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Abstract — New results are presented for recently
proposed rooted tree based secure multicast key re-
vocation schemes [1, 2] by studying the information
theoretic properties of member revecation events. It is
shown that the optimal average number of keys per
person is given by the entropy of the member revoca-
tion event and the currently available solutions cor-
respond to the worst case ar the maximum entropy
scenario. It is shown that the proposed key assign-
ment in [2] corresponds to optimal source coding and
is susceptible to attack by compromise or collusion of
multiple members.

I. INTRODUCTION

Secure multicast cemmunication requires all the members to
share a common key to encrypt the traffic. In the event of a
member compromise, it becomes necessary to revoke the old
traffic keys and securely distribute the new traffic keys to re-
mainizg members of the group. Another important constraint
is that members (revoked or otherwise) should not be able to
collude among themselves and construct the (future or other)
keys used by the group. Contacting individual members and
securely updating the traffic keys takes O{N) computations
at the group center node. Noting that all .V members can be
uniquely indexed using log, N d-ary digits, a scheme based
on d-ary rooted tree of depth log, NV has been proposed [1, 2].
Each of the member indices are directly mapped to a unique
leaf of a d-ary tree and a set of keys representing the inter-
mediate nodes of the tree between the root and each leaf is
assigned to individual members.

Figure 1 illustrates the rooted tree scheme for N = 16
with the leaf key indices also representing the indices of the
group members. For example, member 1 is indexed by the
set of five keys {Ko, Ku, K7, Ka, K1}, Ir this structure, the
whole group can update its keys in Oflog, ) encryptions at
the group center and one decryption at each leaf node. e.g.,
if member 1 is to be revoked, keys {Ko, K, K; Ka, K1}
need to be updated for relevant members. The following
encryptions and transmissions achieve this task: (a) mem-
bers with indices 9-16 receive new Ko encrypted with key
Ky, (b) members with indices 3-8 receive new { K¢, K} en-
crypted with key K, (¢) members with indices 3-4 receive
new {Ko, Ku, K} encrypted with key Kz, (d) member with
index 2 receives new {Ko, Kar,Kr, K1} encrypted with key
K.
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II. INFORMATION THEQRETIC FORMULATION

Since key updates are done in response to revocation of mem-
bers, statistics of member revecation events are very appro-
priate for system design and performance characterization.
We define pi as the }errobability of revocation of member
;1 <:< N with Z:jl pi =1
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Figere 1. The mooted key distnbution ree
Key allocation corresponding 1a | 2] are shown in paranthesis
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ITI. Maiy RESULTS
In order to make sure that revacation of a single member
does not render all kevs held by any other member invalid, no
member should have its keys embedded in the set of keys held
by another member. This is equivalent to unigue decodabiiity
in source coding.
Theorem 1: If the concatenation of the set of keys held by
each member is viewed as a “codeword” then this collection
of codewords satisfy the Kralt inequality.
Theorem 2: Optimal average number of keys per member is
given by the entropy Hy = — ZE]\ p:log, pi of the member
revocation event.
This source-coding viewpoint reveals that currently proposed
kev management schemes [1, 2] have redundant key alloca-
tion. They correspond to the worst case or mazrimum entropy
situation where each member is equaily likely to be revoked.
Attack by colluding members: The key allocation scheme of [2]
uses a set of 2log, NV distinct keys as shown in Figure 1. This
is shown to correspond to an optimal (Huffman) source coding
procedure with 2H; distinct keys. We show that this scheme
can be attacked by two colluding or compromised members
binary representations of whose indices are one's compliments
of each other.
Thecrem 3: Independent of the value of & or d, the opti-
mal key assignment discussed above allows the integrity of the
whole key management scheme to be broken by compromise
of or colluston amfong appropriate subsets of members.
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Abstract

Recent literature presents several seemingly different approaches to rooted tree based key distribution
schemes [3, 4, 5, 22, 23] that try to minimize the user key storage while providing efficient member
deletion. In this paper, we show that the user key storage on the rooted trees can be systematically
studied using basic concepts from information theory. We show that the key distribution problem can be
posed as an optimization problem that is closely related to the optimal codeword length selection problem
in information theory. In particular, we show that the entropy of member deletion event quantifies the
average number of keys to be assigned to a member. We then relate the sustainable key length to
statistics of member deletion event and the hardware bit generation rate. We also present an example
of a key distribution scheme that attains the optimality criteria but fails to prevent user collusion [4, 5].

Key Words: Multicast Security, Collusion, Member Deletion, Key Length, Entropy.

1 Introduction

Many of the distributed applications like Internet newscast, stock quote updates, and distributed confer-
encing registration may benefit from secure group communications. In order to minimize the sender as
well as the network resources all members of the group should share a single Session Key (SK) for data
encryption. In order to preserve the secrecy of the communication, at any instant of secure communica-
tion, only the valid group members must posses the session key {22, 23]. Unlike a pairwise communication
model, the secure group communication has to consider additional factors to ensure that only the valid

members have access to the communications. We present the details of this claim below.

In case there are two communicating members, when any one of them leaves the group, the session termi-
nates and the session key can be invalidated. If the group consists of more than two members, “leave” or

“join” or failure of a single member may not necessarily imply the termination of the group communication.

*Parts of this work appears in CRYPTO'99 [18] and IEEE Information theory and Networking Workshop [19}. Contact:
radha, baras isr.umd.edu
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Since the secrecy of the communication requires that only the valid members of the group possess the session
key, the task is to develop key distribution methods that will allow the group to update the new session
key without having security vulnerabilities such as illegal collaboration among present or past members
to obtain all or parts of the keys of the valid members. This illegal collaboration among present or past
members is noted as user collusion in this paper. Another important problem that a key distribution has

to address is that the deletion of one or more members should not invalidate all the keys of a valid member.

The use of public keys is a solution to ensure that only the valid members have the session keys at any time.
Under this assumption, when there is a need to change the session key, the entire group is individually
contacted and provided with the new session key. This solution however, has computation that grows as
O(N), where N denotes the group size throughout this paper. Since the desire is to use the minimum
amount of sender and network resources, more efficient solutions need to be developed for key distribution

for large groups.

In this paper, we study the model in which there is a single Group Controller (GC) that is assumed
to be responsible for generating and distributing all the required suitable cryptographic keys [15] to the
group members. We use the term Key Encrypting Keys (KEK) for keys that are used to encrypt other
cryptographic keys. Efforts to develop scalable session key update techniques with minimum key storage
requirements for the user as well as the Group Controller (GC) have been reported in the recent past
[1-5, 7, 8, 10, 11, 16-22]. Among different session key update approaches, one family of key distribution
approach [22, 23] based on rooted trees has been studied in detailed due to its scalability. Focus of this
paper is to show that the key distribution on the rooted trees can be related to well founded results in

information theory. We first present some of the non-tree based approaches for group communications.

1.1 Non-Tree Based Key Distribution Approaches

In [10], an approach that makes use of a common key encrypting key was proposed. Under this model,
if the session key needs to be updated due to its lifetime expiration, the GC generates a new session key,
encrypts it with the common key encrypting key, and broadcasts it to the entire group. If a new member
joins the group, the GC generates new SK and key encrypting key, encrypts them with the current key
encrypting key and updates the entire group. The new member is then individually updated with the new
SK and the key encrypting key. This approach prevents the new member from getting direct access to
past group communication. Althdugh this approach handles the member join and the key updates due to
key life time expiration, it was not designed to address the key updates under member deletion. If a single
member is deleted!, the session key has to be updated. However, the key encrypting key that is used to

update the session key is shared by all members including the deleted member. Hence, the GC has to

Yn this paper, we use deletion for member removal, voluntary leave of a member or deletion after detection of a compromise
since every one of these will invalidate the keyvs assigned to that member and the session key of the group.
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individually contact the members of the group to re-key. Although this approach requires one encryption
and two key storage at the GC as well as the user for a static group, it has to rely on (N-1) additional

individual keys every time a member is deleted.

In [22], an approach called complementary key assignment is discussed. Under this approach, each member
is uniquely identified by a single key. The key corresponding to a member is distributed to all other
members. Hence, no member will have the knowledge of the key that uniquely identifies that member.
When a member is deleted, the GC simply broadcasts the index of the deleted member to the group. The
group then sets the key corresponds to the deleted member as the new session key. Since the deleted
member does not have access to this key, the future communications is not directly accessible to the
deleted member. This approach requires (N-1) keys to be stored by every member. The GC doesn’t need
to perform any encryption under this model. Under this key distribution model, if two or members are

deleted simultaneously, the group is left with no key that will be secure for future communication.

Another model is to form all possible sets of members and assign a unique key to every set. Members
belonging to a set store the corresponding key. For a group of size N, there are 2/ possible set of members
and hence there are 2V possible keys to be stored by the GC. Since every member is in 2(V=1) of these
sets, every member has to store 20V "1 keys. In this model, if a member is deleted, then the GC has to
identify the set that contains all the valid members and broadcast the index of that member. This will
allow the valid members to use the appropriate key. Since the deleted member didn’t have access to the

specified group, there will be not direct access to the future communications.

The above mentioned schemes represent the extremes of KEK distribution. In {22, 23}, tree based schemes
that require each member to store log; N number of keys for a d-ary tree were proposed. Several varia-
tions (3, 2, 4, 5] have been developed with additional modifications. Efforts have been made to develop key
distribution schemes that will provide a scalable solution while providing acceptable tradeoffs in storage
and communications [2]. The reference [2] also represents a detailed study towards understanding the
communication-storage tradeoffs for the GC and is the first known document that provides a sub-linear
storage. The scheme uses a hybrid approach and uses pseudo-random functions {12] in establishing some
of the keys. We study methods that don’t make assumptions about the keys in our derivations and hence

don’t include results in [2] in our analysis.

We note that the use of information theory for key agreement has been studied in [16]. Use of information
theory in the context of homomorphic substitutions and coding have been studied by Massey [13]. Use
of information theory in alayzing algorithms was presented in [13]. Stinson used information theoretic

techniques in the context of boradcast key distribution [21}].

The main contributions of this paper are the following:




e We show that it is possible to unify these approaches using a common analysis technique.

e We also show that the design of an optimal tree is closely related to the Huffman trees and the

entropy of member deletion event.

e We then show that this entropy provides a bound on the providable key length if all the keys are of

same length.

e We perform security analysis using entropy and show that these schemes correspond to optimal

Huffman coding and any scheme using Huffman coding for key assignment has security vulnerabilities.

e We then show how to generate a key management scheme which will safeguard against a specific

amount of user collusion.

The paper is organized in the following manner. Section 2 presents the review of basic concepts behind
the rooted-trees based key distribution. Section 3 presents necessary preliminaries. Section 4 presents our
formulation based on the event of member deletion and the design of the optimal rooted tree. Section 5
presents the analysis bounding the key length and the statistics of member deletion event and proposes
a strategy under worst case key generation scenario. Section 6 demonstrates the user collusion on the
optimal trees using [4, 5]. A general criteria for choosing the set of colluding members is also presented in

section 6.

2 Review of the Rooted Tree Based Key Distribution Schemes

The first use of rooted tree based key distribution approach for secure multicast communication was
independently proposed in [22] and [23]. A rooted binary tree was used in [22] and key graphs [23] were
used in [23]. Both these approaches construct a logical tree [22] or key graph (23] based on the size of the
group without making any assumption regarding the relationship among the keys. The group controller
key storage requirements of these two schemes grow as O(NV) while the user key storage and the update

communication requirements grow as O(logn)?2.

2.1 Distribution of Keys on the Tree

The Figure 1 presents a rooted binary key distribution tree for a group with eight members. The logical
tree is constructed such that each group member is assigned to a unique leaf node of the tree. Every node

of the logical tree is assigned a key. The set of keys assigned to the nodes along the path from a leaf node

2The recent literature presents approaches that make certain assumptions about the relationship among the keys and
significantly reduce the group controller key storage requirements (3, 4, 5] while maintaining the user key storage and the
update communication as O(log, V).
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Figure 1: The Logical Key Tree of (3, 4, 5, 22, 23]

to the root are assigned to the member associated with that particular leaf node. For example, member

M; in Figure 1 is assigned key encrypting keys {Ko, K21, K1.1, Ko.1}-

Since the root key Ko is also shared by all the members, if there is no change in group membership, Ko
can be used to update the session key (SK) for all the members. Some of these schemes use [5] the root

key as the session key.

The tree based structure also induces a natural hierarchical grouping among the members. By assigning the
members to appropriate nodes, the GC can form desired hierarchical clusters of members and selectively
update, if needed, the keys of the group. For example, in Figure 1, members Ms, Ms, M7, and Mg exclusively
share the key K55. The GC can use the key Ks 2 to selectively communicate with members Ms, Mg, M7,
and Mg. Such clustering of the members on the tree may be decided by the GC based on application
specific needs. In order to be able to selectively disseminate information to a subset of group members, the
GC has to ensure that the common key assigned to a subset is not assigned to any member not belonging
to that subset.

Using the notation {m}x to denote the encryption of message m with key K, and the notation A — B:
{m}k to denote the secure exchange of message m from A to B, GC can selectively send a message m to
members Ms, - - - Mg by the following transmission:

GC — M5, Mg, M7, Mg : {m}k,,

If, however the key K35 is invalidated for any reason, GC needs to update the key K22 before being able
to use a common key for members M5, Mg, M7, and Mg. It can do so by first generating a new version

of K54, denoted Kz.z, and then performing two encryptions, one with K 3 and the other with K 4. The

following two messages are needed to update key K5 to the relevant members of the group.
GC — M5,M6 : {K—gg}xl.a




GC — ]V[T,]\/fg : {KQ.Q}KIA

2.2 Member Deletion in Rooted Trees

Since the session key SK and the root key encrypting key Ko are common to all the members in the group,
they have to be invalidated each time a member is deleted. Apart from these two keys, all the intermediate
key encrypting keys assigned to the deleted member need to be invalidated. In the event there is bulk
member deletion, the GC has to (a) identify all the invalid keys, (b) find the minimal number of valid keys
that need to be used to transmit the updated keys, and (c) update the valid members with the new keys.

The general principle behind the member deletion is discussed below using member M, as example. Member
M, in Figure 1 is indexed by the set of four keys {Kp, K21, K1.1, Ko.1}. Deleting member M; leads to
invalidating these four keys and the session key, generating new keys, and updating these keys of the
appropriate valid members who shared the invalidated keys with member M;. When M, is deleted, the
following updates are necessary: (a) all member need new root key Ko and new session key SK, (b)
members My — My need to update {K31}, (c) members M3 — My need to update {Kj 2}, and (d) member
M, needs to update {K;1}.

The following observations can be made towards the rooted tree based key distributions.

¢ Since each member is assigned (2 + log; N) = log, Nd? keys, deletion of a single member requires

(2 +logy N) keys to be invalidated.

e Since each node is assigned a key, and every member shares log; N nodes with at least one more

member, the total number of key encrypting keys to be updated under a member deletion is logy V.

e For a d — ary tree with depth A =logy N, the GC has to store 1 +1 + d+d>+---+dh =2 1\;4;11)—2

number of keys. Setting d = 2 leads to the binary tree for which the required amount of storage is
% = 2N. This result can be independently checked by noting that a binary tree with IV leaves
has 2V — 1 nodes. Hence the GC has to store the SK and (2N — 1) KEKs, leading to 2V keys that

need to be stored.

In [4, 5], binary rooted tree based key distributions which require GC to store a total of 2log, NV distinct
keys were proposed. For a d-ary tree, extension of results in [4, 5] requires dlogy NV keys to be stored at
the GC. However, the number of keys that need to be updated under a single member deletion remains at
logy N as in [22, 23]. Hence, the results in [5] reduce the storage requirements at GC by
d(N +1) -2 d(N+1-(d—-1)logyN) -2 1)

d-1 (d—-1)

number of keys without increasing the key storage requirements at the end user node. In the next section

el dlogd N =

we present our analytical formulation to study these models in a systematic manner.
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3 Preliminary Observations

Figure 2: An Unbalanced Key Distribution

We first show the need to optimize the rooted-tree using a worst case example. Lets consider the binary
rooted-tree shown in Figure 2. Since the SK and the root key are common to all the members, they will be
invalidated each time a member is deleted. In this tree, if all the member have equal probability of being

deleted, the average number of keys to be updated after a member deletion is given by

SN+ 1)+N N
1= = — . 2
N 7 T2 @)

Hence, the average number of keys to be invalidated grows as O(V) in this model. In (3, 4, 5, 22, 23] the
logical tree was built based on the group size. Every member was assigned keys based on the observation

that for N members log; IV keys are sufficient for a d-ary rooted tree.

If we consider the number of keys to be stored by a member as an efficiency parameter, a natural ques-
tion to be posed is if the optimal bound on the efficiency parameter is log; N when there is no explicit
relationship among keys. We show that the optimal bound on the efficiency parameter can be character-
ized by studying the member deletion process. We also show that the optimal key assignment problem
is abstractly equivalent to optimal codeword length selection problem. In order to do so, we first define
the necessary terminology and show that the well-known prefix coding (and hence the Kraft inequality)

provides a necessary condition for key distribution under single member deletion.

3.1 Cover Free Key Distribution

In assigning keys to members, the GC needs to ensure that every valid member can be securely reached

under member deletion. The GC also needs to make sure that collaboration among two or more members
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does not enable them to cover the keys assigned to a valid member. This cover free property has been
used in the context of broadcast encryption and traitor tracing in [8, 11]. We use it in the context of tree
based key distribution. Main idea behind the cover free property of the keys in our context is that any
set of valid or deleted members should not be able to collaborate and recover all the keys of any other
valid member(s). Let the set S; denote the keys assigned to member M; and the set S = {51, 52, -+, S}
denote the set of all key sets. Let C = {S¢,,Sc,, -+, S¢,} denote the set of the key sets of the colluding

members. Then, we can express the condition for cover free of a set §; as

ss¢ U S (3)

S;€C;j#i

In the case of key distribution, the condition that the set of keys assigned to a member be cover free
of union of any number of other sets of keys is the main feature that allows member deletion as well as
collusion resistance feasible. The condition imposed by (3) is satisfied if the set S; has at least one key K,
such that

K € S; , (4)
Ki ¢ S;Vj#u

Being cover free without additional relationship among keys also implies that the number of keys to be

stored grows at least as O(V).

3.2 Member Deletion Process

In order to delete a member, the GC has to have a lookup table that contains a unique index and the set
of keys assigned to that member. Let X, .1 Xn-2--- X1 X, be the binary User Index (UID). Since the GC
should be able to securely communicate with every valid member after a member deletion, no two members
should be assigned identical set of keys. Ihdeéd, every member should be assigned a unique set of keys,
some of which are shared with other members. Since a member M; has unique UID and deletion of member
M, invalidates a unique set of keys assigned to M;, the UID of a member has a one-to-one correspondence
with the set of keys assigned to that member. Hence, if we concatenate the set of keys assigned to a
member and form a key index (KID)3, the UID of a member needs to be in one-to-one correspondence

with the KID of that member.

Although the KID and the UID need to be in 1:1 correspondence, the KID needs to satisfy a much more
stringent version of the cover free property. We illustrate this by the following example. Consider the
alphabets {0,1} used for UID generation and the keys {K, K>} used for KID generation. The UIDs 0l

*In forming the KID, we ignore the root key and the session key that are common to all the members. Unless explicitly
mentioned, we also ignore these two keys in all the computations that follow.
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and 10 can be generated and assigned uniquely to two different members. The KIDs K} K, and KK
however can not be assigned to two different members. If we do assign them to two different members, the
keys assigned to a member can be completely covered by the keys assigned to the other member. Although
this is a special type of covering, this is crucial in defining the KIDs. Any permutation of the keys forming
a KID will lead to a KID that is completely covered by the original KID. We use this property in defining
the KID.

Definition: Key Index (KID) of a member M; is defined as the string generated by the concatenation of
the keys assigned to the member M;, taken in any order. If the number of keys assigned to member M;
is denoted by L;, then there are L;! possible different KID sequences that can be generated using these L;
keyé. Given a KID, all the KIDs that are generated by permuting and concatenating its keys are equivalent
under cover free property. If the set of keys of KID; is denoted by 51, and the set of keys of KID; is denoted
by S;, we say KID; = KID, if S; = S,.

The member M; in Figure 1 has four KEKs and is represented by the string Ko K2 1K;1Kp.1- Since
we ignore Ko, the KID is K51K;1Kj.1- Since there are six different ways to concatenate these keys,
there are five additional KIDs generated by permuting and concatenating the keys forming KIDs of M.
This equivalence of among the KIDs generated by permuting a set of keys is a feature that separates the

conventional UIDs from KIDs.

3.3 Key Indexing and Kraft Inequality

Since the UIDs and the KIDs of a member need to be unique, they do satisfy a variation of the cover free
property. This is the condition that the KID (UID) of any member should not be a prefiz of the KID (UID)
of any other member. On the rooted-tree, this condition is related to the well known Kraft inequality given

below.

Theorem 1: Kraft Inequality for KIDs
For a d—ary rooted key tree with N members and KIDs satisfying prefix condition, if we denote the number

of keys forming the KID of member M; by l;, the sequence {l,lz,- - In} satisfies the Kraft inequality given
by

doati<L (5)

Conversely, given a set of numbers {l,,[3,--- [x} satisfying this inequality, there is a rooted tree that can

be constructed such that each member has a unique KID with no-prefixing.

Proof: Well known, and available in [6, 9].

While this prefix free condition is necessary and sufficient for indexing a member using UID, this is
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only a necessary condition for the KID. We first illustrate this difference. Consider the set of keys
(K1, K2, K3, K4} be used to form the KIDs {K2K3K4}, {K1K3K4}, {K\K2K4}, and {K;KoK3} assigned
to members M;, Mo, M3 and My respectively. It can be verified that no KID is a prefix of another. Also
the KID lengths satisfy the Kraft inequality since (273.4) = 0.5 < 1). Since no KID is a prefix of another,
if a single member is deleted, there is at least one key for each of the remaining member that is not in
the set of the compromised member. Hence, a single user deletion does not invalidate all keys of other
members. It can be verified that the union of any two sets of KIDs will cover the elements of the all other
KIDs. Hence, any two members can collaborate and obtain the keys of all other members. Moreover, if the
GC deletes two or more members the keys of the rest of the group will be invalidated. Hence, the prefiz

free property is only a necessary condition for being able to reach a valid member under member deletion.

We note that this result can be explained by the fact that the Kraft inequality is a property exhibited
by the tree structure and is independent of the nature of the elements of KID. Hence, the selection of
KIDs satisfying prefiz condition does not guarantee any safequarding against failure of the key distribution

scheme under member deletion or user collusion®.

3.4 Making KIDs Cover Free

We noted the fact that if a KID assignment is cover free, it is prefix free. A natural question to ask is how
to construct a prefiz free KID assignment on the tree that is also cover free. In order to provide a condition
that a KID is cover free, we note that even if (N-1) members were to collude or to be deleted, the cover

free condition for the valid member M; with key set S; is

ss¢ J S5 (6)

S; €S
If we let ST = S;\ Usjes;#i(Si 1 S;) denote the set of keys that belong to S; and don’t belong to any other
set, the condition S; € Us,-es;j;ﬁi S; is satisfied if |S?| > 1, i.e., the set S; contains at least a single element
that is not contained in any other set. Since the case of interest is minimum number of keys assigned, it
is sufficient to set |S7| = 1. In order to be cover free, this condition must be satisfied for every member.

Hence, every key set needs to be assigned a unique key that is not shared by any other member.

In order to construct the tree based key assignment scheme that satisfy this condition, we consider the
manner in which the members are assigned to the logical tree. Each member is assigned to a unique leaf
node. There is a unique path from the leaf to the root of the tree. Every member shares all the keys other
than the leaf node key with at least one more member. Hence, choosing the leaf node keys to be distinct

will make sure that every key set S; has at least one element that is not covered by the union of any other

key sets.

*An example is [5].

10
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Hence, if we choose all the leaf node keys to be distinct, the tree based prefix free KID assignment will be
necessary and sufficient to (a) prevent user collusion from disabling the secure communication, and also
(b) reach a valid member under deletion of arbitrary number of members. Since there are N leaf nodes,
the number of keys to be stored by the GC grows as O(/N) when there is no additional relationship among
keys?®.

The optimal key assignment is very closely tied to the underlying physical process of member deletion as

shown in the next section.

4 Towards Optimizing the Keys Assigned to a Member

Using I; to denote the length of the KID of member M;, we note that in the rooted tree based key
distribution model [22, 23], member M; shares I; number of keys with two or more other members. This
count includes the session encryption key and excludes the leaf node key of member M;. In the event the
member M; is deleted, number of keys to be updated is also /;. Hence, if we can minimize {;, this will

minimize the user key storage.

In the rooted tree based key distribution of [22, 23|, each member shares (1 + logy N) keys with two or
more members. At the time a member is deleted, (1 + log, IV) keys are to be updated and communicated
to other members. Only key that need not be updated is the leaf node key of a deleted member. Ignoring
the constants, we note that the user key storage and the keys to be updated under member deletion grows
as O(log, N) for the rooted tree based key distribution schemes in [22, 23] that do not make use of the
physical process of member deletion in assigning the keys. We now show that the use of the statistics of the
member deletion process will enable us to further reduce the user key storage and, hence the key update

requirements of the rooted tree based models [22, 23].

4.1 Relating Statistics of Member Deletion Process to the Key Distribution on the
Rooted Tree

Let us denote the probability of deletion of member M; by p;. We assume that this probability is computable
either empirically or is known a priori. This paper does not make attempt to develop methods for computing
p;. Noting that every time a member is deleted, all the keys assigned to that member are deleted, we make

the following observations:

o Since every member is assigned to a unique leaf node, and every leaf node is also assigned a unique

key, probability p; of deletion of a member M; is identical to the probability of deletion of the leaf

SReduction of the key storage requirements of the group controller as a sub-linear function of group size was presented
in [2] using pseudo-random functions. In our study, we assume that the keys are distinct and have no relationship among
them.

11



node key assigned to M;.

e Since every member has a unique KID and the KIDs are formed by concatenating the keys assigned
to a member, probability of deletion of member M; is identical to the probability of deletion of the
KID of member M;.

Hence, we note that the probability of deletion of a member is identical to the probability of deletion of
its node key as well as its KID. Given the knowledge about the probability of member deletion, we define

the entropy of member deletion by the following formula [6]:

Definition: The d — ary entropy Hy of the member deletion is

N
Hy= - pilogyp (7)
=1

where p; is the probability of deletion of member M;. A word of caution is in place since this formula of
entropy is often used to describe the rates in the source coding literature. We use it in the context of its

physical interpretation which is the amount of uncertainty about the member deletion event.

Since the member deletion event and the leaf node key deletion event have identical probabilities, the d-ary
entropy of the member deletion event is same as the entropy of the leaf key deletion event. This important
observation is summarized as a theorem below. Similarly, the entropy of KID deletion is identical to
entropy of member deletion. We will use the term entropy of member deletion event instead of entropy of

leaf key deletion or entropy of KID deletion since they are equivalent.

A main outcome of these observations is that the entropy of the KID deletion is identical to the entropy
of member deletion, and hence, can be completely characterized once the entropy of member deletion is

known.

4.2 Assigning Optimal Number of Keys per Member

When a member M; is deleted with a probability p;, the group controller has to generate and update ;
keys that were shared with other members. Hence, on average, the group controller has to generate and

update .
Z pili (8)
1=1

number of keys. This is also the average number of keys that a member needs to be assigned. As noted

earlier, we have chosen not to count the session key and the root key that are updated for every member

deletion.

may need clear argument The GC can choose to minimize a variety of cost functions such as the maximum

number of keys to be updated or the average number of keys to be updated. In the case of the rooted
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tree based key distribution, the maximum number of keys of a member is a known fixed quantity log, V.
Hence, the average number of keys to be updated is an alternative that can be minimized. In minimizing

this quantity, the [;’s satisfy the Kraft inequality as noted earlier.

The optimization problem arising from the multicast key distribution on the rooted tree models of [22, 23]

is to minimize the cost function 3", p;l; subject to the constraint 3, d~h < 1.

We note that the optimization of the average number of keys to be updated under member deletion with
the length of the I;’s satisfying Kraft inequality is identical to the well known optimal codeword length
selection problem [6] for prefix coding in the context of information theory. This problem is well studied
and the optimal strategy is known to yield the Shannon entropy of the random variable being coded as the
optimal average codeword length [6]. Since the abstract mathematical formulations are identical, we can
use identical arguments to derive the optimal number of keys to be assigned to a member on the rooted
tree. The derivation is standard [6], and leads to the following conclusion: In the contezt of key distribution
on the rooted trees, the average number of keys to be updated is the entropy of member deletion process.

We summarize this result as Theorem 2 without repeating the obvious proofs {6].

Theorem 3. Let p; denote the probability of deleting member M;. Let the group size be N. Let the
degree of the rooted tree of key distribution be d. Then, for a key distribution satisfying at least the Kraft
inequality, the optimal average number of keys (excluding the root key and the session key) to be assigned
to a member is given by the d — ary entropy Hg = — Zf\;l pi logy pi of the member deletion event. For a
member ¢ with probability of deletion p;, the optimal number of keys to be assigned (excluding the root

key and the session key) is given by
I;* = —log,pi. (9)

Including the session key and the root key, the optimal average number of keys per member is given by
Hy + 2, and the number of keys assigned to member ¢ with deletion probability p;, including the SK and
the root key is given by

d?
l;‘+2=—logdpi+2=logd;. (10)
(]

The following features of key assignment are direct consequence of the optimization results. They are

summarized in the form of lemma.

Lemma 2.

1. A member with higher probability of deletion should be given fewer keys compared to a2 member with

lower probability of being deleted. If p; > pj, then lj(= ~logy p;) < lj(= —logy p;)-

2. There must be at least two members with the largest number of keys.

13




3. Since the number of keys assigned per member needs to be integer, true average number of keys per

member is not exactly the entropy, but is bounded below and above. It is exact if the probabilities

are d-adic.
Sketch of the Proofs:

1. The logarithm being a monotone function, if p; > p;, then logypi > logyp;- Hence —logypi <

—log, pj, leading to (= —logypi) < lj(= —logyp;)®.

2. In order to prove this, we note that the KIDs need to be unique with minimum possible number
of keys. Hence, if there is only one member with the largest number of keys, then we can reduce
the largest number of keys held by at least one and still ensure that all members have unique set of
keys assigned. However, this reduction will violate the proof of optimality of the individual codeword

lengths. Hence, at least two members should be assigned largest number of keys.

3. Computation of the redundant keys is identical to the computation in (6] (pp. 87-88) and is not

repeated.

4.3 Maximum Entropy and the Key Assignment

The results reported in [4, 5, 22, 23] present a rooted tree with all members having the same number
of keys. Since the optimal number of key encrypting keys for a member 7 with probability or deletion
pi is (1 — log,p;),this assignment is equivalent to treating (1 — log,p; = q), where ¢ is a constant. This
leads to p; = d'~¢ for all values of 7. ie. p; is a constant. Since SN .pi =1, pi = N7'. Hence
l; = —logypi = logy N, i.e, all the member are assigned same number of keys (1 + logy N). Under this
condition, the average number of keys assigned to a member is also (1 + logy N). This corresponds to the
trees presented in [22, 23]. Hence, the results in {22, 23] assume that all the members of the group have the
equal probability of being deleted. Since the uniform distribution mazimizes the entropy [6], and entropy
is the average number of keys per member under a optimal strategy, the schemes in [22, 23] assign maximal

set of keys per member on the tree. We summarize these results by the following theorem.

Theorem 4. For a d-ary rooted tree based key distribution scheme, average number of key encrypting

keys per member is upper bounded by (1 — logy V) and this value is reached when all the members have

equal probabilities of being deleted.

8Since the members with higher probability of being deleted are assigned lesser keys in this strategy, the GC can adaptively
react to any possible coordinated attack effort by members to increase frequency of rekeying by simply forcing deletion by
leaving and joining at very high rates. The GC will be able to assign less number of keys to members with higher probabilities
of being deleted. In the traditional models [22, 23], there is no explicit mechanism to include this knowledge into the key

distribution.

14




,
,
4
z
:
ﬁ
s
,

Proof: We showed that the average number of key encrypting keys per member is (1 + Hy) where Hy =

- Z:zf{ pilogypi. The entropy Hy of member deletion can be shown to be maximized [6] when the

probabilities of the event is uniform.

4.4 Upper Bounds on the Integer Values of keys

The optimal number of keys for a member with probability of deletion p; in a d — ary rooted tree key

management scheme was shown to be

2 - log, pi- (11)

Since this quantity corresponds to the number of physical keys, it has to be an integer value. The following
theorem summarizes the bound on the optimal number of keys to be held by a member. If we denote the
integer value of the average number of keys, excluding the SK and the root key, held by members by i,

the bounds on the optimal number of keys per member are given by the following inequalities:

Theorem 5. The optimal average number of keys held by a member satisfies

Hy+2<I*+2<Hy+3. (12)

Proof: Using the notation [~ log, p;] to represent the smallest integer greater than or equal to — log, pi,

we have the integer value of [J as

I} = [—logypi]- (13)

For this choice of I}, it can be shown [6], that | = Hy < [* < Hy+ 1| Hence, | Hy+2<[*+2< Hy+3|

Since the average number of keys per member is (i* +2), we note that the optimal number of average keys
per member is at most 3 d — ary digits more than, and is at least 2 d — ary digits more than the entropy

of the member deletion event.

4.5 Effect of Using Incorrect Entropy on Key Length

In Figure 2 we presented the effect of an unbalanced rooted tree on the number of keys to be assigned
and to be invalidated. We note that this quantity can be completely characterized using basic results from

information theory as well.

Lets us assume that the true deletion probability of member i is p; and the used probability of deletion for

member 7 is ¢;. Hence, the optimal number of keys to be assigned to that member is given by

I} =2+ [-logyqil (14)
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Using an incorrect distribution introduces redundancy in the number of keys that are assigned to the

members. This redundancy is given by the following theorem.

Theorem 6. The average number of keys per member under the true distribution p with the number of

key selection based on l; = 2 — log, ¢; satisfies the following bounds
Hy(p) + D(pllg) +2 < L +2 < Ha(p) + D(pllg) +3, (15)

where L = :ﬂv pil;, and D(pl||q) is the information divergence [6].
Proof: Follows with minor modifications of derivations in [6].

Hence, on average the number of redundant keys assigned to a member due to the use of an incorrect distri-

bution is given by the inequalities [D(qu) <{L - Hyp)} < D(pllg) +1 l Apart from being closely related

to the optimal key assignments, the entropy of member deletion event is also related to the sustainable key

length of the secure multicast group, as shown next.

5 Impact of Member Deletion on the Key Length

For secure communication, the desired key length need to satisfy a minimum threshold depending on the
application. In the case of secure multicast key distribution, the admissible key length is tied to the bit
generation rate of the group controller and the rate of member deletion as shown below. In doing so, we
make the assumption that when a member is deleted, the keys are generated and updated before secure

communication continues.

5.1 Bounds on Average Key Length

Since the keys need to be updated in order to continue with the communication without interruptions, if
we denote the bit length of a key by X and the hardware bit generation rate by B, in [22, 23], the key
length has to satisfy

B> A2+ 1logy N). (16)

Hence, the maximum possiblé key length is given by A = 2—+lo%d—1\7‘ In the probability based modeling, the
sustainable key length however can be smaller than m. The following theorem establishes the value

of the possible sustainable length of the key for a rooted tree based key distribution scheme.

Theorem 6. For d — ary rooted tree based key distribution scheme [22, 23], if each key is of length A

digits, and the hardware digit generation rate is B, then the maximum sustainable key length A* is given

B B }
2—log, pi)’ (2+logy N) 4~

by min{ (
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Proof: We showed above that the bound on the key length when all the members have equal probability
of being deleted is A\* = W«%IN—)' We now compute the bound for the models using the probabilities.
The number of keys to be generated in deleting member M; with probability of deletion p; is (2 — log, p;).
Hence, the hardware should be able to generate L(2 — log, p;) digits of suitable quality” in unit of time to
let the session continue without interruptions. Hence, the hardware digit generation rate B must satisfy

B > A2 -logyp:) (17)
B

(2 ~loggpi)
Since B is a fixed quantity, choice of X is controlled by the choice of p;. Our objective is to choose the

A<

maximum possible value of key length that can be sustained under a member deletion. The lower bound
min

is obtained on the maximum possible A as A = p; (7+1—£;_1'V7' We note

Pmin < N7''< Pprmas (18)
(2 — logg Pmin) 2 (2 +1logg N) > (2 — logg Pmaz)
B < B B

—_— <
(2 — logg Pmin) (2+1logg N) = (2 — log Prmaz)
B

Therefore, the minimum value of B=Togrp)) is attained when p; = pnin. Hence, for the probability based
. . . B . .
models of the rooted tree, the sustainable key length is given by A < lon Setting the equality

yields the maximum possible length \* = (—'—52_1033 i)

Hence, the maximum possible sustainable key length under a member deletion is given by min{ P gf o) @ +lc:?gd N)}

for the rooted tree based key distribution that does not impose any relationship among the keys.

6 A Rooted Key Distribution with User Collusion

The optimal rooted tree derived was shown to be identical to the optimal codeword tree in information
theory. In the case of codeword selection problem, Huffman codes are known to be optimal {6]. From the
similarities of both the trees, a possible question to ask is where the codeword length selection problem

differs from cryptographic key distribution on rooted trees.

As noted earlier, one of the differences is that the keys distribution needs to consider the uniqueness of the
assigned keys and the user collusion (or be cover free as noted in sections 3.1 and 3.6) whereas the codeword
generation needs to consider the uniqueness of the assigned codes. We also showed that the condition for
any KID to be cover free is that at least that the leafs keys are all distinct. Under this condition, the key

storage requirement of the group controller is linear in V.

We now describe a rooted key based key distribution scheme [5] that satisfy the maximum entropy bound

(logy N)for the number of keys assigned to a member while attempting to directly map the UID to KIDs.

"Based on the application specific use of the key.
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We use this scheme [5] to demonstrate the fact that while a key distribution scheme may attain optimality,

it may not be cover free or collusion free.

Let X1 Xn—2--- Xo denote a binary UID of the members. Each of the bit X; is either a zero or a one.
There are 2" possible different UIDs for this sequence. In [5], the following direct mapping between the
KIDs and the UIDs was proposed. We illustrate the mapping by the example in [5]. In [4], when N = 8,
log, 8 = 3 bits are needed to uniquely index all eight members. The authors then proceeded to note that
since each bit takes two values, it can be mapped to a pair of distinct keys. The UID string X,X, X is
mapped to the KID string KK Ky. The table below reproduces the mapping between the ID bit # and
the key mapping for the case in [4] for N = 8 where, the key pair (Kjo, K1) represents the two possible

values of the ith bit of the member index.

ID Bit #0 | Koo | Kp1
ID Bit #1 | K10 | K11
ID Bit #2 | Kog | K91

. Represents the valid keys

Figure 3: The Key Distribution in 4, 5]
Figure 3 presents the corresponding binary tree for the key assignment. This rooted tree has the special
structure that at any given depth from the root, two new keys are used. At depth A from the root, the
two new keys K(jog, n—h)o @nd K{iog, n—_p)1 are duplicated A times. The total number of keys to be stored

in this scheme is 2log, V. For a d-ary rooted tree, the total number of keys to be stored in this scheme is
d logd N.
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Although the total number of keys is dlogy IV, deletion of more than one member may bring this key
distribution scheme to halt. In the case of Figure 3, This happens if the members My and M7 need to
be deleted. The KID of member M, is Ko9K10Kgo and the KID of member M7 is K21 K11Ko1. The
union of the keys forming these two KIDs cover the entire the keys used for key distribution on the tree.
The corresponding keys to be deleted are shown in Figure 4. Hence, if these two members need to be
simultaneously deleted, the group controller is left with no key to securely communicate with the rest of
the valid members. The compromise recovery for this case requires that the entire group re-key itself by

contacting one member at a time.

SK

. Represents the revoked keys

Figure 4: Deletion of Members My, M7 in [4, 5].

Apart from member deletion, the key assignments in [4, 5] and their variations also allow the members to

collaborate and break the system. We now interpret the user collusion on the rooted tree in [4, 5].

6.1 Interpretation based on Minimal number of Key Requirements

We noted earlier that the sufficient condition for cover freeness requires that at least the N leaf nodes are
assigned distinct keys. Hence, for a binary tree, the model in [5] will be cover free if 2log, N > N. This
condition is satisfied with equality if N = 2 or N = 4. These two cases are not the target group sizes for

the tree based key distribution schemes.
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6.2 Interpretation of Collusion Problem Based on Complementary variables

The second interpretation is based on the notion of sets, and is also discussed under the category of
complementary variables in [7, 22]. In complementary variable approach, each member of the group is
identified by a unique key. This unique key is distributed to everyone in the group excluding the member
identified by that key. When a member is deleted, the index of the member is broadcasted. For the next
session, all the valid members set the key corresponding to the deleted member as the new session key.
Under this model, For a set of N members, all the members will have (N — 1) keys that correspond to
other members and no member will have the key denoting itself. If we consider any two members, the
union of the keys stored by them will cover the keys stored by entire group. Hence, this key assignment

does not scale beyond 2 members.

If we use the notation (k;, fcj) to denote the unique key pair representing the two possible binary values
taken by the jth bit, we note that the collusion or compromise of two members holding keys k; and lch
respectively will compromise the integrity of the key pair (k;, /ch). In a d — ary tree with key distribution
in [5], each digit takes d values and the sum of these values is given by éﬁ%_—u. Hence, if a set of k (k > d)
members whose ith bit values when summed lead to d—%’—ll collude, they will be able to fully compromise

the ith bit location. We summarize this by the following condition:

For a d — ary tree with N members, the key corresponding to bit location b will be compromised by a
subset of k (k > d) members whose symbolic value of the bit location b denoted by the set {by, b2, -, b}
satisfy [ by + by - - - by = 0 mod ﬂdQ;l—) .

7 Conclusions and Discussions

This paper showed that the recently proposed [22, 23] rooted tree based secure multicast key distribution

" schemes can be systematically studied using basic information theoretic concepts. By using the member

deletion event as the basis of our formulation, we showed that the optimal number of average keys assigned
to a member is related to the entropy of the member deletion event. We derived the necessary and
sufficient condition for the key assignment to be collusion free and in general “cover free”. In particular,
we showed that the cover free condition on the rooted trees require that the leaf node key be all distinct
when there is no additional relationship among keys. Under this condition, the storage requirements of
the group controller is linear in group membership V. We then proved that the currently available known
rooted-tree based strategies [22, 23] and their variations [4, 5] yield the maximum entropy among all the
rooted-tree based strategies and hence opt for the maximal average number of keys per member regardless
of the values of the deletion probabilities. We also derived a relationship between the average key length,

probability of member deletion event, and the hardware digit generation rate.
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Report on the paper

An Information Theoretic Approach for Design and Analysis of

Rooted-Tree Based Multicast Key Management Schemes

by R. Poovendran and J. S. Baras

Recommendation:

The paper contains interesting results on multicast key management schemes
based on rooted tree. Using the entropy of member revocation event the au-
thors present methods for design and analysis of rooted tree based schemes.
Several recently proposed schemes are analysed using this information the-
oretic approach. I recommend publication in the IEEE Transactions on
Information Theory subject to the following revisions.

Suggestions and comments:

page 4 line 9: replace “ show ” by “ shows ”

page 4 line 11: replace “In We ” by “In 7 we ”

page 4 line -11: replace “16 ” by “8”

page 8 line 6: replace “ L; " by “ L;! ”

page 8 line 7: replace “ a equivalence ” by “ an equivalence ”
page 9 line -7: remove the comma (,) after event

page 10 line -10: replace “ indepent ” by “ independent ”
page 11 line 2 and 11: replace “ occurance ” by “ occurence ”

page 11 line -6: insert “ to the entropy of member revocation event”
right after “ is tdentical ” '

page 12 line 5 and 11: change “ per members ” to “ per member ”

page 12 line 10: change “ satify ” to “ satisfy ”

page 12 line 20: Is it SK instead of TEK?




R 4

AT TR SRR AR TR R A TR R TR

page 13 line 3: change “ li(= —logyp; > (= —logyp;) ” to “ li(=
—logypi < lj(= —loggp;) ”

]

page 13 line -5: change “log,pi 7 to “log,p; ” in equation (9)

4

page 14 line 5: change “ indicates ” to “ indicate ”

page 14 line 12: replace “ or ” by “ of ”

page 15 line 15: replace “ yiled ” by “ yield ”

page 16 line 16: replace “ < Hy(q)” by “< Hy(p) ” in equation (17)
page 18 line -3: change “ {K,, K4, K5, Ks} " to “ {K1, Ky, K3} ”
page 19 line 1: replace “tand j ” by “7 and £ ”

page 19 line 4 and 5: change “€ ” to “ C"”

page 19 line 10: change “ larger group). ” to “ larger group.) ”

page 22 line 9: change “ the the number ” to “ the number ”

Only the following 12 items: 4, 5, 6, 9, 10, 20, 21, 22, 23, 24, 26, 31
are quoted in the paper. The other 19 items appear nowhere, so they
should be removed from the list of references.
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This paper studies rooted-tree based multicast schemes. The goal of the paper 1s to show how @
information theory can be used to clarify recent work in this area, and to obtain optimality conditions.

To this end, the authors consider multicast schemes with an arbitrary probability distribution over the
member revocations (i.e. distributions p = (py,...,ps), where p; denotes the probability that member

is revoked). Previous work assumes that each user is revoked with equal probability (p; = 1/n for

every i). The authors show that the entropy determined by the probability distribution is equal to the

optimal average number of keys per user. They show that while a scheme may be optimal with

respect to the uniform probability distribution it may not be secure against collusions (i.e. the scheme

is only 1-resilient). The authors also make observations about the effect of the hardware digit

generation rate and incorrect entropy values on key length.

This paper makes some useful points about tree-based multicast schemes. The theorems follow
directly from well-known results in information theory. In addition, allowing for arbitrary revocation
probability distributions is a natural extension of previous work.

The scope of this paper is a bit narrow in two respects. First, the authors make the point that unless
special care is taken, a tree-based scheme may be vulnerable to coalitions of as few as two users. The
concept that seems to be at the heart of the problem is “cover-freeness”. Informally, if two users can
cover another user’s key set then the scheme is not 2-cover-free, and it will be impossible to reach the
third member securely if the two members are revoked. The concept of cover-freeness has been used
to construct broadcast encryption schemes quite a bit recently (e.g. the Crypto *99 papers of Kumar-
Rajagopalan-Sahai and Gafni-Staddon-Yin). This concept should be discussed in this paper.

Secondly, the main goal of the paper appears to be the demonstration that bounds on the average

number of keys per user follow naturally when the problem is looked at in an information theoretic

context. In a multicast scheme that is tight with the bounds proven in this paper, the length of the . etlc
transmission necessary to reach the set of targeted users may grow to be quite large. This trade-off W
between transmission length and the number of keys per user has been extensively studied (e.g. ,/ leo /‘",{J,ll
Canetti-Malkin-Nissim, Eurocrypt *99) and it is fairly well understood. I think it’s important that this

paper make it clear that they are not striving to bound the transmission length, when calculating

optimal values for the number of keys per user (e.g. through expanding the discussion in section 4.5).

In conclusion, I recommend accepting the paper largely because of the important and natural

connections the authors draw between multicast schemes and information theory. I also suggest that
the authors revise the papers in light of the above comments and the editorial feedback below.

Editorial comments follow:

[y

I think there’s an error in equation (2) on page 7. (Still O(N), though.)

2. Assertions are sometimes made without supporting references. For example, see the first
paragraph of section 5.

3. It’s a bit hard to find things in the bibliography because the entries are not alphabetized by author

name.
4. The paper could use some rereading to catch typos and awkward phrasing.
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Report on "An information Theoretic Approach..."

by Poovendran and Baras

The paper presents a different exposition and some improvements to the
"virtual tree" scheme of Wong et.al. (Co-discovered by Wallner et.al)
for efficient membeship revocation in secure multicast groups.

In particular the paper adresses the following issues:

1. The need to keep the tree balanced.
2. The requirement that the numbers of keys held by the users should

satisfy the Kraft Inequality.
3. Assigning probabilities to the events that users leave the group, and

constructing the tree according teo those probabilities.
4. A relation between the size of the keys and the size of the group.
5. Drawbacks in other membership revocation schemes.

I must say that I found the paper quite un-interesting, and canncot
recomment acceptance. In particular:

-Points 1 and 2 are quite obvious. Also, adding users in a balanced way
is quite straighforward.

-It is usually not the case that

users choose whether to leave at each step using some a-priorily fixed
probability. Also, users do not make a new, independent choice whether
to leave at each step. Rather, users usually have some profile of
membership length (e.g., fixed or expected duration, or some specified
real time event). :

Consequently, assigning probabilities (that are fixed a-priori) to the
event of user removal does not seem to model reality.

-I could not follow the claimed bound on key length as a function of
the group size, nor could I understand what was the claim.

-The described drawback in the scheme of [22,24]) was known. It is even
mentioned in 24. Also the extension in section 6.3.3, and its breaking,

are not surprising.
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February 21, 2000

Prof. Radha Poovendran
Room #2243, AVW Building
Institute for Systems Research
University of Maryland
College Park, MD

20742 USA

Dear Prof. Poovendran:
I have now received three reports on your paper

“An Information Theorectic Approach for Design and Anaysis ...”
(file number CLN 99-211).

These reports are enclosed. Please send me three copies of a revised version
of the paper that addresses the referees’ comments. Then I will send the
paper out for re-review.

Yours sincerely,

Douglas Stiusou
Associate Editor for Complexity and Cryptography
IEEE Transactions on Information Theory
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Report on the paper

An Information Theoretic Approach for Design and Analysis of

Rooted-Tree Based Multicast Key Management Schemes
by R. Poovendran and J. S. Baras

Recommendation:

The paper contains interesting results on multicast key management schemes
based on rooted tree. Using the entropy of member revocation event the au-
thors present methods for design and analysis of rooted tree based schemes.
Several recently proposed schemes are analysed using this information the-
oretic approach. I recommend publication in the IEEE Transactions on

Information Theory subject to the following revisions.

Suggestions and comments:

e page 4 line 9: replace “ show ” by “ shows”

e page 4 line 11: replace “ In We ” by “In 7 we”

e page 4 line -11: replace “16 ” by “8”

e page 8 line 6: replace “ L; ” by “ L;! ”

e page 8 line 7: replace “ a equivalence ” by “ an equivalence ”
e page 9 line -7: remove the comma (,) after event

e page 10 line -10: replace “ indepent ” by “ independent ”

4

e page 11 line 2 and 11: replace “ occurance ” by “ occurence ”

e page 11 line -6: insert “ to the entropy of member revocation event”

right after “ is identical ”

e page 12 line 5 and 11: change “ per members ” to “ per member ”

4 13

e page 12 line 10: change “ satify ” to “ satisfy ”

e page 12 line 20: Is it SK instead of TEK?



page 13 line 3: change “ l;(= —logypi > [j(= —logyp;) ” to “ li(=
—logyp: < (= —logyp;)

?

page 13 line -5: change “ log,pi ” to “log,;p; ” in equation (9)

[4 [4

page 14 line 5: change “ indicates ” to “ indicate ”

page 14 line 12: replace “ or ” by “-of ”

page 15 line 15: replace “ yiled ” by “ yield ”

page 16 line 16: replace “ < Hy(q)” by “< Hqa(p) ” in equation (17)
page 18 line -3: change “ {K,, Ky, K5, Kg} " to “ {K1, K3, K3}

¢

page 19 line 1: replace “7and j” by “tand k& ”

page 19 line 4 and 5: change “€” to “ C”

page 19 line 10: change “ larger group). ” to “ larger group.) ”
page 22 line 9: change “ the the number ” to “ the number ”

Only the following 12 items: 4, 5, 6, 9, 10, 20, 21, 22, 23, 24, 26, 31
are quoted in the paper. The other 19 items appear nowhere, so they
should be removed from the list of references.
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» This paper studies rooted-tree based multicast schemes. The goal of the paper is to show how

: information theory can be used to clarify recent work in this area, and to obtain optimality conditions.
To this end, the authors consider multicast schemes with an arbitrary probability distribution over the
member revocations (i.e. distributions p = (py,...,ps), Where p; denotes the probability that member i
is revoked). Previous work assumes that each user is revoked with equal probability (p; = 1/n for
every ). The authors show that the entropy determined by the probability distribution is equal to the
optimal average number of keys per user. They show that while a scheme may be optimal with
respect to the uniform probability distribution it may not be secure against collusions (i.e. the scheme
is only 1-resilient). The authors also make observations about the effect of the hardware digit
generation rate and incorrect entropy values on key length.

This paper makes some useful points about tree-based multicast schemes. The theorems follow
directly from well-known results in information theory. In addition, allowing for arbitrary revocation
probability distributions is a natural extension of previous work.

The scope of this paper is a bit narrow in two respects. First, the authors make the point that unless
special care is taken, a tree-based scheme may be vulnerable to coalitions of as few as two users. The
concept that seems to be at the heart of the problem is “cover-fresness”. Informally, if two users can
cover another user’s key set then the scheme is not 2-cover-free, and it will be impossible to reach the
third member securely if the two members are revoked. The concept of cover-freeness has been used
to construct broadcast encryption schemes quite a bit recently (e.g. the Crypto 99 papers of Kumar-
Rajagopalan-Sahai and Gafni-Staddon-Yin). This concept should be discussed in this paper.

Secondly, the main goal of the paper appears to be the demonstration that bounds on the average
number of keys per user follow naturally when the problem is looked at in an information theoretic
context. In a multicast scheme that is tight with the bounds proven in this paper, the length of the
transmission necessary to reach the set of targeted users may grow to be quite large. This trade-off
between transmission length and the number of keys per user has been extensively studied (e.g.
Canetti-Malkin-Nissim, Eurocrypt *99) and it is fairly well understood. I think it’s important that this
paper make it clear that they are not striving to bound the transmission length, when calculating
optimal values for the number of keys per user (e.g. through expanding the discussion in section 4.5).

In conclusion, I recommend accepting the paper largely because of the important and natural
connections the authors draw between multicast schemes and information theory. I also suggest that
5 the authors revise the papers in light of the above comments and the editorial feedback below.

Editorial comments follow:

1. 1think there’s an error in equation (2) on page 7. (Still O(V), though.)

2. Assertions are sometimes made without supporting references. For example, see the first
paragraph of section 5.

3. It’s a bit hard to find things in the bibliography because the entries are not alphabetized by author

name.
4. The paper could use some rereading to catch typos and awkward phrasing.
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Report on "An information Theoretic Approach..."”

by Poovendran and Baras

The paper presents a different exposition and some improvements to the
nvirtual tree" scheme of Wong et.al. (Co-discovered by Wallner et.al)
for efficient membeship revocation in secure multicast groups.

In particular the paper adresses the following issues:

1. The need to keep the tree balanced.
2. The requirement that the numbers of keys held by the users should

satisfy the Kraft Inequality.
3. Assigning probabilities to the events that users leave the group, and

constructing the tree according to those probabilities.
4. A relation between the size of the keys and the size of the group.
5. Drawbacks in other membership revocation schemes.

I must say that I found the paper quite un-interesting, and cannot
recomment acceptance. In particular:

-Points 1 and 2 are quite obvious. Also, adding users in a balanced way
is quite straighforward.

-It is usually not the case that

users choose whether to leave at each step using some a-priorily fixed
probability. Also, users do not make a new, independent choice whether
to leave at each step. Rather, users usually have some profile of
membership length (e.g., fixed or expected duration, or some specified
real time event). .

Consequently, assigning probabilities (that are fixed a-priori) to the
event of user removal does not seem to model reality.

-T could not follow the claimed bound on key length as a function of
the group size, nor could I understand what was the claim.

-The described drawback in the scheme of [22.,24] was known. It is even
mentioned in 24. Also the extension in section 6.3.3, and its breaking,

are not surprising.




