

Satellite Networks: Architectures, Applications, and Technologies

Center for Satellite and Hybrid Communication Networks

Flow Control and Dynamic Bandwidth Allocation in DBS-Based Internet

and

John S. Baras

Gabriel Olariu

Center for Satellite and Hybrid Communication Networks University Of Maryland College Park Hughes Network Systems

Satellite Networks: Architectures, Applications and Technologies
NASA Lewis Research Center
June 3, 1998

DBS - based Hybrid Internet Service

- Conventional Internet access either too slow or too expensive
- DirecPC Turbo InternetTM
 - conceived and designed by the University of Maryland
 - productized and marketed by Hughes Network Systems
- Awards
 - 1994 Outstanding Invention of the Year, Univ. of Maryland
 - ComNet '96 New Product Achievement Award (wireless)
 - 1996 "Hot Product", network services, Data Comm. Magazine
 - 1996 Technical Excellence Award (Net. Hardware), PC Mgzine

Hybrid Internet Service: Extensions

- · Two IETF WGs: TCP over Satellite and Unidirectional routing
- · Intelligent asymmetric data transmission
 - Low data-rate (or "short length") via terrestrial
 - High data-rate (or "bulky") via satellite
- Terrestrial LAN extension of DBS-based Internet
 - Distribute DBS services from a single receiver to multiple users
 - · Satellite hybrid hosts can redistribute data to mobile users
 - "Local loop" anything: Ethernet, ATM, cable TV, wireless
- · Reliable multicast over hybrid networks
- Hybrid Internet service over other hybrid network architectures

Architecture of the Hybrid Internet Service Network

- •HH: Hybrid Host
- •IH: Internet Host (Server)
- •ISP: Internet Service Provider
- •HGW: Hybrid Gateway
- •SGW: Satellite Gateway
- •NOC: Network Operations Center

Network Operations Center (NOC) for Hybrid Internet Service

• Congestion control: TCP and TCP Spoofing

Satellite channel bandwidth allocation

• HGW: first NOC object that receives data (Router)

- HGW prioritizes Hybrid Internet traffic

· SGW jobs: mixture of Internet and exogenous traffic

- Exogenous traffic: package delivery and data feed traffic

- SGW maintains four queues: two for package delivery and data feed two for the two priority levels of Internet

• Exogenous traffic high priority: fluctuations in bandwidth allocated to Hybrid Internet

• Self-similar traffic: Interactive users as ON-OFF processes

Flow Control Analysis Model

- (1) <u>Data connection:</u> IS sends data to corresponding HH
- (2) Acknowledgments: From HGW to IS
- (3) Acknowledgments: From HH to HGW

SGW has two queues:
High priority
Low priority

SGW policy: if the number of un-acknowledged bytes for a connection is less than a configurable, but fixed, threshold value, then these packets are <u>high priority</u>

Source Traffic Model

Problem:

- Independent sources IS(i), i=1, 2, ..., M, send data to HHs via NOC
- Find maximum M allowed without producing overflow in the NOC

$$O_{k}^{(i)} = B_{k}^{(i)} + I_{k}^{(i)}$$

$$B_{i}^{(i)}, I_{i}^{(i)} : Pareto,$$
fin. mean, inf. variance
$$(i)$$
Arrival epochs: a_{k}

Packet generation rate $\lambda_k^{(i)} = \begin{array}{c} \mu_{IS}, if \ IS \ busy \\ 0, \ if \ IS \ iddle \end{array}$

The Aggregate Process in the Limit of Many Sources

- Average rate: $E\left[\lambda_{k}^{(i)}\right] = \mu_{IS} \frac{\mu_{B}}{\mu_{B} + \mu_{I}}$
- Aggregate arrival traffic: integer valued random point process $a(M) \!=\! \big\{ \! a_k(M) | k \!\in\! Z \big\}$
- Marked point process (Mark = duration of busy period) $(a(M), B(M)) = \{a_k(M), B_k(M) | k \in Z\}$
- Likhanov et al (1995): Take limit as $M \to \infty$, so that

$$\lambda = M/(E[B] + E[I]) = const.$$
, $E[B] = const.$ and $E[I] \longrightarrow \infty$
 $E[B] = const.$ and $E[I] \longrightarrow \infty$
 $E[B] = const.$ and $E[I] \longrightarrow \infty$

- $-\xi_k(M)$ tends to a Poisson with rate
- In (a_s, B_s) , B_s is independent from a_s and ξ_s

The Service Facility (NOC)

- · Each arrival has service requirement γ_{k}
- Aggregate traffic shares buffer space
- Source level analysis
- For individual source we have a G/D/1 queue (constant packet size)
- Aggregate traffic is Poisson for large M: So we have a M/G/1 queue
 - Solve for the stationary state-occupancy probabilities
 - State $X = \{x_k | k_i \in \mathbb{Z} = \text{No of sources in the queue at time } k_i \}$
 - Arrival process : the aggregate process ξ_k with rate λ
 - Service process, heavy tailed, Pareto; Stationarity if $\rho = \lambda \mu_{\scriptscriptstyle B} < 1$

The Service Facility (NOC)

Probability that i new sources will enter queue during one busy period; Used in network dimensioning: An estimate for the No of connections that can be busy during a typical ON period

$$p_i = \sum_{j=1}^{\infty} P[B=j] \frac{(j\lambda)^i}{i!} e^{-j\lambda}$$

Balance equations
$$q_i = P \begin{bmatrix} X_k = i \end{bmatrix} \qquad q_0 = 1 - \lambda \mu_B$$

$$q_{j+1} = \frac{1}{P_0} \begin{bmatrix} q_j - \sum_{j=1}^j p_i \ q_{j-i+1} - p_j \ q_0 \end{bmatrix}$$

• Packet level analysis: loss probability in finite capacity queue (Likhanov)
$$P_{loss} \simeq \frac{c}{\alpha (\alpha + 1)} \lambda^{\alpha} \left(R \mu_B \right)^{1 + \alpha} L^{1 - \alpha}$$

I. = huffer length in nackets

NOC Simulation Results

Probability that a large number of sources will joint the queue during a busy period Prob. of No of sources in queue decreases algebraically fast

100 sources aggregated.

Each source: 1 packet / simulation clock

No of sources in busy state at any moment

NOC: Bandwidth Allocation Strategies

- All strategies: controller knows (per connection) queue status
 - Demand at time t: No of packets in queue not sent and unACK,
 and No of packets that have just arrived
 - Queue length used to determine buffer availability for newly arrived packets
- Three strategies investigated:
 - Equal Bandwidth allocation (EB)
 - Fair Bandwidth allocation (FB)
 - Most Delayed Queue Served First Bandwidth allocation (MDQSF)
- In EB demands may be zero for many instants: waste of BW
- · FB better for connection requests and min. waste of BW
- MDQSF is best

NOC: Bandwidth Allocation Strategies

- Equal Bandwidth Allocation (EB)
 - Step 1: Find the number of connections with non-zero demand
 - Step 2: Allocate the whole bandwidth equally to connections in the set generated at Step 1
- Steps 1, 2 performed on-line. Necessitates large computing resources for simulation and for real-world implementation
- · Demands may be zero for a large set of clock instants
- Positive impact on delay, but significant waste of bandwidth

NOC:

Bandwidth Allocation Strategies

- Fair Bandwidth Allocation (FB)
 - Step 1: Find number of connections with non-zero demand
 - Step 2.1: If sum of individual demands ≤ total bandwidth, allocate as requested; END
 - Step 2.2: If sum of individual demands > the resource capacity, go to Step 3
 - Step 3: Divide the total bandwidth to the number of connections in the set generated at Step 1: This generates the *Fair Share*
 - Step 4.1: For all connections with individual demand

 <u>Fair Share</u>,
 allocate bandwidth to cover the entire individual demand
 - Step 4.2: If cannot perform 4.1, allocate the Fair Share to all connections
 - Step 5: Find remaining bandwidth after allocating in Step 4.1, go to Step 6
 - Step 6: Re-start from Step 3 with non-zero demand connections for which bandwidth not allocated yet, and the total bandwidth as calculated at Step 5
- Better than EB in satisfying connection requests and in minimizing the waste of bandwidth

NOC: Bandwidth Allocation Strategies

- Most Delayed Queue Served First Bandwidth Allocation (MDQSF)
 - Step 1: Sort connections in the decreasing order of the delay encountered by the packet in the head of the queue
 - Step 2: Allocate bandwidth starting with the first queue in the ranking generated at Step 1
 - Step 3: Repeat Step 2 until either the entire bandwidth is allocated or, all connections have received service

NOC Simulation Experiments

- C++ and Matlab environment
- Queue model accuracy:
 - Addition of packets to the queue
 - Keeping copies of unACK messages
 - De-queueing packets
 - Packet delay monitoring
 - Queue length monitoring
- State: queue length at the service facility

- Testing the three strategies:
 - Common input data to all strategies
 - Test with the same buffer space
 - Same total bandwidth
 - Same number of sources having
 - Same succession of ON-OFF periods
 - Same const. arrival rate
- Service facility has 5 queues, 1 for each connection
 - Allocation of buffer space to each connection the same
- Packet received service is sent over the satellite channel;
 a copy is maintained for acknowledgment

NOC Simulation Experiments

- Following quantities computed, stored and shown graphically
- Connection State: Busy (1) or Iddle (0); All connections use the same constant rate
- Queue Length (per connection)
- **Demand:** No of packets admitted in the queue; either new packets or ones that have not received yet service
- Bandwidth: No of packets that a queue is allowed to output at a time; It depends on the bandwidth allocation policy; Packets sent to satellite link not deleted from queue until ACKed
- Delay: Delay by a packet sent out and not yet ACKed
- ACKed: No of packets sent and acknowledged
- UnACKed: No of packets sent and un-acknowledged

NOC Simulation Results

· Comparison of Bandwidth allocation strategies

Buffer per Connection	500 packets	
Total Bandwidth	15 packets/unit time	
Number of Connections	5 connections	
Constant Arrival Rate	10 packets/unit time	
Mean of the Uniform Arrival Rate	5 packets/unit time	
Delay Imposed to Queued Packets	0.1 unit time	

Conn1:	1.4469	1.4468	0.0
Conn2:	2.0720	2.0720	0.5298
Conn3:	1.6941	1.6689	0.204
Conn4:	2.0541	2.0524	0.0741
Conn5:	1.7182	1.7088	0.8847
	EB	FB	MDQSF

Common Input Data

Average Delays

 Analytical models and simulation can be used for Network Dimensioning:

Estimate No. of sources that can be in the system at the same time