
impossibility of such simultaneous accuracy. This
certainly requires very strong information-control in-
teracteon.

Finally, we are interested in systems where the agents
can anticipate certain control actions by other agents
when they are informed of the type, and not the
results, of measurements performed by these other
agents. Such so-called anticipatory systems have
been studied by others. Often it is possible to give a
statistical description of such a system’s reaction to
measuremnent. Roughly, the system’s “state” changes
due to the measurement performed. [t is quite in-
teresting to note that such properties were used by
Wigner Lo produce a well known (but rather easily re-
solved) paradox in quantum physies. Such phenonr-
ena can be seen again in economic systems where,
for example, measurement of income levels for tax-
ation may have adverse effects on productivity. In
another setting, the knowledge by a driver that a
traffic detector exists nearby may cause changes in
his velocity in order to, for example, catch the green
or yellow at an intersection.

Some immediate questions of interest, are:

(i) What are the implications of such phencmnena
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on the probabilistic models used in stochastic
control?

(ii) Are there any assumptions that will permit a
reasonable definition of o “state”?

(iii) How can we formulate optimization problems
for such control systems? :

(iv) Can we soive any?

The problems of interaction between information and
control described above have heen obgerved and dis-
cussed in the literature under such code words as
“sighalling strategies”, “information value” versus
“contral value”, “deadlock problems in distributed
estimation™, “optimal selection of measurement data
upon which to base a decision”.

In a stochastic systemn with several agents acting
asynchronously, aclion fitnes may depend on obser-
vations and controls by the same or other agents;
thal is, there is “asynchrony”. So the usually made
assumption about preassigned time order of actions
is not a realistic assurnption. It is clear that cnce we
aceept a central clock according to which each con-
troller times his actions, we have really accepted a
centralized control algorithm. So in this paper, we
would like to abandon the concept of global time and
glohal state and develop systematic means of gener-
ating “local state” models. An important point re-
lated with this issue is that these “local states” (or
“local models”) must be supported by locally col-
lectable data. To elaborate further on the concept of
interaction between measurements performed by dif-
ferent agents, it is easy to see that when two agents
operate in a system, they can often be in “conflict”,
meaning here that it can be impossible to coordi-
nate their actions so that each obtains high quality
observational data sirnultancously.

We show in this paper that it is possible to develop
a general mathematical framework that has several
of these desirable features built into its basle mathe-
matical constructs. Furthermore, it allows the treat-
ment of information flow and control actions (strate-
gles) as “dual” concepts. For example, an appro-
priate information pattern may facilitate the con-
trol task and vice versa., We need then to develop
methodologies that establish this duality in a pre-
sctiptive accurate sense. This is 2 clear prerequi-
site for halanced treatment of information patterns
and contrel strategies. Furthermore, once this “du-
ality” is established in a mathematical sense, one can
proceed to develop an optimization framework which
makes feasible the “evaluation” of proposed control
and information flow stratepies jointly.

Ciiven our main thrust just described, it was natu-
ral to focus on understanding information colleciion

and information flow in multi-agent stochastic sys-
tems. This led us quickly to a fundamental problem:
Are the currently used probability models adequately
equipped to analyze these eritical issues? In plain
language, this transiates: Do we currently have ad-
equate representations of data collected by the sen-
soring elements in a multi-agent stochastic system?
Here we noted certain similarities between some of
the critical preblems mentioned above and the ax-
iomatic development ol quantwum mechanics? This
led us to certain postulates about structure of the
probability models in such systems. We would like
to emphasize here, however, that there is one fun-
damental difference. Namely, the non-commutative
models in quantum mechanics had as objective the
description of the passive interaction between mea-
surement and “local states”. What we have in
stochastic multi-agent systems is actually an active
version of these models.

2.1 The Need for a Non-Commutative Struc-
ture

The heuristic discussion of the previous section sug-
gests that a careful examination of the information
available for decisions and a precise description of its
place in the mathematical formulation are necessary
for further understanding of these problems. Witsen-
hausen proposed a model for doing this. According
to that model, the system’s dynamics are determined
by the realizations of the noise variables and all con-
trol variables. The performance measure can also be
cxpressed as a function of these same variables {by
solving the system’s equations). Finally, for each de-
cision, the data available for that decision are func-
tions of these same variables and define a o-field in
an appropriate space. The complete specification of
the control problem consists of the specification of
the performance measure and these o-fields.

Following Wipsenhausen, let (€2, B, P) be the proba-
bility space for the intrinsic random variables of the
system and suppose we have a finite set A of agents
acting on the system. In this formulation, a con-
troller acting at two different times will be considered
as two different agents. Let (T, F,) be the measur-
able space in which agent a selects his control action
Ug-

Considering product sets and product o-fields, to a
subset B of agents we associate the set

Hg =0 xHup Ta
and the o-fleld
‘B =B x HacB P‘a

All o-fields are considered as subfields of F, using the
natural projection of /{4 onto Hp. The information
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available to agent « is characterized by a subfield
T, of 4. 'I'he possible control laws for agent a are
the functions v, @ H, --» T, which are measurable
from 1, to F; they forin the set Iy, Then the con-
trol for the subset of agents B < A can be chosen
from Ty = Iuep Tu and the whole design in 1" 4.
Witsenhausen then goes on to characterize various
types of informalion patierns (i.e., the collection of
Ty ), such as causal, classical, quasi-classical, without,
self-information, etc.

Our first point is that in a well-posed multi-agent
stochastic control problem, the agents will make in-
ferences ahout systern variables based on their own
information fields T, (appropriately pulled back in
B). That is, the agents will compute conditional
expectations {(and/or probabilities) either implicitly
or explicitly. To us, one important difference be-
tween classical and nonclassical information patterns
is that these operations commute in a classical pat-
tern and do not comrmute in & nonclassical pattern.
Indeed, according to [26], an information pattern is
clussical if 1t is sequential (i.c., there is an ordering
{ay,ag. - -, ua) of A such that T, C Fray, o epead
for 1 <k < wand T, C FyT, C Ty for
k=2 - n Then the commutativity of conditional
expectations is just a consequence of the smoothing
property of conditional expectations [15]. The slate-
ment for the nonclassical patterns is also obvious.
The non-commmutative modifier of our title refers to
the corresponcing property of conditional expecta-
tions. We adopt the point of view that the o-fields
T, forming the informaticn pattern are generated
{or correspond to) measurements {for observations)
performed on the systein. The natural question is
then: Does there exist a different model than the
one described above which can describe statistically
the events (observations) associated with a niulti-
agent stochastic control problem, including an in-
trinsically non-commutative conditional expectation
operation? We shall see in a later section that there
is an affirmative answer and that a prime example of
such probability models is the von-Neumann model
of quantum mechahics {18, 19] and extensions.

Second, we firmly believe that one of the deficiencies
in the current development of decentralized stochas-
tic eontrol is that the information pattern is assumed
fixed and given apriori. Little effort has been di-
rected towards “optimal” selection of information
pattern. The articles that address such problems (see
references in |2, 3, 24]) use a formulation that rep-
resents the choice of information pattern as an opti-
mization problem over a Anite set of parameters. The
usual method of attacking such problems is to solve a
parameterized lamily of stochastic control problems,
then to select the parameters which result in better

performance, and thus choose the corresponding in-
formation pattern. This approach has been followed,
for example, in problems of optimizing sensor loca-
tions in distributed systems.

2.2 Representative Problems

We start from problemns that are static. .Basically,
these are distributed detection and estimation prob-
lems, with many sensors. We discuss extensions to
simple dynamics, still with static information flow
(i.e., no measurement-dynamics interaction). These
problems basically have event driven transitions as
their dynamics. We will assume simple control cost
structure, information (computation) cost structure,
in order to facilitate the formulation of the joint
problem. in an optimization framework. We shall
comnment on extensions and formulations of more
complex system problems, but we shall not analyze
them. In particular, we shall discuss duality of con-
trol and information patterns and hierarchies.

A concrete application is the so-called Distributed M-
ary Detection problem [4, 7, 18]. There is a finite set
of hypotheses Hy, Hy, -+, Hy, each of course affect-
ing in some way the “system”. We deliberately do
not want to specify what we mean by system. There
are also N agents; let us denote them by 4y, -+, Ay
The agents collect “data”. They can store, make
inference, communicate data or communicate infer-
ences between themselves according to certain rules.

The next question is: What exactly is meant by the
influence of Hy, Hy, -, Hys or the “system”? Here,
we can pose two kinds of problems whose treatment
differs by at least an order of magnitude in the math-
ematical sophistication required. In the first category
of problems, we assuimne existence of a global systemn
state. In the second category of problems, the hy-
potheses Hy, Hy, - -+, Har affect directly the statistics
of the data observed by each agent. BEach agent can
interpret this effect through a local state model. We
shall describe results for this second problem.

One important concern to us is the following: Do
not fix information pattern apriori and then optimize
decision tules. Rather, determine the information
flow structure that should be employed given some
minimal but realistic constraints.

A rather challenging question is: How do we formu-
late such problems so dynamic information exchange
occurs as a result of it? We expect the resultant dedi-
sion strategies to force agents to act asynchroncusly.
For detailed deseriptions of the results presented here
we refer to [5].

750



3 Non-commutative Probability Models:
Algebraic Structures

In this section, we provide an axiomatic foun-
dation of several (increasing in complexity} non-
commutative probability models that can be used to

. represent the data observed by agents in a large sdale
systeni.

We want to emphasize that our approach begins
from fundamental requirements that will later en-
able proper farmulation of distributed communica-
tion problems. The primary benefit from such works
i that the various physical assumptions, enginger-
ing intuition, etc., are built into the algebra of the
model, and this process mechanizes the subsequent
derivations. :

In quantum mechanics, such an approach has been
originated by Birkoff and von Neumann. The start-
ing point was the structure of propositions, that is,
yes-no measurements {19). Due to its similarity tb a
logical system, the set of propositions is called quin-
ium logéic. This set can be easily given the struc-
ture of a lattice, and the basic question addressedi by
physicists was: Is there any set of phenomenological
axioms that can allow one to identify the quantum
logic with the set of orthogonal projections on a cam-
plex Hilbert space #f 7 Details of such theories can
he found in {18-22]. There is one major disadvanthge
in this school of thought, however, as pointed out
by Pool [21, 22]. Tt tacitly assumes the structure of
quantum logic is sufficient in itself to determine the
mathematicatl formalism which should be employed
in the quantum theory. This is not true, however; It
is a fact that quantum mechanics is used not so much
to reproduce the logical properties of simple yesrno
experiments (and sequences of those) but rather to
compute transition probabilities, cross sections, ¢te.
Therefore, the probabilistic aspects must be unified
with the logical aspects. The interested reader is're-
ferred to [19-22] for details in the developmentsd of
the axiomatic foundation,

Following the fundamental suggestions made by
Baras {7], we have developed similar, in principle,
models for the data collected by agents in a dis-
tributed stochastic system.

Beginning from fundamental requirements on the
data and propositions that appear in distributed sen-
sor systems we first develop some algebraic struc-
tures. First, a simple proposition or simple event is
a proposition that can admit a yes {usually assigﬂled
the binary value 1) or no (assigned the value 0} an-
swer only, regarding their validity. Their validity can
be verified (ascertained) by some combination of the

data {measurements, experiments) perforined by the
various agents. We denote by F the set of simple
events (or propositions).

it is important to note that “ambiguous” events (i.e.,
requiring probability assignments for their validity)
are not simple events. There is a set of natural
axioms we impose on F, supported by databases
operating in multi-sensor, multi-agent distributed
stochastic systems. We also have two important op-
erations of émplication (denoted by < ) and orthoern-
plemenlation (denoted by ). We then have:

Theorem 1: The set of simple propositions, in a
distributed, asynchronous stochastic system is an or-
thomodutar o -orthoposet.

This however is not a complete characterization. The
reason is that the data bases of such a system cannot
just be characterized by the logic (or logical struc-
ture) of the simple events that can be verified by
the agents. The structure of the “logic” by itself
is not sufficient to deterrnine the mathematical for-
malism which should be employed. It is a fact that
a mathematical theory of distributed detection (or
estimation) (and more generally, of stochastic multi-
agent systems) is used not so much to reproduce the
logical properties of simple yes-no experiments per-
formed and answerable by the agents, but rather to
compute statistics of “system state” transitions and
of outcomes of more complicated experiments {mea-
surements). Therefore, we next unify the probabilis-
lic aspects with the logical aspects.

Thus we are led to consider eveni-state structures.
We think of states as the set of all possible (or
just pertinent to the problem) configurations of the
stochastic system. We want to emphasize that we do
not assumne a memory interpretation for states. This
ie done on purpose, as we do not want to have global
causality due to the implication of existence of global
time connected with it (i.e., synchrony}, which in
turn implies a centralized operation. Recall also that
we want Lo incorporate or allow anticipatory agents.
First, we consider global states and arrive at a more
satisfactory model. This cannot be done without the
introduction of probabilities. So we are led to con-
sider the probability function P : Ex § — [0,1]
with pel, aeS:

P(p,a) = Pr{p occurs when the global state is @ }.

Thus we now have a triple (K, S, P}. The details
of our constructs are strongly motivated by certain
quantum mechanical models [19-22], and arc omit-
ted. Under certain natural axioms we have estab.-
lished the following.
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Theorem 2: Civen an  cveni-stale  struclure
(F,.5. ), satisfying certain azioms compatible with
general principles of information flow and daiu bases
in multi-agent systems, one ean construet (£, <7,
wrel S, such that

a) (F, <.} 4 an orthomodular o-orthoposel.
P

(b) Sisa strongly order-delermining a-conver sel
of probability measures on (I, <,7).

() @ -— pq is o bijeclion of § onto S.

There is actually a converse, asserting that the above
representation is “faithful”, in the sense that it can
generate the statistics on which it was based.

The set S is dunlto the set S since it correspondsito a
subset of the real valued functions on S. Thisis aleng
well known mathematical methods of describing sets
either by defining properties or by a set of functions
on them. These constructions have quite interesting
interpretations in the context of distributed systems.
The states in S are basically probability assignments
to simple events. Next, o-convexity allows the con-
struction of “mixture” states; for example, this shows
how prior probabilities about, states are captured in
this formulation. The axiom ahout strong order-
determinacy is 2 “minimality” assumption. In other
words, we are using the smallest state set that can be
supported by the observations (i.e., the outcoraes of
the simple experimentations to validate occwrrence of
events in K. It is interesting to observe how natural
these models are. Indeed, states here (i.e., in the §
picture) are sapported by observed data (exactly as
they should be on system theoretic grounds). They
can be quite abstract constructs to represent the in-
Auence of events or hypotheses on observed data. It
is then quite natural to demand certain minims:ility
on the states. Next, observe that it is not difficult to
see how this model can be extended to include local
states. A reasonable departing point is as follows. A
subset E; C & is a set of local stales for an agent A;,
if the states pséi have support in the set of simple
evonts that can be verified by the agent A; alone,
F;. Several possibilities exist here since communica-
tions hetween agents will influence local state sets.
Further research in this direction is needed.

The reason for this discussion is to indicate thav such
an event-state structure is a reasonable model for
the probabilistic structure of a muiti-agent stochas-
tic control system. For example we can place Wit-
senhavsen’s formulation [13] in this model.

As a consequence of these results, we can now state
our first resuly regarding appropriate probahilistic
models in multi-agent stochastic systems,

Theorem 3: The daiabuses in a mulli-agent
stochastic controf system can be used to construct an
event-state structure (£, 5, P) or (E, 8) as prescribed
by Theoremn 2. This representation is faithful in the
sense that it can gencrate the satistics on which it
was based.

There are two generic examples of such event-state
structures. They represent non-classical and clas-
sical probability models in muiti-agent stochastic
systems. [n the first, we consider Q(H), the set
of all orthogonal projections on a separable com-
plex Hilbert space A, and let < be the usual or-
der of projections. Let @' be the orthogonal com-
plement of @. Then (Q(H), <)) is an orthomodu-
lar o-orthoposet. Let S be the set of all positive,
trace class, self-adjoint operators on A, with trace
one. Let S = {u,{), pe8; uo(@) = Tr[pQ]}. Then
g . Q(H), represent an event-state structure with the
probability function being P{@}, p) = Tr|pQ], which
is, of course, von-Neumann's Hilbert space model.

The second example, consists of a o-algebra E of
subsets of a set X and § is a o-convex, strongly
order-determining set of probability measure on X.
This is the classical Kolmogorov model of probability
theory with several probability measures.

4 Communication Constraints, Incompatible
Events and Event-State-Operation
Structures

On intuitive grounds, we expect that in a multi-agent
system we will have noncompatible events; that is,
events whose occurrence cannot be simultaneously
verified by two or more agents. Whether or not the
verification procedure used is causal or non-causal is
not essential. This can be seen as a manifestation
of communication constraints in a networked control
system, for example. Tt can also be interpreted on
the grounds of expected interactions between agents
in s multi-agent stochastic control problem.

Consider for a moment a distributed sensor network.
It is clear that a specific sensor will be able to ver-
ify the occurrence or not of a restricted set of sim-
ple events. One may legitimately define this subset
as the domain of observation or sensor range of the
sensor. Similarly, an agent in a multi-agent stochas-
tic contro} problem will be able to influence the oc-
currence of a subset of simple events. One may de-
fine this suhset as the domain of influence or control
range of the agent.

Having concluded that natural models for multi-
agent stochastic systerns must allow for incompat-
ible events, a natural question to ask is: How can
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we build probabilistic models which have this incom-
patibility property built in automatically? Towards
answering this question, let us remark that there is a
fundamenta! difference between the two examples of
Section 3: namely, the first allows for events which
are ot compatible (i.e, not simultaneously verifi-
able) while this cannot happen in the second. This
indicates a fundamental, and highly nontrivial, limi-
tation of clagsical Kolmogorov models for multiagent
stochastic systems. -

For a recent ohservation along similar lines we re-
fer to [L0}. To incorporate compatibility, we intro-
duce a generalization of “conditioning” via certain
constructs called operations. The notion of compat-
ibility corresponds to a distinguished relation € on
££121,22]. We can assert that there exists at most
one relation C on £, is determined (uniquely) by the
following property: “for p, qeE, pCq iff there exists a
subset B C E, with B Boolean, such that p, qeB.”
Boolean here means that A, v make B into a Boolean
ring. Now clearly, if p, ge &2 and pCq, then p A g exists
in £. In other words, if p, g are compatible events,
their occurrence can be simultanecusty verified in
a multi-agent set-up. Now then, one deficiency of
the non-commutative probability model, based on an
event-state structure described in Section -3, is that
the following question cannot be answered satisfac-
torily: H p, geF, and pCq (i.e., p, ¢ non-compatible),
then does p A g exist in E7 Note that this problem is
related to the question whether or not £ is a lattice.

The corresponding interpretation in a multi-agent
stochastic system setting is apparently as follows, I
data collection procedures of experiments or observa-
tions (or sensors) are described for two incompatible
(1e., non-simuitaneously verifiable) sevents, how does
one describe the data collection procedures or exper-
iments or observations (or sensors) for the “and” (or
conjunction) of these two events? The answer is pro-
vided by introducing a generalization of “conditional
prehability” and “conditional expectation”.

This question is linked with the concept of “condi-
tional probability” in an event-state structure. In
the Kolmogorov model, the concept of conditional
probability and the associated concept of Random-
Nikodym derivative are of paramount significance for
the analysis of classical stochastic contro! systems
{8,15,16]. In the classical model, conditional proba-
bility is expressed as a mathematical object defined
constructively in terms of the primitive entities of
the theory. How can this be done in the generality
of our discussion here? The hint comes from the in-
terpretation of the operation introduced in [4,9,18]
in order to handle joint statistics of repeated non-
compatible measurements on the same system. That

is, operations are a form of conditioning. Indeed,
these sel transformations are widely emplayed to
represent the conecept of conditional probability in
von-Neuniann’s model.  This leads to difficulties,
however, and to the consideration of event-staie-
operation structures (Pool [21, 22]). Our constructs
follow [21, 221, An event-state-operation structure
is a 4-tuple (E, S5, P, T) where (E, 5, P) is an event-
state structure and T is a mapping, T E —= §_ =

{ set of all maps from $ inte S } which satisfies cer-
tain axioms. f pef, T}, is the operation corresponding
to the event 1. For aeS, we interpret Tpa as the new
state conditioned on occurrence of the event p and
prior state a. The domain I}, of T are those states
that can induce (or influence) the occurrence of p.

We let

Z - {Tpl olp, 00 Tp.; p1.Psy -y Prel}
T

be the set of operations.

We assert the existence of an event g,, which occurs
with certainty in the state o if and only if aCD;,.
This event g, can be used to design an experimental
procedure or observation to determine whether or
not a state helongs to the domain D, of an operation.

(3"r, o} is a multiplicative subsemigroup of (3, o},
where o is function composition. We introduce the
* operation on )., to mean reversal of application
and show that it is an involution. Recall (Foulis [17})
that a Baer®-semagroup is an involution semigroup
where the annihilator of each element is a princi-
pal left(right) ideal generated by a self-adjoint idern-
potent. We can now state our second fundamen-
tal result on non-commutative probability models for
multi-agent stochastic control.

Theorem 4: If (E,5,P,T) is an cvent state-
operation structure supported by the databases and
conditioning of o multi-agent stochastic control sys-
tem, then (Y .r,0,%,~) is a Baer*-semigroup.

Here ~ is the map @ — T, . If one views the event-
state structure of the previous section as a passive
picture [in the sense that it considers only the prob-
ability of occurrence of events), then the introduc-
tion of the concept of operation provides an active
picture. Now it is easily seen from Theorem 4 that
for p,gel, p < q iff T, 0Ty =Ty, This last property
reminds us of the so-called “smoothing” property of
conditional expectation.

We started this section with the problem of deter-
mining whether p A g extists for p, qef. The natural
question to ask now is: Can the greatest lower bound
p A g, lor p, g be interpreted via the composition of
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the Baer*-semigroup, described? The answer is:

Theorem 5: If (F,S A1) 4 an event-siate-
operalion structure, then (F, <) is an ortholatiice.
Moreover, if p,qels, then Ton, = (TpoTy) o Ty

We also have:

Theorem 6: Assumptions as in Theorem § . Then
for p,gel0 the following are egquivalent. (a) pCq, (b)
ol =Teoty,. [Fplq then Lopng =To 0T,

T'he important conclusion is that compatibility of
ovents has been dnterpreted ws commutativity of the
wssociated operations, i.e., of the ussociated condi-
lioning or inferences. This is & fundamental result
which has significant implications in the analysis and
control of mnlti-agent stochastic systems.

S0 in the setting of Baer*-semigroups, we can asso-
ciate the compatible events with comrmutativity of
the corresponding operations. Note [19-22] that op-
erations and observables are quite different kinds of
entities. It is accepled that the various constructs of
Baer*-semigroups have nice physical interpretations
in this model of guantum physics.

Returning to multi-agent stochastic control systems,
we note that classical systems are characterized by a
commuiative Baer*-semigroup structure while non-
classical information patferns correspond to non-
commutative semigroups. Some natural questions
that need to be answered are: How do specific sirue-
tural properties of the system appear in the struc-
ture of the semigroup? Another important point is
thal an operation associates Lo every event a map of
the stale set into itsell which can be interpreted as
due to a control law. ‘That is, we can think of an
operation as a model for the combined operation of
obtaining a measurement and applying a control Jaw
by an agent. This is the active interpretation of an
operation which is significant for stochastic control.
The passive can also be used to model the system’s
interaction Lo measurements.

We have also succeeded in interpreting p A g for non-
compatible events in terms of the operations of the
semigroup. Note, however, that we need both o and
~. This result can be interpreted as a “data fasion™
or “agreement” among different agents. It is quite
remarkable that it comes automnatically out of the
imposed structure.

We have also discovered that: the orthomodular
orthoposet (I, <.") associated with an event-state
structure s not an ortholattice necessarily: the in-
troduction of operations with the axioms given forces
(E, <.} to he an orthomolular ortholattice! This is

a major gain in the structure theory.

Substantially more work is needed in the areas of
representation theory for Baer*-semigroups, classifi-
cation theory, coarse structure theory and fine struc-
tire theory, in order to take full advantage of our
basic results. We are investigating these problems.
On the basis of these findings and results, we then
can justify our second fundamental result in the hi-
erarchy of models we have developed.

Theorem T: Databuses and conditioning in o multi-
agent stochastic conlrol system can be used to con-
struct an eveni-state-operation structure. This is a
faithful representation.

'

Regarding representation theory, there exists a large
body of mathematical work on representation the-
ory for Baer®-rings, Rickart*-rings. In particular, it
is known that we can embed the Baer*-semigroup
in a C*-algebra structure. Then via the Gelfand-
Naimark theorem we can ascertain that there exists
a Hilbert space I such that a C* algebra A is *-
isomorphic to a closed *-subalgebra of £{H) = the
space of bounded operators on H. These ideas can
be pushed further toward a more detailed structure
theory of Baer*-semigroups.

Let us give an example in that direction and of the
results one can gel. What one would like to do, of
course, is to identify assumptions on the information
pattern and flow that allow explicit representation of
the Baer*-semigroup. Then one finds this structure.
Subsequently, the value of these results, and the va-
ldity of the axioms, can be tested by examples in
distributed stochastic control problems. We can for
instance show the following.

Theorem 8: If (F, <) is atomic and the atoms £
are mapped to pure states under T, then (E, S, P,T)
cun be represented as the lattice of projections on a
Hilbert space.

The assumption is typically valid in applications.
Furthermore in applications the Hilbert space is of
ten (inite dimensional.

5 Non-commutative Probability Models:
Coenvex Structures

The algebraic structures discovered in Sections 3 and
4 can be used effectively to understand several mod-
eling problems in multi-agent stochastic control sys-
tems. However, they are not suitable for the formu-
lation and analysis of optimization problems. For
the latter, it is important to have such properties as
convexity. Such more sophisticated models are de-
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veloped hete.

Let us consider here the particular Baer*-semigroup
thal pertains in the generic model described at the
end of Section 4. We know that this model admits
an operation map. It turns out that it is more con-
venient to work with the unnormalized version of op-
erations [11]. So¢ in the Hilbert space model, an op-
eration is a positive linear map T": T5(H} — Tg(H)
which also satisfies :

0 < TrT'(p)} < Trp)

for all p € T1{H). We emphasize again the phe-
nomenological interpretation of an operation: An op-
eration describes the change of state associated with
an observation. The probability of transmission of a
state p by an operation S is taken to be Tr{S(p)],
while the output state conditioned upon transmis-
sion is taken to be

T PrS(p)
Associated with the operation S is is effect, defined
as the unique operation A for which

Tr[S(p)] = Tr(pA]

for all p € 15(H). The interpretation of A is that
it determines the probability of transmission but not
the form of transmitted state. It is now seen that
this unnormalized version of operations leads to a
slightly different model for the propositional calcu-
lus which is actually more satisfactory. The set of
all effects £F consists of all bounded operators A on
I such that 0 < A < 1. £F is a poset and has a
least and greatest element. Furthermore, it has an
orthocomplementation given by the map A" =1 - A.
It is easily seen that the set of orthogonal projec-
tions P(H) is the set of extreme points of £F. Note,
however, that £F is not a lattice, but on the other
hand, it is a convex set in L(H), Furthermore, P{H)
iz dense in £F for the weak operator topology. This
circle of ideas emphasizes T=(H) as the state (or en-
semble) set for the medel, i.e., consider the normal-
ization Trlp] = 1 of secondary importance. Since we
know that the density operator of a system is the
analog of the probability density of a stochastic sys-
temn, it is seen that the above argumentation is akin
to considering the unnorinalized probability density
in classical formulations of filtering and control prob-
lems [6, 15]. This often turns some of the crucial
equations to linear ones! See, for example, the un-
normalized conditional density equation of classical
nenlinear filtering of diffusion processes [6].

These ideas can be applied to the general Baer*-
setnigroup setting, and this was done by Ludwig {19].

Starting from an event-state structure (¥, S, P) one
embeds S into the real vector space V of functions
on S defined by X(p) = 3.0, aP(p @) 6i € S,¢
real numbers, n arbitrary. Under this embedding
a— P{-, a). By letting

il X [|= sup | X(p} |
peck

for X € V,V becomes a normed linear space, and
we consider its completion which we also write as
V. Then V is a real Banach space and let V* be
the dual. By considering P(p, X) = X{p), P can be
defined on the whole of V', and for p fixed this defines
a linear functional on V, allowing us to identify £
with a subset of V*. Furthermore, one can introduce
a partial order in ¥V by a cone ¥¥. V is usually
called the state space by Davies [11-13]. In V the
norm ig linear on V'™ and, therefore, can be uniquely
extended to o positive linear functional 7 : V — R,
with | 7(z) |<]| = || for all z € V, and 7(z} =|| z ||
for all z € V. The states § are identified as the
elements of {z € VT :r(z) = 1} and form a convex
set. The set of effects £F is in this general setting
identified with '

EF={peV0<d<rh

EF is convex, weak® compact, partially ordered and
has the orthocomplementation

(j)lz‘r—(ﬁ,

The events I are identified as the extreme points of
EF.

There are several advantages of doing this transfor-
mation from an event-state structure to a state space
structure: (a) we embed a nonlinear structure into a
linear richer structure, (b) the relationship with clas-
sical probability theory becomes more apparent, (c)
the theory fits in nicely with the use of C*-algebras
[19, 20] in quantum statistical mechanics and quan-
tum field theory.

We summarize these results in

Theorem 9 Teo any event-state-operation struc-
ture (E,8, P,T), there corresponds a pair of Banach
spaces V,V*, with positive cones and a trace func-
tional T on V as abowve. S is identified with a con-
vex subset of V. L as the set of extreme points of
a conver subset of V*. Operations in >, corre-
spond to linear positive maps T 'V — V such that
0 < 7(T:) < 7(z) for allz € VT, To every operation
T we can associate s effect pr via

T(Ty) = lz), VeeV

We turn now in a discussion of more complex (but
more realistic) models of the observation process in
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a roulti-agent system, utilizing the framework of a
state space. It is inportant to realize that the con-
cepts and constructions to be introduced can actually
be worked out for the general setting of an abstract
state space (or a Baer®-semigroup).

Thinking of the transformation performed on a state
by an operalion as one correspending to a simple
ves-no validation, it is easily seen that for a general
continuous observation we need to consider operation
valued measures OV M. lnspired by some similar
constructs in quantum communication systems [4, 7,
9, 18], we introduce the following.

A generalized sensor (or observation) on a measur-
able space (U, B) is a map M : B — £7(V) such
that

(i) M(B)> M(¢), YVBeB

(it) for B;N By = 0,4+ 4, M(J] B:) = $oi0y M(B))

£ osi=1
(i) T(M(L)p) = 7(p) for all p & V.

The interpretation is that a generalized sensor ac-

cepts a state, measures some properties and ernits an
oucput state conditioned on the value of the measure-
ment {observation). Families of generalized sensors
hecome important when we consider dynamic prob-
lers. For static problems we need only the measure-
ment associated with a generalized sensor. Indeed
for distributed detection or estimation for example
there is no action or conirol.

The rmevsuremeni Kps associated with the general-
ized sensor M is the unique ¥V *-valued measure such
thal

Kun(B)p) = 7|M(B)pl
VoeV, BeB.

We would like to note that the statistics of the ob-
served (or collected) data, when the system “state”
is p, by a generalized sensor M are given by the prob-
ability nieasure K (B)(p), VB &€ B. Consider, now,
two generalized sensors M on Uy and My on Uy with
values in £7(V), then we can define thweir composi-
tion M2 as a sensor on U x Us, which represents the
operation of first My and then Ms. The composition
is uniquely determined from the equation

M3(By x By){p) = Ma(Ba)M(B1)p

for all p € V and all By, By. This then leads natu-
rally to a family of generalized sensors parametrized
by time if we wish to describe repeated observations
from the same system. In a series of papers {11-13],
Davies introduced such families when the measure-
ment outcomes form a marked point process and he
termed thern quantum stochastic processes. We in-
troduced a generalization to allow for outcomes with

continuous sample paths. Tet U be a complete sep-
arable metric space, B the Borel g-algebra on U/, ¥,
the set of all measurable functions form [0, t] into U/
and F; a c-algebra on Yi. A generalized stochastic
process with outcomes adupted to Fy is a family of
generalized sensors M, on V; such that:

(1) limy_,qg MY, )p = p for all p € Tg(H),

(1) My(B)M,(A)p = Myi(e(A x B))p for all
4¢e Fy, B € Fy, where ¢ maps Y, x Y, onto
Y11, via concatenation of sample paths.

Note that (i1} is the appropriate analog of the

Chapman-Kolmogorov equation of classical probabil-

ity. The physical interpretation is clear. So M {A)p

is the new state given the initial state was p and

that the sample path of the outcome process was in

A & F;. The one parameter family T, = M (J})

forms a semigroup of operators on Tg(H) describing

the evolution of the state as perturbed by measure-
ment. If we let = denote the empty sample path, then

Sy = M.({z}) is also a semigroup on Ts({H) describ-

ing the evolution of the state unperturbed from mea-

surements. For certain processes, Davies was able to
characterize the differential version of the effects of
measuremert.

We close this section with an important result of
Naimark [18] which has significant implications to
questions of implementation of measurements, gen-
eralized sensors, etc. A natural question, is how
are measurements interpreted? Briefly, consider a
measurement K on the product measurable space
(U, BY = {(U1,B1) x (Ua, By). If one could measure
together two quantities which take values in Uy, Uy
then their composite measurement should be describ-
able by such a K on {{/, B). Then we can define the
“marginal measurements” M; on Uy, Mz on U/y via
M(B) = M({B x By), and similarly for M. [t isa
well known fact that if both M, M; are projection
valued then Mis Is projection valued and M, My,
commute. There is a way to interpret M as a co-
ordination of two nencempatible cbservers (sensors).
This is provided by Naimark’s theorem which asserts
that given a POM M on (U, B) with values in L{H),
there exist a pure state p, on a Hilbert space H. and
a PV M Ep on H x H, such that Tr{(p x pe) F(A)],
for any p and any A € B.

The triple {H,, pe, E'} is called a realization of M
and the physical interpretation is that M is statis-
tically equivalent to the simultaneous measurements
performed by compatible observers on an augmented
system (the original augmented by the auxiliary sys-
tem (H., pe). Examples of such constructions appear
in guanturm communication problems [4,9,18].

The advantage of such representations is that they
provide compact models for the statistics of fairly

756



complicated observation proecesses.- The disadvan-
tage is that in the context of multi~agent stochas-
tic systems, knowing K (-), it is not possible to re-
cover Lhe actual ineasurements and communications
strategies or histories.

6 Distributed M-ary Detection

Let us now return to the distributed M-ary de-
tection problem described in Section 2.2. Suppose
that the N agents operate asynchronously over a
time interval [0,7]. We collect all the local ob-
servation times 5,7 = 1,---, N and globally order
them. Each agent 4,7 = 1,---, N, at each local in-
stant ti,i==1, -+, N,k =1,--- L{i), has data y*(¢})
(his own) plus data 27(¢}),7 #¢,5 = 1,---, N, com-
municated to him from other agents. 27 may be pro-
cossed or unprocessed. We want to ask the following
fundamental question. Given arbitrary communica-
tion, how can one represent the statistics of the col-
leeted data (y(4), 27 (84)),e = 1o, N, j # 4,5 =
I N,k = 1., L{)7 We have the following an-
SWer.

Theorem 10: In the distributed, M-ary delection
nroblem described above, any sequence of observa-
lions and communications belween the agents can be
represented by an appropriate measurement K (-}
on. somne measurable space (U, B).

The proof is nonconstructive. This we consider as an
important conceptual tool, particularly with respect
1o obtaining performance bounds. The latter is its
greatest advantage. 1ts disadvantage is that it is not
possible to recover from K the actual observation
process and the communication strategy.

Another important point that was made earlier is
that in this specific setting, Naimark’s extension the-
orem provides a natural way of coordination between
nencompatible observers. The fact that this comes
out of the mathematical model automatically is a
measure of success of the underlying models that we
constructed.

To solve now the M-ary distributed detection prob-
lem in view of the representation result presented in
Theorem 6, one proceeds as follows. Here, we con-
centrate on the Hitbert space model, but it should
he clear by now how to extend the computation to
more general models.

tiven the M-hypotheses H;, -+, Hps, one constructs
risk operators W, € Tg(H),7 = 1,---, M, based on
assumed costs, states corresponding to the M hy-
potheses and prior probabilities. We allow, of course,
randomized strategles, and we scarch lor the opti-

mal measurement K (), subject to some informa-
tion pattern constraint. Let

IL-:/ ML) K (), 5= 1, M
U

The problern becomes

M
min T Z Wil
i=1
over all positive operator valued measures (POM)
f;,i=1,---, M such that

(I}, € A

Here 4 is a convex set of POM's corresponding to
some information theoretic constraint on informa-
tion {communication) patterns such as capacity con-
straints, for example.

This problem is a convex linear programming prob-
lem and its duality theory is well understood {see,
for example, [4, 18]). One can then, in this exam-
ple, begin to understand how the duality between
decisions and information patterns can be put in a
firm framework. Further work is needed along this
premising direction, however. For example, for the
unconstrained problem, we have the following result
[5, 18].

Thecrem 10: Supposc A above is the set of all
POM's. Then a necessary and sufficient condition

Jor the POM 117 ,i=1,--- M, {o be optimal is that
. M )

(l) E:;'—l an; g Wi, 1= ],, M

(i) YL W, <Wii=1, M.

DPurthermore, under any of the above conditions the
operator

M M
Y = Z WiIT; = > 3w,
i=1 =1

is self-adjoint and is the unique solution of the dual
problem.

It is easy to see that the above conditions are equiv-
alent to ¥ being self-adjoint and

WyzY, i=1, -, M.
Then these imply
(W; =YL =13 (W; —Y), i=1,2,-, M

and that the minimum value is TrY.
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We would like Lo close this section by mentioning
that these resulis can be extended to include
estimation problems. The major oulstanding open
problem is that of implementation.  That is, if
we find the optimal I17 , how do we realize it
by a comrnunication pattern and a rmeasurement
process? Tt is also possible to interpret the Lugrange
multipliers (here the Y. as sensitivities with respect
to the information pattern constraints.
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