
 1

EFFICIENT SCALABLE KEY AGREEMENT PROTOCOLS FOR SECURE1

MULTICAST COMMUNICATION IN MANETs

Maria Striki and John S. Baras

Electrical and Computer Engineering Department
and the Institute for Systems Research
University of Maryland College Park

College Park, MD 20742

ABSTRACT

In this paper protocols for group key distribution are
compared and evaluated from the point of view of Mobile
Ad Hoc Networks (MANETs). A MANET is a collection of
wireless mobile nodes, communicating among themselves
over possibly multi-hop paths, without the help of any
infrastructure such as base stations or access points. Thus
there is need to render those networks as autonomous and
secure as possible, since no central authorization can be
assumed at all times. Key management is the service that
ensures the security of communication among nodes and
the capability of their cooperation as a secure group. It
consists of three important services: key generation, user
authentication and key distribution. In this work we
assume that the participating users have already been
authenticated and we are focused only on studying and
comparing protocols for group key establishment in
MANETs. We distinguish the protocols in two families,
contributory and non-contributory and we evaluate them
from the point of view of MANETs.

INTRODUCTION

As the development of wireless multicast services such as
cable TV, secure audio and conferencing, visual
broadcasts, military command and control grows, the
research on security for wireless multicasting becomes
increasingly important. Information should be
communicated to the appropriate groups of nodes with the
utmost security and with respect to the network constraints
at the same time. It is essential to develop a secure, robust
key distribution scheme for multicast communications.
Key management determines the security, scalability and
efficiency of the network. In this work, we focus on
studying and developing key distribution techniques in

(1) The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official
policies, neither expressed or implied, of the Army Research Laboratory
or the U.S. Government

networks of limited bandwidth, unreliable channels, where
topology is changing fast. Nodes within the network may
have limited capacity, computational and transmission
power (satellites, laptops, PDAs, cell-phones).

Mobile ad-hoc networks are dynamic and connections
among nodes are temporary and unreliable. A node may
loose its connection to another node(s) because it might
either move out of reach or run out of battery resources, or
can be compromised. We cannot always assume that a
node within the group that has direct connections to all
other participant nodes exists. A broadcast from a node to
its nearby neighbors only, seems more viable. Also, a
change in the topology of a group might occur while the
group key is being calculated. In some protocols this event
may cause enormous overhead, as the operation of
calculating the group key must start over. These
constraints render most of the group key distribution
protocols inefficient when quick operations to catch up
with the rapidly changing topology of the network are
required. We distinguish the existing protocols in two
categories: contributory protocols where all participants
take equally part in the key generation and guarantee for
their part that the resulting key is fresh and non-
contributory.

Our objectives in this paper are to study the properties of
these two families of protocols, discuss their pros and cons
from the perspective of MANETs and evaluate the
performance of protocols representing each family. We
selected the One-Way Function Tree (OFT) protocol from
the family of non-contributory ones, and the 2d-Octopus
protocol (O), with our own modified versions of both
(MO) and (MOT), to represent the family of contributory
protocols. We derive the cost functions for each protocol
in terms of total communication, computation and storage
of nodes within the group. We also describe in detail how
the join and leave procedures occur, both for our protocols
and for the original Octopus as well, since this issue is not
addressed in the original paper on the Octopus protocol.

 2

PREVIOUS WORK

Becker et al. [1], derived lower bounds for contributory
key distribution systems for the gossip problem and proved
them realistic for Diffie-Hellman (DH) based protocols.
Steiner et al.[2], extended the DH protocols to groups.
From their work, GDH.2 acquires the alluring property of
minimization of total exchanges. TGDH by Kim et al.
[10], is a new hybrid, efficient protocol that blends binary
key trees with DH key exchange. Becker in [1], introduced
the Hypercube protocol as one requiring the minimum
number of rounds. In [5], Asokan et al. added ways to
recover from node failures. Becker introduced the Octopus
protocol that required minimum number of messages and
then derived the 2d-Octopus that combined Octopus with
Hypercube to a very efficient protocol that worked for
arbitrary number of nodes. Non-contributory protocols are
usually based on a simple key distribution center. The
simplest is Group Key Management Protocol (GKMP) [9],
in which a group leader shares a secret key with each
member. The Logical Tree Hierarchy protocol (LKH) [8],
creates a hierarchy of keys for each group member.
Evolution of the latter is the very efficient OFT [7] that
minimizes the number of bits broadcast after a
membership change. We selected OFT to represent the
family of non-contributory protocols.

 SECURITY PROPERTIES AND CONSTRAINTS
 IN MANETs

The following very important properties have already been
proven for the protocols we are discussing.
Forward (Backward) Secrecy: a passive adversary who
knows a contiguous subset of group keys cannot discover
subsequent (preceding) group keys.
Group Key Secrecy: it is computationally infeasible for a
passive adversary to discover any group key.

In the rest of this section we discuss the extra security
constraints imposed by MANETs. In [10], blending binary
key trees with DH key exchange, results in a secure,
simple protocol, TGDH, with no fixed leader for the
group. Any trusted member should be ready to become
"sponsor" and assume the duties of a leader for a member
join/leave operation. If this idea can be extended to
MANETs, then no single point of failure – which is a weak
point for most non-contributory protocols – will exist.
However, any trusted, robust node with certain
computational, storage and communication capabilities
could become leader, in the same sense that there is a
specific node in contributory protocols such as GDH.2
e.g., responsible for the broadcast in round n. Even in
contributory protocols there exist nodes with some extra
responsibilities. The most important constraint for

MANETs is the existence of robust nodes (e.g. nodes that
exit the group less frequently than the rest), capable to
become leaders. In a wireless ad-hoc network this is not
always possible due to node limitations or network
limitations. Thus, protocols like TGDH work under the
assumption that the network is relatively small and all
nodes acquire the bandwidth resources to broadcast a
message that reaches all group members.

In a non-contributory protocol, if a node during group key
establishment looses connection (e.g. out of reach, out of
battery resources) after having declared interest in
participating to the group, then as soon as its absence is
discovered, extra time could be given hoping for the node
to recover or re-appear. All other nodes proceed normally
to the derivation of the group key in the mean time. If the
node is still down, then a new group key is computed that
excludes the particular node, by updating a restricted
number of keys in most cases. Members’ contributions
may not follow a strict time ordering. However in a
contributory protocol it is common for each member to
contribute its portion of the key during a fixed slot. If it
does not respond during the given slot, the whole
procedure comes to a standstill as all further actions of
members depend on the contribution of the lost one. In
[10] however, authors describe how “cascaded events” are
handled (a membership change occurs while another is
being handled) for TGDH that is considered contributory.
Also, the mechanism invented to make the DH key
exchange on a d-cube (contributory) fault tolerant in [5], is
less simple than the mechanism inherent in non-
contributory tree structures. Contributory protocols are
preferred when no previously agreed common secrets exist
and parties do not trust each other. But even then, a leader
may still be elected. Key agreement is always important
since it reflects the totally distributed nature of a group,
and no node constitutes a single point of failure.

We have just described the limitations for each family of
protocols, and the framework that makes each one
efficient. In a MANET, where no trusted third parties are
assumed, if we select a non-contributory protocol for key
distribution we have to consider the cost for selecting a
node as the group leader and for establishing secure initial
keys between this node and each member of the group.

SECURE GROUP KEY AGREEMENTS AND OUR
EXTENTIONS

We omit the description of GDH.2, OFT, TGDH, and 2d-
Octopus protocols since they are documented in our
references and Technical Report [6].

A. Evaluation of the Cost for the GDH.2 protocol

 3

Initial communication: It takes n rounds (n-1 messages
from member Mi to member Mi+1 of length (i+1) K bits,
one multicast message of length nK bits from Mn to the
rest n-1 members). The total message length in average is:

1
2

1
(1) (3 2) 2

n

i
i K n K n n K

−

=

+ + = + −∑

Member initial computation: Member Mi does (i+1)
exp/s of the same complexity each. Member Mn does n
exp/s. In average, a member does n/2 exp/s and one more
when it gets the stream message for the group key.
GSC addition computation: Member Mn generates a new
exponent and sends an up-flow message to member Mn+1
that computes the new key and does n+1 exp/s (n+1
intermediate values).
Add/Delete communication: For the addition case,
member Mn sends an up-flow message of length (n+1)K
bits to Mn+1. Mn+1 broadcasts to all n members its n+1
intermediate values. The total communication cost is
2(n+1)K bits. For the deletion case, member Mn broadcasts
a message of (n-1)K bits.

B. Evaluation of the Cost for the TGDH protocol
TGDH resembles OFT. The basic differences are the
following: any member of the tree can act as a leader
depending on its position in the tree, a member knows all
blinded keys of the tree in addition to the secret keys in its
path from the leaf to the root, and the merging function is
the two node DH key exchange. The secret key x of an
internal node s is the result of the DH key exchange
between offspring left(s) and right(s) with associated
secret keys y and z. Then, yzx α= , xα is the blinded key of
node s. We assume that any member at any time can
become group leader and broadcast messages to all the
members of its group. However, the mobility of nodes
might make it impossible for a simple node to broadcast to
the whole group. Therefore, this protocol is weak in
MANETs, unless the network is rather restricted and nodes
stay close to each other throughout the entire session.
During the TGDH initial construction, every member
becomes a sponsor: it computes and broadcasts to the
group the keys of all nodes from the leaf to the root. For
every successive level of nodes in the tree, the number of
sponsors is reduced to half.

Member/Sponsor Computation/Communication: The
sponsor for a particular node s in its path, broadcasts the
blinded secret key of s to all members, computes the secret
key of the parent node of s and blinds it. In total, 2n exp/s
and 2n broadcasts are carried out from all sponsors.
Add sponsor computation/communication: Sponsor
generates a new and an intermediate node, gets the blinded
new member’s key and raises it to the power of its own
key. The resulting key becomes the intermediate node’s

secret key, which the sponsor blinds. Similarly are
calculated all updated keys in the sponsor’s path from the
leaf to the root. So, sponsor does 2h exp/s, and sends to all
members the updated h blinded keys. The new member
however gets all n blinded keys.
Add/Delete member computation: The new member
does h exp/s (using the blinded keys of its co-path) to get
the group key. One to (h-1) exp/s are done by the rest of
members to compute the group key, since not all blinded
keys change for them. In avg. each member does 2 exp/s.
Delete Sponsor Computation/Communication: Sponsor
becomes the right-most leaf node of the sub-tree routed at
the leaving member’s sibling node, which is promoted to
replace the leaving member’s parent node. The rest is as
the add case, so the sponsor does 2h exp/s.

DESCRIPTION OF (MO) AND (MOT) PROTOCOLS

We modified the original Octopus protocol, denoted as
(O), by replacing its first step with GDH.2 or TGDH. The
protocols derived are denoted as MO and MOT
respectively. The members of the group are divided into 2d
subgroups of equivalent size. The sponsor of TGDH for
MOT, and the Mn member of GDH.2 for MO, becomes the
sub-group leader (GSC). The papers on (O) do not refer to
the case of member addition/deletion. We analyze all cases
and calculate the cost values for (O), MO, and MOT.

Step1: Each subgroup establishes its own sub-group key,
or handles member additions/evictions exactly as indicated
by GDH.2 and TGDH protocols.
Step2: Identical for all three protocols. For the initial
derivation of the group key the 2d GSCs execute the 2d–
Cube protocol via DH exchanges with initial values the
keys they have obtained from step1. It takes d rounds, in
each of which we have an exchange of 2d messages (2 for
every application of DH, 2d-1 DH pairs/round) for the
group key to compute. So, each GSC does 2d exp/s. The
total message length is 2ddK bits. The key observation in
the case of member addition/eviction is to initially re-
compute the subgroup key only for this subgroup in which
the change of membership has occurred. We execute step1
only for this subgroup. However, we observe that in step2
not all calculations have to be done anew. The two-party
DH exchanges between GSCs whose sub-group keys were
not modified at step1 or during the previous rounds of
step2 need not be executed again. In the first round 2
GSCs are modified, in the second round 4, in round i, 2i
DH key exchanges are done. In total 2(2d-1) messages are
communicated. The GSC of the modified subgroup and its
first-round mate participate in all rounds. A GSC
participates in  2

1+d rounds and does 2  2
1+d exp/s in avg.

 Step3: Differs for each of the three protocols.

 4

Initial Case: In the example for the simple (O) the authors
have used d=2. For d>2, the 3d step should be modified as
follows: each of the 2d participants (GSCs) broadcasts d
values to its group. For example if d=3 (GSCs noted as: A,
B, C, D, E, F, G, H), the following operations occur:
Keys derived after 1st round: ABa , CDa , EFa , GHa .
Keys derived after 2nd round:

AB CDa aa ,
EF GHa aa

Key derived after 3d round:
AB CD EF GHa a a aa aa .

GSC A communicates the following d parts of the group

key to its member j:
EF GHa aaa ,

CDaa , / jA B Ka for (O), or
Ba for MO, MOT. The latter value differs for every

member in (O), but is the same for MO or MOT since all
members of a sub-group share a common sub-group key.
The rest (d-1) values are the same for all members in the
subgroup for all three protocols. The GSC broadcast to its
members such d values as separate messages and members
must do d exp/s to compute the final group key. The aim is
that intended recipients only should be able to reconstruct
the group key. Each member gets d parts of the key. It
raises the first to the power of its own secret or group key
and gets the first outcome, then raises the second to the
first outcome, gets the second outcome etc.
Addition/Eviction Case: This time (d-1) of the d values
need not be broadcast anew since they remain unchanged,
and they are already stored in every member from the
previous time. So, the GSC sends only one value to every
member of its sub-group, the value each particular member
requires in order to reconstruct the group key. The GSC in
the group of which a change of membership occurred
needs to communicate to its members at the 3d step no
parts for MO and MOT, and one part only for (O). The
sub-group has calculated its updated subgroup key already,
and its members can use the (d-1) values they have stored
to reconstruct the sub-group key. We illustrate the case by
continuing with the example where d=3. Assume that a
change of membership occurs in the sub-group of A and its
new subgroup key is x. GSC A stores the following values

after three rounds: x, Ba ,
CDaa ,

EF GHa aaa ,
AB CD EF GHa a a aa aa .

The intermediate values of A remain unchanged from the
previous time and will be used by the members of its
subgroup to construct the group key. The broadcast values
are blinded, so their free communication over the network
causes no harm to the security of the system. Also, not all
members do d exp/s as in the initial case: members of 2d-1
GSCs do one, members of 2d-2 GSCs do two, and members
of the last two GSCs (A, B in the example) do d exp/s to
reconstruct the new group key. The number of messages
communicated at step3 for MO and MOT is 2dd for the
initial and (2d-1) for the addition/eviction case.

Important Security Constraint:

(O): In the case of member addition/eviction we do not
acquire the GDH.2 or the TGDH properties to disguise the
contributions of the rest of the members of the subgroup to
the new/evicted member. If the protocol is used as such,
then there is not backward secrecy. When the GSC sends
the appropriate d values to the new member it essentially
sends to it the old group key. Obviously, there is no
forward secrecy for the eviction case because the new
group key is no other than the previous, without the
evictee’s contribution, which is of course already known to
the evictee. So, we do the same modification as in GDH.2
and other secure protocols: another member of the same
subgroup modifies its secret share and establishes a new
DH key with its GSC. So, the GSC in the case of join
(evict) does two (one) DH key exchanges.
(MO), (MOT): At step1, GDH.2 and TGDH produce
subgroup keys: zaba = Na and xya = Na respectively.
These keys are equivalent to the subgroup key produced
by (O) when its subgroup contains one member only. A
designated member or sponsor from each subgroup
becomes GSC and provides the subgroup key for step2.
All 2d GSCs broadcast to all members of their subgroup
the same parts of key. Operations to derive the group key
are exactly the same for these members.
.
SECURITY ISSUES OF (MO) - (MOT) PROTOCOLS

We argue that the security of the new protocols is at the
same levels as the security of the original Octopus. In
step1 MO and MOT inherit the properties of GDH.2 and
TGDH secure protocols respectively. Step2 and step3
serve in calculating the group key for all the participants
and distributing it to all the members according to the
principles of DH key exchange, so the protocols inherit the
security DH key exchange provides for the latter steps.

 COMPARISON

Cost 2d-Oct. (O) Mod. 2d-Oct.
(MO)

Mod. 2d-Oct.
(MOT)

Initial
GSC
comput.

(2  d
dn

2
2− +2d+

 d
dn

2
2−)CE+

( d
dn

2
2−)4/3+1.

25( d
dn

2
2−)K2

( d

n
2 +2 d)

CE

 (2log  d
n

2
+2 d) CE

Initial
members
comput.

(d+2)CE
CE((1/2)

 d
n

2 +d)
CE (2log

 d
n

2 +d)

Initial
Commun.

 (2n+(d-1) 2d+1) K (2d-1( 2
2d

n

+3  d
n

2 -2)
+2d d+2d+1)K

(2d2  d

n
2 +

2d+1 d) K

 5

+2d d+2d+1)K

Add GSC
comput.

(3  d
dn

2
2− +4+2

 2
1+d) CE +2

( d
dn

2
2− -1) K2,

one

(2  d
dn

2
2− +2

 2
1+d)CE rest

CE( d

n
2 +1

+2  2
1+d),

one
CE(2  2

1+d),
rest

CE(2log

 d
n
2

1+ +2

 2
1+d), one

2CE  2
1+d

rest

Add
members
comput.

4CE , two
2CE , the rest

3CE, one GSC
2CE, rest

4CE, one GSC
2CE, rest

Delete
Commun.

(2  d
dn

2
2− +3

2d-2) K

( d
n
2

1− +3 2d-

2)K

(log  d
n
2

1− +3

(2d-1))K

Table 1: Complexities of key agreement protocols

Table1 shows some of the comparison results. The
performance evaluation for OFT can be found in [6], [7].
In terms of Initial GSC Computation, MOT behaves better
than all the other protocols. In terms of GSC Add/Evict
Computation, (O) is the worst, MO and mainly MOT
performs much better when d is small. As for the Initial
Communication, MO is the worst, MOT and (O) however
slightly outperform OFT. For the Addition/Eviction
Communication (very critical issue for MANETs), (O) is
outperformed by both MO and MOT, and MOT gets closer
to OFT than any other contributory protocol.

Figure1: Initial Communication vs. Group Size, d=6. MOT and (O)
 achieve almost the same lowest cost, OFT is slightly worse.

 Figure2: Delete Communication vs. Group Size, d=4. OFT achieves
 the lowest overhead. MOT gets very close to OFT, but the
 overheads of MO and (O) are still much worse. .

 SUMMARY AND CONCLUSIONS

The paper discusses the framework and constraints under
which already existing protocols can become scalable and
robust in MANETs. It distinguishes protocols in two
families (contributory/non-contributory), discusses their
limitations and suggests solutions to make them applicable
in MANETs. We present two novel hybrid protocols MO
and MOT-based on the original Octopus (O)-, developed
as an attempt to render contributory protocols scalable and
efficient. All three are described in detail and cost
functions in terms of communication and computation are
derived for all operations. From our performance
evaluation, we see that MOT outperforms (O) in all cases,
and OFT in the computation costs. As for Communication
Addition/Eviction costs, MOT gets very close to OFT.

REFERENCES

[1] Klaus Becker, Uta Wille. Communication Complexity

of Group Key Distribution. Proc.5th ACM Conference
on Computer & Communications Security, pages 1-6,
San Francisco, CA, November 1998. ACM Press.

[2] Steiner M., Tsudik G., Waidner M., Diffie-Hellman.
Key Distribution Extended to Groups. 3rd ACM
Conference on Computer & Communication Security,
ACM Press, 1996.31-37

[3] Maarit Hietalachti. Key Establishment in Ad-Hoc
Networks. Helsinki University of Technology.
Laboratory for Theoretical Computer Science.May’01.

[4] A.Perrig. Efficient Collaborative Key Management
Protocols for Secure Autonomous Group
Communication. Int’l Workshop on Cryptographic
Techniques E-Commerce CryptTEC’99.

[5] N.Asokan and Philip Ginzboorg. Key-Agreement in
Ad-Hoc Networks. Elsevier Preprint.2000.

[6] Maria Striki, John S. Baras. Efficient Scalable Key
Agreement Protocols for Secure Multicast Comm/tion
in MANETs. CSHCN Technical Report 2002.

[7] David McGrew. Alan T.Sherman. Key-Establishment
in Large Dynamic Groups Using One-Way Function
Trees. May 1998.

[8] H. Harney, E.Harder. Logical Tree Hierarchy protocol.
Internet Draft, Internet Eng. Task Force, April 1999.

[9] H. Harney, C.Muckenhirn. Group Key Management
Protocol (GKMP). Specification/Architecture, Internet
Eng. Task Force. July 1997.

[10] Y. Kim, A. Perrig, G. Tsudik Simple & Fault Tolerant
 Key Agreement for Dynamic Collaborative Groups.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, neither expressed or implied, of the Army Research Laboratory
or the U.S. Government

Delete Communication vs.Group Size, d=4 (log. Scale)

1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07

20
00

60
00

10
00

0
14

00
0

18
00

0
22

00
0

26
00

0
30

00
0

Group Size (n)

(O)
(MO)
(MOT)
(OFT)

Initial Communication vs. Group Size, d=6 (log. Scale)

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

2000
6000

10000
14000

18000
22000

26000
30000

Group Size (n)

(O)

(MO)

(MOT)

(OFT)

