
ROUTING DOMAIN AUTOCONFIGURATION
FOR MORE EFFICIENT AND RAPIDLY DEPLOYABLE MOBILE NETWORKS

K. Manousakisi, A. McAuley, R. Morera, J. Barasj

{kerk@glue.umd.edu, mcauley@research.telcordia.com, raquel@research.telcordia.com, baras@isr.umd.edu}
Telcordia Technologies, Inc.

445 South Street, Morristown, NJ USA

ABSTRACT

One approach to achieving scalability in rapidly
deployed dynamic networks, such as Future Combat
Systems (FCS), is to automatically divide nodes into small
(e.g., 30 node) interconnected IP domains and assigning
each a routing protocol that best meets the domain’s
characteristics (Morera and McAuley, 2002). Although an
attractive idea, it has not been tested.

This paper* presents the first realization of domain

autoconfiguration through extensions to the IP
Autoconfiguration Suite (IPAS) (McAuley et al., 2001;
McAuley et al., 2002; Cheng et al., 2002). While IPAS
already configures and reconfigures information such as
interface IP address and server locations, it assumes a
single domain. We describe IPAS enhancements that
support the automatic creation and configuration of
multiple domains and describe a prototype implementation
where interfaces are dynamically assigned to run different
routing protocols. Finally, we show some initial
performance results that show configuration time for even
large (1000 node) sparse networks in a few seconds and
small bandwidth overhead (a few hundred bytes per link).

1. INTRODUCTION

FCS networks may encompass a large number (e.g.,

10,000) of rapidly deployed nodes with heterogeneous
characteristics and capabilities. The communication links
will also have vastly different speed, range and error rate
characteristics. Most networking protocols, however, are
suited only to particular node and link characteristics and

* This work was supported by the U.S. Army Research
Laboratory. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation thereon.
i Kyriakos Manousakis is pursuing a Ph.D. at the University of
Maryland. This work was done during a summer internship at
Telcordia.
j Professor Baras is the director of the Center for Satellite and
Hybrid Communication Networks at the University of Maryland,
College Park

Copyright 2002 © Telcordia Technologies, Inc. All Rights
Reserved.

scale only up to a maximum number of nodes. For
example, routing protocol performance quickly degrades
(e.g., due to slow convergence time) if nodes are “too
dynamic” or the number of nodes exceeds some maximum.

Dividing the network into independent and more
homogeneous “domains,” with some abstraction of intra-
domain information, can help network scalability and
survivability (Morera and McAuley, 2002). However, such
domains must be automatically configured to meet the
rapidly deployable network requirements of FCS and must
adapt to network dynamics (e.g., topological changes or
new mission requirements). As there has been no capability
to do this within network configuration protocols, this
approach has never been tried.

Here there is a practical example of how under certain
circumstances army missions need domain reconfiguration
to ensure network survivability. Assume a group of soldiers
involved in an exploring mission forming a wireless ad-hoc
network. At network deployment, all links are high quality
and there is a significant amount of traffic among the
nodes. Then, the single domain configuration where nodes
run a unicast routing protocol works well. As the mission
evolves, a small group of soldiers moves into a region with
very poor radio link quality and high link failures. The
unicast routing protocol is not able to cope with such
network dynamics and communication between nodes
becomes very difficult. With a domain autoconfiguration
suite, a command can be sent to reconfigure the network
and split the original routing domain in two routing
domains, one still running the unicast routing protocol and
the other using flooding. This way, nodes in the stable
region are not affected by the unstable links in the dynamic
region.

This paper describes the enhancements required by the
IP Autoconfiguration Suite (IPAS) (McAuley et al., 2001;
McAuley et al., 2002), used in the CECOM MOSAIC
advanced technology demonstration (Cheng et al., 2002), to
support routing domain autoconfiguration. Sections 2 and 3
give an overview of the current IP Autoconfiguration Suit
(IPAS) and domains (Morera and McAuley, 2002). Section
4 presents our analysis of the type of domain information
required for configuration and how such information can be
best distributed. Section 5 describes the proposed

extensions and modifications to IPAS for the support of
multiple domains. Finally, section 6 describes the testbed
and performance analysis.

2. AUTOCONFIGURATION SUIT

A complete autoconfiguration suit must encompass the

following elements,

• Distribution Mechanism. Need mechanisms to robustly
distribute configuration information to each interface
and node in the network.

• Reporting Mechanism: Need a way to know what is in
the network and its characteristics (e.g., link quality, a
node’s ability to be a DNS server).

• Brains. A set of rules/policies to configure and
reconfigure the network. These rules can be a set of
optimization algorithms that will take some metrics
into account (link quality, number of nodes, traffic…).

In this section we discuss why we base our domain

configuration on IPAS, describe its main components and
how it encompasses all the aforementioned elements.

2.1 Why IPAS?

Rather than designing domain autoconfiguration
protocols from scratch, our objective was to enhance
existing solutions. However, commercial IP
autoconfiguration protocols (e.g., Dynamic Host
Configuration Protocol (DHCP) (Droms, 1997) and IPv6
Stateless Autoconfiguration (SA) (Thompson, 1998)) do
not provide sufficient basis to build a domain
autoconfiguration solution. Mainly because DHCP and SA
only configure hosts (not routers) and do so only within a
single subnet. Even, when SA can support multiple subnet
configuration it does not provide a mechanism to IP
address distribution.

The only current basis for domain autoconfiguration is

to extend the IPAS (McAuley et al., 2001; McAuley et al.,
2002), used in the CECOM MOSAIC Advanced
Technology demonstration (Cheng et al., 2002), as it
encompasses all the necessary elements of a complete
autoconfiguration suit and provides complete IP
configuration for hosts, routers and servers in a network.
However, IPAS currently has no notion of domain or
border nodes. Then, some enhancements are required in
order create multiple domains.

2.2 IP Autoconfiguration Protocol Suit (IPAS)

This subsection gives an overview of the IP
Autoconfiguration Suite (IPAS). More details of the IPAS
components can be found in the references (McAuley et al.,
2001; McAuley et al., 2002; Cheng et al., 2002).

Figure 1 shows the IPAS components that instantiate
each of the main functions of a complete autoconfiguration
suite. The Dynamic Configuration Distribution Protocol
(DCDP) and Dynamic and Rapid Configuration Protocol
(DRCP) do the configuration distribution. The
Configuration Database stores the configuration and
network information reported by the Update Protocol
(YAP) . And, the Adaptive Configuration Agent (ACA) is
the “brains” in the configuration process.

The configuration process can be pictured as a closed

feedback loop. The ACA distributes new configuration
through DCDP to nodes in each subnet. DRCP configures
the interfaces within a subnet. Interfaces, configured by
DRCP, report configuration information and nodes
capabilities to the configuration server via the YAP
protocol. The configuration server stores this information
in the configuration database. To complete the cycle, the
ACA node contacts the Configuration Database locally or
remotely to get the latest configuration information. After
processing this configuration information, the ACA may
decide to reconfigure the network and distribute new
configuration information, starting the cycle once more.

Config Server

ACA

Preconfigured
node capabilitiesInterface

YAP low-bandwidth
configuration reports

Config Database

MySQL
DCDP distributes
new configuration

Node
DRCP configures
subnet interfaces

Figure 1 IPAS Components

The following paragraphs explain in more detail what
are the functionalities of each of the IPAS modules and
how they interoperate.

DCDP

At the heart of IPAS (see Figure 1) is the Dynamic
Configuration Distribution Protocol (DCDP) (Morera and
McAuley, 2002). DCDP is a robust, scalable, low-
overhead, lightweight (minimal state) protocol designed to
distribute configuration information on address-pools and
other IP configuration information (e.g., DNS Server’s IP
address, security keys, or routing protocol). Designed for
dynamic wireless battlefield, it operates without central
coordination or periodic messages. Moreover, DCDP does
not rely on a routing protocol to distribute information

DRCP

DCDP relies on the Dynamic and Rapid Configuration
Protocol (DRCP) to actually configure the interfaces.

DRCP borrows heavily from DHCP, but adds features
critical to roaming users. DRCP can automatically detect
the need to reconfigure (e.g., due to node mobility)
through periodic advertisements. In addition, DRCP allows
for: a) efficient use of scarce wireless bandwidth, b)
dynamic addition or deletion of address pools to support
server fail over, c) message exchange without broadcast,
and d) clients to be routers.

YAP

The Configuration Database Update Protocol (YAP) is
a simple bandwidth efficient reporting mechanism for
dynamic networks. YAP has three elements: 1) Clients
running on every node periodically report its node’s
capabilities, configuration, and operational status, 2)
Relays forwarding information from clients to a server, and
3) Server storing the information in a configuration
database (see Figure 2). The capabilities say, for example:
“This node can be a DNS server with priority 0” or “a
YAP server with priority 3” (priority reflecting a node’s
willingness to perform a function). Other YAP information
includes name and IP address, Rx/Tx packets, bit rate, link
quality, routing table, and address pool.

ACA

The brain of IPAS is the Adaptive Configuration
Agent (ACA). The ACA can even reset the network and
distribute a new address pool from human input or from a
predefined private address pool (e.g., 10.x.x.x). The
configuration decisions are distributed to the network’s
nodes through the DCDP process. Through the
Configuration Database (filled by YAP), ACA observes the
state of the network, which allows it to initiate
reconfiguration based on its rules or policies. The rules in
the ACA are specific to the mission and network
characteristics. Currently, ACA has a few simple and
general rules, such as selecting a new DNS server if the
current one does not report.

2.3 Interoperation of IPAS Modules

In each subnet there is at least one DRCP server
responsible to configure interfaces. The rest of nodes in the
subnet may perform as DRCP clients. The ACA runs on a
dedicated node in the network. The YAP server, the ACA
and the mySQL can either be located in the same node or
distributed. However, for load balancing and fault taulerant
reasons those entities better be distributed.

In each node, independent of its capabilities, there are

three processes running:

• DCDP
• DRCP (server or client)
• YAP (client, relay or server)

Figure 2 shows how these processes communicate on a
single node and how interoperate in different nodes in the
network. If the node is the ACA, then its ACA process
passes information to DCDP. The DCDP processes
communicate with other nodes to distribute configuration
information. At each DRCP server, the DCDP process
passes configuration information to the DRCP process, so
this can configure interfaces in the corresponding subnet. If
there is a change or update in configuration information the
DRCP process informs the local YAP client, which sends
the information to the YAP relay for the subnet, which in
turn relays the information to the YAP server. If the node is
the YAP server it collects the information and stores it
either locally or remotely on a configuration database. The
ACA node can contact the Configuration Database locally
or remotely to get the latest configuration information.

DRCP

DCDP

ACA

YAP (client/relay)

YAP (server)

Configuration Database

DRCP

DCDP

YAP (relay)

DRCP YAP (client)

Router

ACA

Host

Figure 2 IPAS inter-process and inter-node
communication

3. TOPOLOGICAL DOMAINS

Domains follow the architectural framework presented

in (Morera and McAuley, 2002). Such framework extends
the use of domains beyond mere administrative domains
(autonomous systems) and focuses on the use of domains
to provide scalability to the network layer protocols.

A group of topologically connected interfaces or nodes

running a common networking protocol define a
topological domain. We can define different types of
topological domains depending on the networking protocol
we focus on, i.e. configuration, routing, security, QoS and
multicast domains. Each domain type is defined
independently of the rest, i.e. a group of nodes that belong
to the same configuration domain can belong to different
routing domains.

Nodes within the same topological domain must be

able to communicate without going out of the domain
boundaries. Each domain runs intra-domain networking

protocols independently of other domains, and border
nodes allow for inter-domain communication. For example,
all the interfaces in one routing domain run the same
routing protocol and can reach any other interface in that
routing domain without going outside the domain. Border
nodes perform routing aggregation functions for the
domain and export this aggregated information to other
domains. Border nodes are also responsible for importing
information from other domains (which may be running a
different routing protocol).

A domain hierarchy is defined to allow for network

and protocol scalability. Level-1 is the lowest level in the
domain hierarchy and it is defined by a set of interfaces
that can reach all other interfaces within that domain
without going outside that domain. In an Ethernet network,
for example all nodes are directly connected to each other
(one IP-hop neighbors). Typically, a level-1 domain
corresponds to current IP subnets. Nodes that have
interfaces in multiple level-1 domains must in turn become
members of a level-2 domain. The hierarchy is defined
recursively; thus, nodes with interfaces in multiple level-i
domains must become members of a level-(i+1) domain.

Figure 3 shows a simple example of a two domain

hierarchy for an adhoc network. In ad-hoc networks such
hierarchy can be dynamically created as domains are being
configured. The nodes, all with a single interface (and
represented by small circles with lines to their 1-hop
neighbors), are grouped into four level-1 domains (“1a,”
“1b,” “1c” and “1d”). Some border routers (shown with
hash lines) are members of multiple level-1 domains and
are also part of a single level-2 domain “2g.” The two
border routers with lines at the edge of the domain 2g are
also members of other level-2 domains (not shown) and are
a level-3 domain (also not shown).

Domain
2g

Domain
1a

Domain
1b

Domain
1c

Domain
1d

Figure 3 Example of domain hierarchy in adhoc
networks

4. DOMAIN INFORMATION DISTRIBUTION

Domain configuration needs to be distributed not only
at network deployment, i.e. with the initial configuration,
but also as network topology and network characteristics
change and the network needs to be reconfigured.

We assume all nodes in a network are initially

completely unconfigured, except for some location-
independent information (e.g., a node identifier and secret
key). There are then many elements that must be
configured (McAuley et al., 2001):

• IP address information.
• Server Location (e.g., location of DNS server).
• Networking Protocols (e.g., routing or authentication

protocol).

The current IPAS provides already the mechanisms to
configure these elements in a single domain. However,
with multiple domains there is additional information that
must be configured, such as which domains an interface is
a member of and whether a node is a border node.

Moreover, nodes need to be reconfigured to maintain

communication as nodes and links change. Thus, for
example, if a host moves into a subnet where its IP address
does not match the subnet prefix, then the node must
change its IP address. Also if a DNS server is no longer
available, the location of a new DNS server must be
configured (McAuley et al., 2002). IPAS also provides
mechanisms for network reconfiguration in a single
domain. But, with multiple domains there is additional
information that must be reconfigured. For example, if a
node is running AODV and moves into a domain that is
running TBRPF then it must change its routing protocol.

This section describes what information is needed to

create and configure domains and how such information
must be distributed in dynamic plug-and-play networks.

4.1 Domain Information

The following information is needed to properly
configure domains,

• Domain Identifier (e.g. domain name) which must be

unique.
• Domain membership information, i.e. what network

elements define the domain (e.g. interfaces, subnets or
nodes). Thus, each element must have a unique
member identifier (UID)

• Domain configuration information, such as domain
type (e.g., routing or configuration). In case of routing
domains, nodes must also be informed of what type of
routing protocol must run.

Domain names and UID can either be meaningless or
reflect some of the domain or member characteristics (e.g.,
domain type and/or domain hierarchy). There are many
different ways of obtaining unique domain names. For
simplicity, in our experiments, we assign domain names in
a random manner and we make sure that the same name
has not been assigned to another existing domain. UIDs
identify interfaces and are a random number chosen by the
node. We ensure, however, that other mechanisms of
obtaining unique names and identifiers can be explored in
the future.

4.2 Domain information distribution mechanisms

Domain information is very critical network
information and therefore the distribution mechanisms need
to be very reliable in any kind of networks and
environments to ensure that all elements in the domain
receive the proper information at the right time. We
considered different approaches for domain information
distribution,

• Unicast to the specific nodes (or all the neighbor

nodes) within that domain.
• IP multicast tree.
• Flooding.

We qualitatively assessed the performance of these
three mechanisms according to four parameters: bandwidth
efficiency, information distribution delay, simplicity, and
reliance on the routing protocol. In terms of bandwidth
efficiency, multicast is the best mechanism out of the three
provided the overhead of tree maintenance is small. A
given message only goes over a link once and it does not
go to nodes that do not need the information (either
because they are not at that level or are in a different
domain). Unicast is only a little less efficient since it still
limits information to those nodes that need it and may be
the most efficient in dynamic networks where tree
maintenance costs are higher. Flooding is the least
bandwidth efficient in static networks, but becomes more
attractive in dynamic networks. In terms of delay, there is
little difference between the different methods. In terms of
robustness, flooding is the clear winner. It does not rely on
any unicast or multicast routing and it does not need any
periodic messages.

Hence, we conclude that the best mechanism to

distribute domain configuration information is by flooding.
It is simple, it depends least on network dynamics and it is
robust. The latter is a very important factor since the reason
for reconfiguring domains may be the poor performance of
the existing routing protocol.

5. ENHANCEMENTS ON IPAS MODULES

This section combines the requirements for domain
configuration (from Section 4) with the IPAS protocol
(summarized in Section 2).

5.1 DCDP, DRCP Enhancements

In IPAS, the DCDP module distributes the
configuration information. We propose also using DCDP to
distribute domain information. However, while the current
DCDP implementation uses specific IP addresses and the
underlying routing protocol to deliver the configuration
information to the corresponding nodes, we propose
enhancing DCDP to flood domain configuration
information. Furthermore, we considered flooding to be the
most robust mechanism to distribute any kind of
configuration information (as we discussed in the previous
section), so we changed the DCDP module to flood all
configuration information. However, there is a difference
in the flooding mechanism between domain configuration
information and the initial configuration information. For
domain configuration, information is flooded only through
the configured interfaces (i.e., network interfaces that have
been assigned an IP address) while in the initial
configuration process, information is flooded through every
active network interface, independently of its configuration
status.

DRCP has also been enhanced so it processes and

stores domain configuration information (i.e., to what
domain each configured interface belongs to, interfaces that
belong in domain D1 should run AODV).

In the enhanced IPAS, the interface between
DCDP/DRCP at each local node must inform DCDP about
the configured interfaces (i.e., the interfaces that DCDP
will use for flooding).

5.2 Processing Domain Configuration Information

We here describe how the domain information

distributed by DCDP is through the network and analyzed
at every node. Domain configuration information is treated
the same way as in the original IPAS implementation, i.e.

Step I: Configuration messages are distributed through the
DCDP modules.

Step II: When configuration messages reach the
corresponding nodes, the local DCDP module passes these
messages to the local DRCP process. DRCP then takes the
appropriate configuration actions based on the received
message.

The ACA module generates the configuration
commands that latter DCDP will distribute. In every
subnet, interfaces are configured through DRCP which gets
the configuration information from DCDP. The operation
steps are described in the list below:

1. At the time there is a decision taken for the update of

domains, ACA constructs the appropriate
configuration message. Such message is passed to the
local DCDP module.

2. DCDP starts the distribution of the configuration

message. At every node, the local DCDP process
checks whether the configuration message is referred
to any of its local network interfaces.

3. If the configuration message refers to any of the local

network interfaces, the local DCDP process passes the
configuration message to the local DRCP process.

4. If the configuration message does not refer to any of is

local interfaces, the DCDP module broadcasts the
message to reach its one-hop neighbors.

5.3 New Domain Configuration Messages

In summary, domain messages are initiated in ACA
from an optimization process (which we will not discuss
here), then those messages are passed to the local to ACA
DCDP process that starts the flooding. In the case where
the message reaches to a node whose network interface is
listed in the message, then this message is passed to the
local DRCP process, which is responsible for the
processing of the message. In order to enable this sequence
of communication we had to design three groups of
messages:

1. Messages from ACA to DCDP
2. Messages from DCDP to DCDP
3. Messages from DCDP to DRCP

From ACA to DCDP

The general format of the messages that are sent from
ACA to its local DCDP process is:

The OPCODE field is related to the domain

configuration action to be taken. The DOMAIN_NAME
field specifies the domain for which the action will be
taken and the EXTRA_INFO field is related to the action,
since it provides the corresponding DRCP processes with
the appropriate information for the successful processing of
the domain message. The specific messages for the actions
that are supported from IPAS are:

 Single Domain Generation: Every configured interface
belongs to the same domain (For initialization purposes/
cover the case where we do not want to have multiple
domains)

 Domain Generation: Specific network interfaces are

configured to belong in the same domain

 Domain Rename: Modification/change of the current

domain name

The following message is needed to configure
domains. In case of routing domains, the message has the
following format:

 Routing Protocol Assignment: indicates what routing

protocol to run in an existing domain.

DCDP to DCDP

The messages that DCDP passes to other DCDP
processed through flooding are the same as the ones
generated from the ACA module.

DCDP to DRCP

The messages that DCDP passes to DRCP are the
same as the ones generated from the ACA module as we
described above. DRCP upon the reception of those
messages, processes them and utilizes the information
contained in those messages (i.e., assigns the appropriate
network interfaces to the corresponding domain, or enables
the appropriate routing protocols for the corresponding
network interfacesii).

ii In a node with multiple network interfaces may run more
than one routing protocols, since each interface can belong
to different domain, where those domains run different
routing protocols. In this case the routing signaling that is

OPCODE
(1 byte)

SID
(2 bytes)

DOMAIN_NAME
(10 bytes)

MSG_SPECIFIC_OPTIONS
(size depends on the msg)

OPCODE
(1 byte)

SID
(2 bytes)

DOMAIN_NAME
(10 bytes)

MSG_SPECIFIC_OPTIONS
(size depends on the msg)

ONEDOMAIN
(1 byte)

SID
(2 bytes)

DOMAIN_NAME
(10 bytes)

ONEDOMAIN
(1 byte)

SID
(2 bytes)

DOMAIN_NAME
(10 bytes)

RENAME
(1 byte)

SID
(2 bytes)

DOMAIN_NAME
(10 bytes)

NEW_DOMAIN_NAME
(10 bytes)

RENAME
(1 byte)

SID
(2 bytes)

DOMAIN_NAME
(10 bytes)

NEW_DOMAIN_NAME
(10 bytes)

RTPROTOCONFIG
(1 byte)

SID
(2 bytes)

DOMAIN_NAME
(10 bytes)

ROUTING PROTOCOL
(10 bytes)

RTPROTOCONFIG
(1 byte)

SID
(2 bytes)

DOMAIN_NAME
(10 bytes)

ROUTING PROTOCOL
(10 bytes)

CONFIG
(1 byte)

SID
(2 bytes)

DOMAIN_NAME
(10 bytes)

UID
(2 bytes)

UID
(2 bytes)

100 interfaces

of INFCS
(1 Byte)

CONFIG
(1 byte)

SID
(2 bytes)

DOMAIN_NAME
(10 bytes)

UID
(2 bytes)

UID
(2 bytes)

100 interfaces

of INFCS
(1 Byte)

6. PROTOTYPE AND PERFORMANCE ANALYSIS

In order to demonstrate the effectiveness of the domain
configuration mechanisms and configuration information
distribution we built a testbed. We then run an experiment
were that consists on reconfiguring a single routing domain
into two independent routing domains. After
reconfiguration, each routing domain runs a different
routing protocol and a border router acts as a gateway
between the two domains. Nodes, however, keep their IP
addresses.

1.x 25.x

31.x

37.x
192.1.1.1 192.1.1.2 192.1.25.1

192.1.25.2

192.1.25.3

192.1.37.1

192.1.37.2

192.1.31.2

192.1.31.1

a b

d

e

c

eth0 eth0 eth1

eth0
eth1

eth0

eth1

eth0 eth1

Figure 4 Domain Autoconfiguration Testbed

6.1 Testbed

The testbed is formed of five IBM thinkpad nodes (as
shown in figure 4). Each node runs RedHat 7.1 LINUX has
two network interfaces and is loaded with the IPAS
software, i.e. every node (independently of its capabilities)
runs the DRCP, DCDP and YAP modules. The first node
runs the Adaptive Configuration Agent (ACA) mode, i.e.
this is where all the decisions are generated and where
configuration information is distributed to the DCDP
process. Figure 5 shows how configuration information is
distributed through the network.

31.x

1.x

25.x

37.x

e
eth0 eth1

d
eth0 eth1

c
eth0 eth1

a

DRCP

DCDP

ACA

1.1

b

DRCP

DCDP

1.2 25.

DRCP

DCDP

25. 37.

DRCP

31. 37.

DRCP

25. 31.

DCDP

DCDP
eth0 eth0 eth1

Figure 5 IPAS Message Flow

received in one interface has to be translated to the
appropriate routing signaling for the other interface. This is
done from the Border Gateway module.

Initially, interfaces are autoconfigured through the
enhanced DCDP/DRCP processes. Once interfaces have an
IP address assigned, we configure the routing domains and
activate the appropriate routing protocols. Communication
cannot start until there is a routing protocol running in each
node that builds the appropriate routing tables.

First, we organize the configured nodes into a single

routing domain using the ONEDOMAIN command. We
then configure the routing domain using
RTPROTOCONFIG, so nodes activate one of the available
routing protocols. Figure 6 shows a single domain (called
d1) running RIP.

31.x

1.x

25.x

37.x

a b

c

e

d

Domain d1 = RIP

Figure 6 One domain Configuration

Second, we split domain d1 into two routings domains

(d1 and d2). In order to better control the configuration, we
do not run any automatic algorithms yet; rather we
manually identify the interfaces (identified by their unique
interface ID) that will form the new routing domain. A
CONFIG message includes the domain name, the number
of interfaces that are configured with that command and the
interfaces ID. Figure 7 shows node a and the left interface
in node b configured into a new domain d2. We also
change the routing protocol running in the new domain to
AODV with the command RTPROTOCONFIG (as we did
with the original domain). Node b automatically configures
itself as a border node between the domains with the border
gateway functionalities.

31.x

1.x 25.x

37.x

a b

c

e

d

Domain d1 = RIPDomain d2 = AODV

Border
Router

Figure 7 Two domain configuration

We also configured the network in three different

domains as shown in figure 8.

31.x

1.x

25.x

37.x

a b

c

e

d

Domain d2 = AODV Domain d3 = AODV Domain d1 = RIP

Border
Router

Border
Router

Figure 8 Three domain configuration

6.2 Measurements

We repeat the above experiment and this time we
measure the time required to distribute domain information.
Figure 9 shows the domain configuration time extrapolated
to a thousand of nodes. The y-axis represents the time and
the x-axis represents the number of configured nodes. The
time here evaluated only takes into account the domain
configuration information distribution, i.e. does not take
into account the time it takes to restart the routing protocol.
As the configuration messages are a few tens of bytes (see
section 4) and information is distributed by broadcasting,
networks of a thousand nodes can be configured in seconds
even in sparse networks.

Figure 9 Domain Configuration Time

REFERENCES

Cheng T., Gurung P., Lee J., Khurana S., McAuley A.,
Samtani S., Wong L., Young K., Bereschinsky M.,
Graff C., "Adhoc Mobility Protocol Suite (AMPS) for
JTRS radios," Software Defined Radio (SDR) Forum,
San Diego, November 2002.

Droms R., “Dynamic Host Configuration Protocol,” RFC
2131, March 1997.

McAuley A., Misra A., Wong L., Manousakis K.,
“Experience with Autoconfiguring a Network with IP
addresses,” IEEE Milcom, October 2001.McAuley A.,
et al., “Automatic Configuration and Reconfiguration
in Dynamic Networks”, To appear Army Science
Conference (ASC), December 2002.

Morera R., McAuley A., “Flexible Domain Configuration
for More Scalable, Efficient and Robust Battlefield
Networks” MILCOM, October 2002.

Thompson S., “IPv6 Stateless Address Autoconfiguration,”
RFC 2462, December 1998.

CONCLUSION AND FUTURE WORK

This work represents the first part of an effort to
incorporate the notion of domains into autoconfigured
adhoc networks. Our implementation proves that the
mechanisms can be incorportated into existing IP
autoconfiguration protocols with little additional
complexity, delay or bandwidth.

A lot of additional research is needed to measure how
much domain autoconfiguration can improve the
performance of large adhoc networks, whether in terms of
robustness, scalability, throughput, security, or other
measures. We must not only design decision/optimization
processes, but also decide kind of information we need to
collect from the network in order to reach into the optimal
domain decisions quicklyi.

i The views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or
implied of the Army Research Laboratory or the U.S.
Government

0

1

2

3

4

5

6

100 200 300 400 500 600 700 800 900 1000
number of nodes in domain

Ti
m

e
(s

ec
on

ds
)

dense

sparse

