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Abstract— Decentralized and unstructured networks are be-
coming more prevalent today (e.g. ad hoc networks). Like every
network, they depend on the cooperation of their users to survive.
However, each user does not necessarily know who the others
are, or what their intentions are. Since there is no centralized
infrastructure, the users can only base their decision on what
they observe themselves. Ideally, they would like to cooperate
only with users that have common interests with them.

In this paper, we use a game theoretic model for the above
situation. We assume there are only two kinds of users, Good
(benign) and Bad (malicious). Good users receive a high game
theoretic payoff when they cooperate with other Good users, but
a low payoff when they cooperate with Bad users. We propose
behavior rules (strategies) to achieve equilibria that enable as
many Good users as possible to cooperate with each other, and
at the same time minimize the number of Good-Bad cooperations.

I. INTRODUCTION

In ad-hoc networks all nodes are equivalent, in the sense
that they play the role of both user and router: they create
their own data traffic, but they also forward the traffic of
other nodes. However, for the network to operate successfully
(i.e. to deliver the traffic to its intended destination) the nodes
need to cooperate. Seen from a selfish viewpoint, a node has
no a priori incentive to cooperate. Actually, in a resource
constrained network, as ad-hoc networks are envisioned to be,
a node may have a serious counter incentive to cooperate. That
is, by dropping other users’ traffic, a node saves a considerable
amount of energy.

This is the model that most of the literature has focused on,
and many methods for providing incentives – or in any way
enforcing cooperation – have been proposed. However, some
users may actually be malicious. They are not interested in
preserving their own resources. They are merely interested in
destroying the operation of the network, by whatever means
possible. They may be eavesdroppers who monitor traffic and
try to learn private information, or they may want to inject
malformed packets in the network (worms, etc.). In this case,
a different approach is called for, since there is no incentive
that would entice them to cooperate.

In this work, we are proposing a simple model for the
interaction of Good (benign) and Bad (malicious) users in a
network. Our model is based on game theory, and allows users

(players in game theory) to choose one of two possible actions:
Cooperate or Defect. The general scenario that we want to
capture is the following: Good users want to cooperate with
other Good users, but not with Bad users. Bad users, on the
other hand, want to cooperate with Good users. The Good are
unaware of who is Good and who is Bad, but since the game
is played repeatedly they can gradually detect the Bad ones.
We will explore strategies that the Good users can follow to
detect and isolate the Bad ones.

Note that we will not be assuming collusion among the
Bad users, although this can be an extension of our model.
Also, our model for the Bad users means that they benefit
from staying hidden and cooperating for as long as possible
without getting caught. So, we do not cover situations where a
single cooperation between a Bad and a Good user is enough,
e.g., to destroy the whole network.

The rest of the paper is organized as follows: In the
next section, we briefly present the work done on enforcing
cooperation in ad-hoc networks. In section III, we give a
detailed presentation of our model of the network and the
specifics of the game played. After that, we analyze in section
IV the strategies and corresponding outcomes that can appear
in the game. Section V shows some indicative simulations and
compares to the analytical approach of section IV, and section
VII concludes.

II. RELATED WORK

A growing body of literature, a comprehensive overview of
which is in [1], deals with circumstances under which the co-
operation between nodes can be sustained. A model used often
in this literature (but also more generally in power control in
ad hoc networks [2]) is a game theoretical representation of
the users in the network (an exception is [3]). The players in
game theory attempt to maximize an objective function which
takes the form of a payoff. Users make choices and each user’s
payoff depends not only on his own choice, but also on those
of the other users. Hence, in the wireless network context,
a user’s payoff depends not only on whether he decides to
cooperate (by transmitting other users’ data) or not, but also
on whether his neighbors will decide to cooperate.
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The literature is not considering malicious users, only self-
ish, and there is no degree of selfishness that can approximate
the payoffs of our Bad users. For example, Félegyházi, Hubaux
and Buttyán [1] assume that the payoff function of a user is
non-decreasing in the throughput experienced by the user. Our
Bad users do not care about their data being transmitted. For
the same reason, the model proposed by Urpi, Bonuccelli, and
Giordano [4] does not apply (as the authors themselves point
out). Other relevant work is [5], [6], [7].

III. SYSTEM MODEL

The network is modeled as an undirected graph G = (V, E),
where V is the set of nodes and E is the set of edges. The
nodes represent the users of the network. Each user can be
of Good or Bad type, and the sets of Good and Bad users
are, respectively, VG ⊂ V and VB ⊂ V , VG ∪ VB = V ,
VG ∩ VB = ∅. An edge (i, j) means that users i and j can
communicate; i is then said to be a neighbor of j (i ∈ N j),
and vice versa (j ∈ Ni). Also, the edges are weighted: The
weight Jij of an edge is +1 if both i and j are Good, and
−1 if one is Good and the other is Bad. We assume there are
no links between Bad users. Good users do not know who is
Good and who is Bad, but Bad users do. Good users do not
even know how many Bad users there are.

The network operates in rounds t = 1, 2, . . ., and at each
round t each user i chooses an action at

i: C (for Cooperate)
or D (for Defect). Playing C corresponds to making oneself
available for communication (e.g. sending/receiving data).
Playing D corresponds to shutting down all communications
to and from the user. After all users have chosen an action,
each user learns his neighbors’ actions (i.e. which neighbor
played which action), and his own payoff for that round, which
depends only on his own action and these of his neighbors.
Note that a user’s payoff is known only to him, and is never
reported to others. If a Good user is able to tell that a particular
neighbor of his is Bad, then he can sever the link that joins
them, so as not to be affected by that neighbor’s actions in
the future. In Section IV, we will discuss how Good users can
detect Bad ones.

At round t, the payoff v t
i of a Good user i who played C

equals the number of Good neighbors who played C minus
the number of Bad neighbors who played C (for convenience,
at

i = 1 for C, and 0 for D):

vt
i =

∑

j∈Ni

Jija
t
ia

t
j . (1)

This reflects the preference of Good nodes to cooperate with
other Good nodes and not with Bad ones. A Good user who
played D receives a zero payoff regardless of the actions of the
neighbors. This means that he risks no losses, but he has no
gain, he learns nothing about his neighbors, and his neighbors
learn nothing about him. The payoff of a Bad user who plays
C is equal to the number of his Good neighbors who played
C (remember that a Bad user has only Good neighbors). So,
it is the negative of vt

i .

IV. ANALYSIS

To simplify the analysis, we will concentrate on a star
topology network, where the central node is a Good user,
and his neighbors are N Good users and 1 Bad (Fig. 1). We
assume that the central node knows that he has exactly one
Bad neighbor, but he does not know who that is. Note that the
star topology assumption is not unrealistic, since this is exactly
the situation (from the point of view of the central node) even
in a general network. We will also see that the assumption that
only one Bad user exists can be removed without significant
conceptual change in the analysis.

Fig. 1. Star topology. Bad user is shaded.

Note from the System Model discussion that Good users
only learn the total payoff they receive after each round, and
not the per-link payoffs they receive due to their interactions
with individual neighbors. So, they cannot immediately tell
which of their neighbors are Good and which are Bad, but they
do get some information about the types of their neighbors.
In what follows, we will describe strategies for the Good and
Bad players that form a Nash equilibrium. For the most part,
we will be seeing things either from the central Good user’s
point of view, or from the point of view of the Bad user. Since
in a general network all Good nodes will see themselves in the
role of a central node in a (local) star topology, we are looking
for strategies that are symmetrical with respect to Good nodes.
That is, we want all the Good nodes to follow the same rules
when choosing what to play.

Assume that the central Good user i has memory of the past
history (own and neighbor moves, as well as received payoffs).
Let CN t

i (resp. DN t
i ) be the subset of i’s neighbors that play

C (resp. D) at round t. We assume that i plays C at round t,
so i’s payoff at round t is |CN t

i | if the Bad user played D,
or |CN t

i | − 2 if the Bad user played C (Remember that a C
from a Good user gives +1, whereas from a Bad user it gives
−1.). So, just by looking at his payoff, the central Good user
i can deduce whether the Bad user played C or D at round
t. The Bad user is then known to be either in the set CN t

i or



in DN t
i . Without loss of generality, let’s assume that the Bad

user played C.
In the next round (t + 1), if the Bad user plays C again,

then i can deduce that he is in the intersection CN t
i ∩CN t+1

i .
If he plays D, then he is in CN t

i ∩DN t+1
i . This sequence of

sets (the sequence of hiding sets, the initial of which is N i)
is non-increasing, but the Bad user will only be detected if
it converges to a singleton set. If the behavior of the Good
users is deterministic, then the Bad user can imitate a Good
user, and he will never be discovered. However, if the Good
nodes choose their actions in a randomized manner, they are
no longer predictable.

We will look at the simplest possible randomization: each
Good user plays C with probability p independently at each
round. We want to compute the probability p that maximizes
the central Good user’s payoff. Given an infinite sequence of
round payoffs {vt

i , t = 1, 2, . . .}, the game payoff for user i
is vi = (1 − δ)

∑∞
t=1 δt−1vt

i . The parameter δ, 0 < δ < 1,
signifies the relative importance of current payoffs compared
to later payoffs. In game theoretic literature (e.g. [8]) it is
called discount factor and is often associated with the patience
of a player. For example, if δ → 0, then only a few initial
round payoffs practically dominate the game payoff. On the
contrary, when δ → 1 all rounds are equivalent. In our case,
δ could correspond to how long the Good user thinks that the
network will keep operating. To be precise, δ could be seen
as the probability that the network will collapse at time t + 1
, given that it has been operating up to and including time t.

To compute the payoff, we split the network evolution into
two stages: pre-detection and post-detection of the Bad user.
The Good users start by playing C with probability p, and we
assume that the Bad user always plays C. We will see that
this is the best that the Bad user can do. The expected per
round payoff for the central Good user i is

E[vt
i ] = Pr{at

i = C}
∑

j∈Ni

Jij Pr{at
j = C} = p(pN−1). (2)

After the Bad user has been detected, the link to him is severed
and the Good nodes are free to play C forever. So, the central
Good user’s payoff is N from then on (+1 from each one of
the N Good neighbors). Assuming that the Bad user is caught
after the actions of round t0, the total game payoff for i is

vi(δ, p, N) = (1 − δ){
t0∑

t=1

δt−1p(pN − 1) +
∞∑

t=t0+1

δt−1N}

(3a)

= (1 − δt0)p(pN − 1) + δt0N (3b)

= δt0(N − p(pN − 1)) + p(pN − 1) (3c)

We will now calculate the expected value of t0 with the
following argument. Since the Bad user is always playing C,
his hiding set after t rounds is Ni ∩CN1

i ∩CN2
i ∩· · ·∩CN t

i .
Since the Good users are playing C with probability p at every
round, the size of the hiding set is reduced by a factor of p
every round. Since t0 is the detection time, it has to be that

pt0(N + 1) = 1 ⇒ t0 = − logp(N + 1). (4)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

Probability of Cooperation (p)

E
xp

ec
te

d 
R

ou
nd

s 
to

 D
et

ec
tio

n 
(t

0)

Neighbors = 5+1

Minimum: t
0
* =4.871

p=1/e

Fig. 2. Expected number of rounds until detection.

In this calculation, however, we have neglected the fact that the
central Good user also plays C with probability p. When he
plays D he will not be able to make any observations about his
neighboring nodes, so the D-rounds will be wasted as far as
detection is concerned. The above calculated t0 is the number
of observations that are needed to detect the Bad user. A C
will be played once every 1

p rounds, so the correct expected
time of detection will be

t0(p) =
1
p
· (− logp(N + 1)) = − logp(N + 1)

p
, (5)

shown in Fig. 2 for N = 5. We can calculate that the expected
number of rounds to detection is minimized for p = 1

e . It is
then equal to t∗0 = e ln(N + 1).

Looking at Eq. (3b), we observe that p(pN − 1) (the
pre-detection payoff) is always smaller than N (the post-
detection payoff). This seems to imply that the Good user’s
payoff is maximized when δ t0 is maximized, i.e. when t0 is
minimized. But this is not the case, although it is not easy
to see analytically. The idea is that when δ is small enough,
δt0 is very close to zero even for t0 = t∗0. As a result, vi is
practically equal to p(pN − 1), and it is maximized when p
is maximized, i.e. for p → 1.

To study the behavior of vi(p) for different values of the
discount factor δ we perform numerical computations. First of
all, the payoff increases monotonically with δ. This is because,
regardless of the value of p, being more patient gives more
weight to the post-detection payoff, which is higher (N versus
p(pN−1)). We can also see that the Good users can guarantee
a payoff of N − 1 (4 in this case) by choosing p very close
to 1. Even though the pre-detection period can become very
large, the pre-detection payoff is close to N − 1. But we will
see that in some cases, the Good can do better than that.

For a fixed value of δ the effect of an increase of p is
twofold: First, the payoff during the pre-detection period is
increased. Second, if p increases from 0 to 1

e , then the number
of rounds until detection (the length of the pre-detection
period) decreases. But if p increases beyond 1

e , the length of
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Fig. 3. All values of δ: 0 ≤ δ ≤ 0.9, step 0.05; 0.9 ≤ δ ≤ 1, step 0.01.
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Fig. 4. Small values of δ: 0 ≤ δ ≤ 0.9, step 0.05; 0.91.

the pre-detection period increases.
It seems there are three distinct types of behavior for

different intervals of δ (Fig. 3). When δ is small, the payoff
increases monotonically with p (Fig. 4). This happens because
a small δ implies that δt0 ≈ 0, and vi ≈ p(pN − 1)
which increases monotonically with p. So, if the Good user is
very impatient, then the post-detection payoff is too heavily
discounted to make any difference, even if the Bad user is
detected in the shortest number of rounds (t∗0 = e ln(N + 1)).
All the Good can do in this case is increase the pre-detection
payoff as much as possible by setting p to 1.

When δ is large (Fig. 5), δt0 is approximately equal to 1,
so vi ≈ N (the post-detection payoff, which is the maximum
possible value of the total payoff) regardless of p. A value of
δ close to 1 means that the Good users don’t mind waiting; so,
provided that the detection happens in finite time, the payoff
is very close to N . This is reflected in Fig. 5 where the payoff
is almost constant for a wide range of values of p, and the
maximum is attained for values of p that are around 0.5 and
definitely away from 1. However, when p is too close to 0
then the detection time is too large, and the pre-detection
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Fig. 5. Large values of δ: 0.95 ≤ δ ≤ 1, step 0.01.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Probability of Cooperation (p)

P
ay

of
f (

v i)

Fig. 6. Medium values of δ: 0.92, 0.93, 0.94.

payoff is too small, so the total payoff is close to 0. When
p approaches 1, the detection time is again too large (hence
the observed drop in post-detection payoff). But now the pre-
detection payoff is close to its maximum value of N − 1, so
the total payoff goes up again and becomes equal to N − 1
for p = 1.

When δ is medium (Fig. 6), the maximum payoff is again
attained for p = 1, as in the small δ case. However, unlike
the small δ case, the payoff does not increase monotonically
with p. There is a local maximum for values of p around 0.5,
which is caused by the same reasons as in the large δ case,
although not as pronounced.

The conclusion is that, for a given value of δ, the maximum
payoff is achieved either for a probability of cooperation p
equal to 1, or for some value around 0.5. The first case
happens when the Good users are impatient (small δ), and
so the post-detection period is too far into the future for
them to care. Which means that all their gains are going
to come from the pre-detection period, therefore the best
policy for them is to maximize the pre-detection period payoff
p(pN − 1). The second case happens when δ is large enough



for the post-detection payoff to be weighted more heavily
than the pre-detection payoff. The maximum around 0.5 is
happening because the post-detection payoff is maximized for
p = 1

e ≈ 0.37 (the value of p that maximizes δ t0 ), but does not
drop significantly for somewhat larger values of p. The pre-
detection payoff is, however, monotonically increasing with
p, and until around p = 0.5 it more than compensates for the
slight drop in the post-detection payoff. After that, the post-
detection payoff starts dropping faster than the pre-detection
can increase.

Why does the Bad user have to play C all the time? If he
plays what most Good play, he prolongs the time of detection.
If he plays C, he gains payoff. If p was chosen by the Good to
be larger than 1

2 , then these two considerations of the Bad user
would both concur to playing C. However, the maximizing p
may be less than 1

2 for some values of δ, so it might make
sense for the Bad user to play D once in a while so as to hide
a bit longer.

We will see that playing D never increases the Bad user’s
payoff, and it can even decrease it. Suppose the current hiding
set is X , and the Bad plays D. If the central Good plays D,
nothing changes. If the central Good plays C, he observes who
plays D and who plays C, so by looking at the payoff he can
tell what the Bad played. The new hiding set is X ∩ Y ⊆ X ,
i.e. smaller than X , the Bad has gained nothing in the current
period, and because of the discount factor δ the payoff of a
C has become smaller. So, in effect, the Bad player is facing
the exact same situation he was facing before, only he is in
a smaller hiding set, and the benefit of a C is smaller. This
allows us to conclude that the best thing the Bad can do is
play C from the first round until he is detected. Hence, the
strategies “always C” for the Bad and “C with probability p”
(for the maximizing value of p) for the Good form a Nash
equilibrium. Noone can do better by unilateral deviation.

V. SIMULATION FOR THE STAR TOPOLOGY

Another observation is that we have assumed that the
detection is happening at exactly the expected time. This
translates to an incorrect computation of the expected payoff
vi. Using equation (3c) to calculate the payoff (v i(t)) for a time
of detection equal to t, the expected payoff over all possible
times of detection (but for a fixed value of p) is

E[vi(t)] = E[δt](N − p(pN − 1)) + p(pN − 1). (6)

What we have computed, however, is

δE[t](N − p(pN − 1)) + p(pN − 1) = (7)

δt0(N − p(pN − 1)) + p(pN − 1). (8)

To estimate how far from the truth we are, we performed
some indicative simulations. Shown in figure 7 are the compar-
isons of the computations to the simulations for three values
of δ : δ = 0.2, 0.91, 0.97. These were chosen as representative
values from each one of the three intervals of δ where the
behavior of the payoff function changes. Each simulation was
repeated 100 times and the mean and variance are depicted in
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Fig. 7. Comparison: Simulation against computation results for δ =
0.2, 0.91, 0.97

the diagram for each value of p that the simulation was done.
We see that, except for the δ = 0.2 case, there is a disparity
not accounted for by the variance interval. On the other hand,
qualitatively the simulations are similar to the computations.
For δ = 0.2 they are almost identical, for δ = 0.91 the
simulation curve is monotonically increasing achieving its
maximum at p = 1 (similarly to the computation), and for
δ = 0.97 the maximum is attained long before p = 1, after
which the payoff drops, just as the computation predicts.

VI. EXTENSIONS

The case of multiple Bad users in the neighborhood of
a Good user is not much different in essence (there is still
the concept of a hiding set), although the calculations grow
longer. Even if the Good user does not exactly know how
many Bad neighbors he has, he can discover after each round
how many Bad users were among the cooperators. Since the
set of cooperators changes in every round, the Good user
can utilize the information he gathers after each round to
eventually pinpoint who the Bad users are. For example, if
a set of cooperators has just one extra member compared to
another set, then the type of that extra member (Good or Bad)
can be immediately determined by comparing the payoffs in
the two cases. Of course, this process requires extra memory
capabilities on the part of the Good user (to “remember” what
happened in the past rounds).

The δ-discounted payoff function is not the only possible
choice to calculate the payoff of the repeated game. Two other
popular choices in game theoretic literature (for precise defi-
nitions, see [8]) are the average payoff (limT→∞ 1

T

∑T
t=1 vt

i ),
and the plain sum of payoffs (limT→∞

∑T
t=1 vt

i ). Any one
of the three could be used for our game. We chose the δ-
discounted because the parameter δ can be interpreted as the
probability that the network will continue existing for (at
least) one more round, given that it has existed so far. More
precisely, δ is the subjective estimate of the Good users for that
probability. More emphasis is given to upcoming gains than



longer term ones. The average payoff can be approximated
in the limit δ → 1. The plain sum of payoffs would give
an infinite post-detection payoff, so, as long as detection
happened in finite time, the total payoff would be infinite.
In this last case, perhaps it would make more sense for the
Good users to try to minimize the payoff of the Bad user,
rather than increase their own (since theirs would be infinite
in any case).

VII. CONCLUSION AND FUTURE WORK

Ad hoc networks depend on the cooperation of their mem-
bers to operate successfully. In this paper, we considered what
happens if some of the network users are outright malicious,
so cooperation with them is specifically undesirable. The
malicious users are not immediately known for what they
are, but they are gradually exposed. We considered different
strategies (probabilities p of cooperation), and we discussed
which are more desirable (leading to larger payoff), and under
which circumstances (values of the discount factor δ).

Our main conclusion is that a lot depends on the patience
of the Good users (represented by δ). It may be the case that
only continual cooperation is the best solution, thus effectively
ignoring the presence of the Bad user. Or, a more refined way
of choosing how often to cooperate may be more appropriate.

In the future, we want to precisely compute the expected
payoffs of the Good users, to avoid the discrepancy with the
simulation results as shown in section V. Also, it is necessary
to consider in more detail the case of multiple Bad users, not
just one, and additionally allow collusion among them. Finally,
more general topologies should be studied having as a basis
the simple star topology we considered here.
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