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ABSTRACT 
 
In this paper protocols for group key distribution are 
compared and evaluated from the point of view of Mobile 
Ad Hoc Networks (MANETs). A MANET is a collection of 
wireless mobile nodes, communicating among themselves 
over possibly multi-hop paths, without the help of any 
infrastructure such as base stations or access points. Thus 
there is need to render those networks as autonomous and 
secure as possible, since no central authorization can be 
assumed at all times. Key management is the service that 
ensures the security of communication among nodes and 
the capability of their cooperation as a secure group. It 
consists of three important services: key generation, user 
authentication and key distribution. In this work we 
assume that the participating users have already been 
authenticated and we are focused only on studying and 
comparing protocols for group key establishment in 
MANETs. We distinguish the protocols in two families, 
contributory and non-contributory and we evaluate them 
from the point of view of MANETs. 
 
 

INTRODUCTION 
 
As the development of wireless multicast services such as 
cable TV, secure audio and conferencing, visual 
broadcasts, military command and control grows, the 
research on security for wireless multicasting becomes 
increasingly important. Information should be 
communicated to the appropriate groups of nodes with the 
utmost security and with respect to the network constraints 
at the same time. It is essential to develop a secure, robust 
key distribution scheme for multicast communications. 
Key management determines the security, scalability and 
efficiency of the network. In this work, we focus on 
studying and developing key distribution techniques in   
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networks of limited bandwidth, unreliable channels, where 
topology is changing fast. Nodes within the network may 
have limited capacity, computational and transmission 
power (satellites, laptops, PDAs, cell-phones). 
 
Mobile ad-hoc networks are dynamic and connections 
among nodes are temporary and unreliable. A node may 
loose its connection to another node(s) because it might 
either move out of reach or run out of battery resources, or 
can be compromised. We cannot always assume that a 
node within the group that has direct connections to all 
other participant nodes exists. A broadcast from a node to 
its nearby neighbors only, seems more viable. Also, a 
change in the topology of a group might occur while the 
group key is being calculated. In some protocols this event 
may cause enormous overhead, as the operation of 
calculating the group key must start over. These 
constraints render most of the group key distribution 
protocols inefficient when quick operations to catch up 
with the rapidly changing topology of the network are 
required. We distinguish the existing protocols in two 
categories: contributory protocols where all participants 
take equally part in the key generation and guarantee for 
their part that the resulting key is fresh and non-
contributory. 
 
Our objectives in this paper are to study the properties of 
these two families of protocols, discuss their pros and cons 
from the perspective of MANETs and evaluate the 
performance of protocols representing each family. We 
selected the One-Way Function Tree (OFT) protocol from 
the family of non-contributory ones, and the 2d-Octopus 
protocol (O), with our own modified versions of both 
(MO) and (MOT), to represent the family of contributory 
protocols. We derive the cost functions for each protocol 
in terms of total communication, computation and storage 
of nodes within the group. We also describe in detail how 
the join and leave procedures occur, both for our protocols 
and for the original Octopus as well, since this issue is not 
addressed in the original paper on the Octopus protocol.  
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PREVIOUS WORK 
 
Becker et al. [1], derived lower bounds for contributory 
key distribution systems for the gossip problem and proved 
them realistic for Diffie-Hellman (DH) based protocols. 
Steiner et al.[2], extended the DH protocols to groups. 
From their work, GDH.2 acquires the alluring property of 
minimization of total exchanges. TGDH by Kim et al. 
[10], is a new hybrid, efficient protocol that blends binary 
key trees with DH key exchange. Becker in [1], introduced 
the Hypercube protocol as one requiring the minimum 
number of rounds. In [5], Asokan et al. added ways to 
recover from node failures. Becker introduced the Octopus 
protocol that required minimum number of messages and 
then derived the 2d-Octopus that combined Octopus with 
Hypercube to a very efficient protocol that worked for 
arbitrary number of nodes. Non-contributory protocols are 
usually based on a simple key distribution center. The 
simplest is Group Key Management Protocol (GKMP) [9], 
in which a group leader shares a secret key with each 
member. The Logical Tree Hierarchy protocol (LKH) [8], 
creates a hierarchy of keys for each group member. 
Evolution of the latter is the very efficient OFT [7] that 
minimizes the number of bits broadcast after a 
membership change. We selected OFT to represent the 
family of non-contributory protocols. 
 
      SECURITY PROPERTIES AND CONSTRAINTS     
                                    IN MANETs 
 
The following very important properties have already been 
proven for the protocols we are discussing. 
Forward (Backward) Secrecy: a passive adversary who 
knows a contiguous subset of group keys cannot discover 
subsequent (preceding) group keys.  
Group Key Secrecy: it is computationally infeasible for a 
passive adversary to discover any group key. 
 
In the rest of this section we discuss the extra security 
constraints imposed by MANETs. In [10], blending binary 
key trees with DH key exchange, results in a secure, 
simple protocol, TGDH, with no fixed leader for the 
group. Any trusted member should be ready to become 
"sponsor" and assume the duties of a leader for a member 
join/leave operation. If this idea can be extended to 
MANETs, then no single point of failure – which is a weak 
point for most non-contributory protocols – will exist. 
However, any trusted, robust node with certain 
computational, storage and communication capabilities 
could become leader, in the same sense that there is a 
specific node in contributory protocols such as GDH.2 
e.g., responsible for the broadcast in round n. Even in 
contributory protocols there exist nodes with some extra 
responsibilities. The most important constraint for 

MANETs is the existence of robust nodes (e.g. nodes that 
exit the group less frequently than the rest), capable to 
become leaders. In a wireless ad-hoc network this is not 
always possible due to node limitations or network 
limitations. Thus, protocols like TGDH work under the 
assumption that the network is relatively small and all 
nodes acquire the bandwidth resources to broadcast a 
message that reaches all group members. 
 
In a non-contributory protocol, if a node during group key 
establishment looses connection (e.g. out of reach, out of 
battery resources) after having declared interest in 
participating to the group, then as soon as its absence is 
discovered, extra time could be given hoping for the node 
to recover or re-appear. All other nodes proceed normally 
to the derivation of the group key in the mean time. If the 
node is still down, then a new group key is computed that 
excludes the particular node, by updating a restricted 
number of keys in most cases. Members’ contributions 
may not follow a strict time ordering. However in a 
contributory protocol it is common for each member to 
contribute its portion of the key during a fixed slot. If it 
does not respond during the given slot, the whole 
procedure comes to a standstill as all further actions of 
members depend on the contribution of the lost one. In 
[10] however, authors describe how “cascaded events” are 
handled (a membership change occurs while another is 
being handled) for TGDH that is considered contributory. 
Also, the mechanism invented to make the DH key 
exchange on a d-cube (contributory) fault tolerant in [5], is 
less simple than the mechanism inherent in non-
contributory tree structures. Contributory protocols are 
preferred when no previously agreed common secrets exist 
and parties do not trust each other. But even then, a leader 
may still be elected. Key agreement is always important 
since it reflects the totally distributed nature of a group, 
and no node constitutes a single point of failure.  
 
We have just described the limitations for each family of 
protocols, and the framework that makes each one 
efficient. In a MANET, where no trusted third parties are 
assumed, if we select a non-contributory protocol for key 
distribution we have to consider the cost for selecting a 
node as the group leader and for establishing secure initial 
keys between this node and each member of the group.  
 

SECURE GROUP KEY AGREEMENTS AND OUR 
EXTENTIONS 

 
We omit the description of GDH.2, OFT, TGDH, and 2d-
Octopus protocols since they are documented in our 
references and Technical Report [6]. 
 
A. Evaluation of the Cost for the GDH.2 protocol  
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Initial communication: It takes n rounds (n-1 messages 
from member Mi to member Mi+1 of length (i+1) K bits, 
one multicast message of length nK bits from Mn to the 
rest n-1 members). The total message length in average is: 

1
2

1
( 1) ( 3 2 ) 2

n

i
i K n K n n K

−

=

+ + = + −∑  

Member initial computation: Member Mi does (i+1) 
exp/s of the same complexity each. Member Mn does n 
exp/s. In average, a member does n/2 exp/s and one more 
when it gets the stream message for the group key. 
GSC addition computation: Member Mn generates a new 
exponent and sends an up-flow message to member Mn+1 
that computes the new key and does n+1 exp/s (n+1 
intermediate values).  
Add/Delete communication: For the addition case, 
member Mn sends an up-flow message of length (n+1)K 
bits to Mn+1. Mn+1 broadcasts to all n members its n+1 
intermediate values. The total communication cost is 
2(n+1)K bits. For the deletion case, member Mn broadcasts 
a message of (n-1)K bits. 
 
B. Evaluation of the Cost for the TGDH protocol 
TGDH resembles OFT. The basic differences are the 
following: any member of the tree can act as a leader 
depending on its position in the tree, a member knows all 
blinded keys of the tree in addition to the secret keys in its 
path from the leaf to the root, and the merging function is 
the two node DH key exchange. The secret key x of an 
internal node s is the result of the DH key exchange 
between offspring left(s) and right(s) with associated 
secret keys y and z. Then, yzx α= , xα is the blinded key of 
node s. We assume that any member at any time can 
become group leader and broadcast messages to all the 
members of its group. However, the mobility of nodes 
might make it impossible for a simple node to broadcast to 
the whole group. Therefore, this protocol is weak in 
MANETs, unless the network is rather restricted and nodes 
stay close to each other throughout the entire session. 
During the TGDH initial construction, every member 
becomes a sponsor: it computes and broadcasts to the 
group the keys of all nodes from the leaf to the root. For 
every successive level of nodes in the tree, the number of 
sponsors is reduced to half. 
 
Member/Sponsor Computation/Communication: The 
sponsor for a particular node s in its path, broadcasts the 
blinded secret key of s to all members, computes the secret 
key of the parent node of s and blinds it. In total, 2n exp/s 
and 2n broadcasts are carried out from all sponsors. 
Add sponsor computation/communication: Sponsor 
generates a new and an intermediate node, gets the blinded 
new member’s key and raises it to the power of its own 
key. The resulting key becomes the intermediate node’s 

secret key, which the sponsor blinds. Similarly are 
calculated all updated keys in the sponsor’s path from the 
leaf to the root. So, sponsor does 2h exp/s, and sends to all 
members the updated h blinded keys. The new member 
however gets all n blinded keys.  
Add/Delete member computation: The new member 
does h exp/s (using the blinded keys of its co-path) to get 
the group key. One to (h-1) exp/s are done by the rest of 
members to compute the group key, since not all blinded 
keys change for them. In avg. each member does 2 exp/s. 
Delete Sponsor Computation/Communication: Sponsor 
becomes the right-most leaf node of the sub-tree routed at 
the leaving member’s sibling node, which is promoted to 
replace the leaving member’s parent node. The rest is as 
the add case, so the sponsor does 2h exp/s. 
 
DESCRIPTION OF (MO) AND (MOT) PROTOCOLS 
 
We modified the original Octopus protocol, denoted as 
(O), by replacing its first step with GDH.2 or TGDH. The 
protocols derived are denoted as MO and MOT 
respectively. The members of the group are divided into 2d 
subgroups of equivalent size. The sponsor of TGDH for 
MOT, and the Mn member of GDH.2 for MO, becomes the 
sub-group leader (GSC). The papers on (O) do not refer to 
the case of member addition/deletion. We analyze all cases 
and calculate the cost values for (O), MO, and MOT.  
 
Step1: Each subgroup establishes its own sub-group key, 
or handles member additions/evictions exactly as indicated 
by GDH.2 and TGDH protocols. 
Step2: Identical for all three protocols. For the initial 
derivation of the group key the 2d GSCs execute the 2d–
Cube protocol via DH exchanges with initial values the 
keys they have obtained from step1. It takes d rounds, in 
each of which we have an exchange of 2d messages (2 for 
every application of DH, 2d-1 DH pairs/round) for the 
group key to compute. So, each GSC does 2d exp/s. The 
total message length is 2ddK bits. The key observation in 
the case of member addition/eviction is to initially re-
compute the subgroup key only for this subgroup in which 
the change of membership has occurred. We execute step1 
only for this subgroup. However, we observe that in step2 
not all calculations have to be done anew. The two-party 
DH exchanges between GSCs whose sub-group keys were 
not modified at step1 or during the previous rounds of 
step2 need not be executed again. In the first round 2 
GSCs are modified, in the second round 4, in round i, 2i 
DH key exchanges are done. In total 2(2d-1) messages are 
communicated. The GSC of the modified subgroup and its 
first-round mate participate in all rounds. A GSC 
participates in  2

1+d rounds and does 2  2
1+d  exp/s in avg. 

 Step3: Differs for each of the three protocols.  
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Initial Case: In the example for the simple (O) the authors 
have used d=2. For d>2, the 3d step should be modified as 
follows: each of the 2d participants (GSCs) broadcasts d 
values to its group. For example if d=3 (GSCs noted as: A, 
B, C, D, E, F, G, H), the following operations occur: 
Keys derived after 1st round: ABa , CDa , EFa , GHa .                      
Keys derived after 2nd round: 

AB CDa aa , 
EF GHa aa  

Key derived after 3d round: 
AB CD EF GHa a a aa aa . 

GSC A communicates the following d parts of the group 

key to its member j: 
EF GHa aaa , 

CDaa , / jA B Ka for (O), or 
Ba  for MO, MOT. The latter value differs for every 

member in (O), but is the same for MO or MOT since all 
members of a sub-group share a common sub-group key. 
The rest (d-1) values are the same for all members in the 
subgroup for all three protocols. The GSC broadcast to its 
members such d values as separate messages and members 
must do d exp/s to compute the final group key. The aim is 
that intended recipients only should be able to reconstruct 
the group key. Each member gets d parts of the key. It 
raises the first to the power of its own secret or group key 
and gets the first outcome, then raises the second to the 
first outcome, gets the second outcome etc.  
Addition/Eviction Case: This time (d-1) of the d values 
need not be broadcast anew since they remain unchanged, 
and they are already stored in every member from the 
previous time. So, the GSC sends only one value to every 
member of its sub-group, the value each particular member 
requires in order to reconstruct the group key. The GSC in 
the group of which a change of membership occurred 
needs to communicate to its members at the 3d step no 
parts for MO and MOT, and one part only for (O). The 
sub-group has calculated its updated subgroup key already, 
and its members can use the (d-1) values they have stored 
to reconstruct the sub-group key. We illustrate the case by 
continuing with the example where d=3. Assume that a 
change of membership occurs in the sub-group of A and its 
new subgroup key is x. GSC A stores the following values 

after three rounds: x, Ba ,
CDaa , 

EF GHa aaa , 
AB CD EF GHa a a aa aa . 

The intermediate values of A remain unchanged from the 
previous time and will be used by the members of its 
subgroup to construct the group key. The broadcast values 
are blinded, so their free communication over the network 
causes no harm to the security of the system. Also, not all 
members do d exp/s as in the initial case: members of 2d-1 
GSCs do one, members of 2d-2 GSCs do two, and members 
of the last two GSCs (A, B in the example) do d exp/s to 
reconstruct the new group key. The number of messages 
communicated at step3 for MO and MOT is 2dd for the 
initial and (2d-1) for the addition/eviction case.  
 
Important Security Constraint:  

(O): In the case of member addition/eviction we do not 
acquire the GDH.2 or the TGDH properties to disguise the 
contributions of the rest of the members of the subgroup to 
the new/evicted member. If the protocol is used as such, 
then there is not backward secrecy. When the GSC sends 
the appropriate d values to the new member it essentially 
sends to it the old group key. Obviously, there is no 
forward secrecy for the eviction case because the new 
group key is no other than the previous, without the 
evictee’s contribution, which is of course already known to 
the evictee. So, we do the same modification as in GDH.2 
and other secure protocols: another member of the same 
subgroup modifies its secret share and establishes a new 
DH key with its GSC. So, the GSC in the case of join 
(evict) does two (one) DH key exchanges. 
(MO), (MOT): At step1, GDH.2 and TGDH produce 
subgroup keys: zaba = Na and xya = Na  respectively. 
These keys are equivalent to the subgroup key produced 
by (O) when its subgroup contains one member only. A 
designated member or sponsor from each subgroup 
becomes GSC and provides the subgroup key for step2. 
All 2d GSCs broadcast to all members of their subgroup 
the same parts of key. Operations to derive the group key 
are exactly the same for these members. 
.  
SECURITY ISSUES OF (MO) - (MOT) PROTOCOLS 
 
We argue that the security of the new protocols is at the 
same levels as the security of the original Octopus. In 
step1 MO and MOT inherit the properties of GDH.2 and 
TGDH secure protocols respectively. Step2 and step3 
serve in calculating the group key for all the participants 
and distributing it to all the members according to the 
principles of DH key exchange, so the protocols inherit the 
security DH key exchange provides for the latter steps.                
                              
                          COMPARISON 
 

Cost 2d-Oct. (O) Mod. 2d-Oct. 
(MO) 

Mod. 2d-Oct. 
(MOT) 

Initial 
GSC 
comput.  

(2  d
dn

2
2− +2d+

 d
dn

2
2− )CE+ 

(  d
dn

2
2− )4/3+1.

25(  d
dn

2
2− )K2 

 
(  d

n
2 +2 d) 

CE 

 

 (2log  d
n

2  
+2 d) CE 

Initial  
members 
comput. 

(d+2)CE  
CE((1/2) 

 d
n

2 +d)  
CE (2log 

 d
n

2 +d) 

Initial 
Commun. 

 (2n+(d-1) 2d+1) K   (2d-1(  2
2d

n  

+3  d
n

2 -2) 
+2d d+2d+1)K

 
(2d2  d

n
2 + 

2d+1 d) K 
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+2d d+2d+1)K    

Add GSC  
comput. 

(3  d
dn

2
2− +4+2

 2
1+d ) CE +2 

(  d
dn

2
2− -1) K2, 

one 

(2  d
dn

2
2− +2

 2
1+d )CE    rest 

 
CE(  d

n
2 +1

+2  2
1+d ), 

one             
CE(2  2

1+d ),  
rest 

CE(2log 

 d
n
2

1+ +2

 2
1+d ), one 

2CE  2
1+d  

rest 

Add  
members 
comput. 

4CE , two      
2CE , the rest         
 

3CE, one GSC   
2CE, rest  

4CE, one GSC 
2CE,  rest    
 

 
Delete 
Commun. 

(2  d
dn

2
2− +3 

2d-2) K 

(  d
n
2

1− +3 2d-

2 )K 

(log  d
n
2

1− +3 

(2d-1))K 

Table 1: Complexities of key agreement protocols 
 
Table1 shows some of the comparison results. The 
performance evaluation for OFT can be found in [6], [7]. 
In terms of Initial GSC Computation, MOT behaves better 
than all the other protocols. In terms of GSC Add/Evict 
Computation, (O) is the worst, MO and mainly MOT 
performs much better when d is small. As for the Initial 
Communication, MO is the worst, MOT and (O) however 
slightly outperform OFT. For the Addition/Eviction 
Communication (very critical issue for MANETs), (O) is 
outperformed by both MO and MOT, and MOT gets closer 
to OFT than any other contributory protocol. 

 
Figure1: Initial Communication vs. Group Size, d=6. MOT and (O)   
              achieve almost the same lowest cost, OFT is slightly worse. 
 

 
 Figure2: Delete Communication vs. Group Size, d=4. OFT achieves        
               the lowest overhead. MOT gets very close to OFT, but the      
               overheads of MO and (O) are still much worse.               . 

             SUMMARY AND CONCLUSIONS 
 

The paper discusses the framework and constraints under 
which already existing protocols can become scalable and 
robust in MANETs. It distinguishes protocols in two 
families (contributory/non-contributory), discusses their 
limitations and suggests solutions to make them applicable 
in MANETs. We present two novel hybrid protocols MO 
and MOT-based on the original Octopus (O)-, developed 
as an attempt to render contributory protocols scalable and 
efficient. All three are described in detail and cost 
functions in terms of communication and computation are 
derived for all operations. From our performance 
evaluation, we see that MOT outperforms (O) in all cases, 
and OFT in the computation costs. As for Communication 
Addition/Eviction costs, MOT gets very close to OFT. 
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