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ABSTRACT
 

One approach to achieving scalability in rapidly 
deployed dynamic networks, such as Future Combat 
Systems (FCS), is to automatically divide nodes into small 
(e.g., 30 node) interconnected IP domains and assigning 
each a routing protocol that best meets the domain’s 
characteristics (Morera and McAuley, 2002). Although an 
attractive idea, it has not been tested.  

 
This paper* presents the first realization of domain 

autoconfiguration through extensions to the IP 
Autoconfiguration Suite (IPAS) (McAuley et al., 2001; 
McAuley et al., 2002; Cheng et al., 2002). While IPAS 
already configures and reconfigures information such as 
interface IP address and server locations, it assumes a 
single domain. We describe IPAS enhancements that 
support the automatic creation and configuration of 
multiple domains and describe a prototype implementation 
where interfaces are dynamically assigned to run different 
routing protocols. Finally, we show some initial 
performance results that show configuration time for even 
large (1000 node) sparse networks in a few seconds and 
small bandwidth overhead (a few hundred bytes per link). 

 
1. INTRODUCTION 

 
FCS networks may encompass a large number (e.g., 

10,000) of rapidly deployed nodes with heterogeneous 
characteristics and capabilities. The communication links 
will also have vastly different speed, range and error rate 
characteristics. Most networking protocols, however, are 
suited only to particular node and link characteristics and 
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scale only up to a maximum number of nodes. For 
example, routing protocol performance quickly degrades 
(e.g., due to slow convergence time) if nodes are “too 
dynamic” or the number of nodes exceeds some maximum.   
 

Dividing the network into independent and more 
homogeneous “domains,” with some abstraction of intra-
domain information, can help network scalability and 
survivability (Morera and McAuley, 2002). However, such 
domains must be automatically configured to meet the 
rapidly deployable network requirements of FCS and must 
adapt to network dynamics (e.g., topological changes or 
new mission requirements). As there has been no capability 
to do this within network configuration protocols, this 
approach has never been tried.  
 

Here there is a practical example of how under certain 
circumstances army missions need domain reconfiguration 
to ensure network survivability. Assume a group of soldiers 
involved in an exploring mission forming a wireless ad-hoc 
network. At network deployment, all links are high quality 
and there is a significant amount of traffic among the 
nodes. Then, the single domain configuration where nodes 
run a unicast routing protocol works well. As the mission 
evolves, a small group of soldiers moves into a region with 
very poor radio link quality and high link failures. The 
unicast routing protocol is not able to cope with such 
network dynamics and communication between nodes 
becomes very difficult. With a domain autoconfiguration 
suite, a command can be sent to reconfigure the network 
and split the original routing domain in two routing 
domains, one still running the unicast routing protocol and 
the other using flooding. This way, nodes in the stable 
region are not affected by the unstable links in the dynamic 
region.  
 

This paper describes the enhancements required by the 
IP Autoconfiguration Suite (IPAS) (McAuley et al., 2001; 
McAuley et al., 2002), used in the CECOM MOSAIC 
advanced technology demonstration (Cheng et al., 2002), to 
support routing domain autoconfiguration. Sections 2 and 3 
give an overview of the current IP Autoconfiguration Suit 
(IPAS) and domains (Morera and McAuley, 2002). Section 
4 presents our analysis of the type of domain information 
required for configuration and how such information can be 
best distributed. Section 5 describes the proposed 



extensions and modifications to IPAS for the support of 
multiple domains.  Finally, section 6 describes the testbed 
and performance analysis.   

 
2. AUTOCONFIGURATION SUIT  

 
A complete autoconfiguration suit must encompass the 

following elements, 
 

• Distribution Mechanism. Need mechanisms to robustly 
distribute configuration information to each interface 
and node in the network. 

• Reporting Mechanism: Need a way to know what is in 
the network and its characteristics (e.g., link quality, a 
node’s ability to be a DNS server). 

• Brains. A set of rules/policies to configure and 
reconfigure the network. These rules can be a set of 
optimization algorithms that will take some metrics 
into account (link quality, number of nodes, traffic…). 

 
In this section we discuss why we base our domain 

configuration on IPAS, describe its main components and 
how it encompasses all the aforementioned elements.    
 
 
2.1 Why IPAS? 
 

Rather than designing domain autoconfiguration 
protocols from scratch, our objective was to enhance 
existing solutions. However, commercial IP 
autoconfiguration protocols (e.g., Dynamic Host 
Configuration Protocol (DHCP) (Droms, 1997) and IPv6 
Stateless Autoconfiguration (SA) (Thompson, 1998)) do 
not provide sufficient basis to build a domain 
autoconfiguration solution. Mainly because DHCP and SA 
only configure hosts (not routers) and do so only within a 
single subnet. Even, when SA can support multiple subnet 
configuration it does not provide a mechanism to IP 
address distribution.   

 
The only current basis for domain autoconfiguration is 

to extend the IPAS (McAuley et al., 2001; McAuley et al., 
2002), used in the CECOM MOSAIC Advanced 
Technology demonstration (Cheng et al., 2002), as it 
encompasses all the necessary elements of a complete 
autoconfiguration suit and provides complete IP 
configuration for hosts, routers and servers in a network.  
However, IPAS currently has no notion of domain or 
border nodes. Then, some enhancements are required in 
order create multiple domains. 
 
2.2 IP Autoconfiguration Protocol Suit (IPAS) 
 

This subsection gives an overview of the IP 
Autoconfiguration Suite (IPAS). More details of the IPAS 
components can be found in the references (McAuley et al., 
2001; McAuley et al., 2002; Cheng et al., 2002). 

Figure 1 shows the IPAS components that instantiate 
each of the main functions of a complete autoconfiguration 
suite. The Dynamic Configuration Distribution Protocol 
(DCDP) and Dynamic and Rapid Configuration Protocol 
(DRCP) do the configuration distribution. The 
Configuration Database stores the configuration and 
network information reported by the Update Protocol 
(YAP) . And, the Adaptive Configuration Agent (ACA) is 
the “brains” in the configuration process.  

 
The configuration process can be pictured as a closed 

feedback loop. The ACA distributes new configuration 
through DCDP to nodes in each subnet. DRCP configures 
the interfaces within a subnet. Interfaces, configured by 
DRCP, report configuration information and nodes 
capabilities to the configuration server via the YAP 
protocol. The configuration server stores this information 
in the configuration database. To complete the cycle, the 
ACA node contacts the Configuration Database locally or 
remotely to get the latest configuration information. After 
processing this configuration information, the ACA may 
decide to reconfigure the network and distribute new 
configuration information, starting the cycle once more. 
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Figure 1 IPAS Components 

The following paragraphs explain in more detail what 
are the functionalities of each of the IPAS modules and 
how they interoperate. 
 
DCDP 
 

At the heart of IPAS (see Figure 1) is the Dynamic 
Configuration Distribution Protocol (DCDP) (Morera and 
McAuley, 2002). DCDP is a robust, scalable, low-
overhead, lightweight (minimal state) protocol designed to 
distribute configuration information on address-pools and 
other IP configuration information (e.g., DNS Server’s IP 
address, security keys, or routing protocol). Designed for 
dynamic wireless battlefield, it operates without central 
coordination or periodic messages. Moreover, DCDP does 
not rely on a routing protocol to distribute information 
 
DRCP 
 

DCDP relies on the Dynamic and Rapid Configuration 
Protocol (DRCP) to actually configure the interfaces. 



DRCP borrows heavily from DHCP, but adds features 
critical to roaming users. DRCP can automatically detect 
the need to reconfigure  (e.g., due to node mobility) 
through periodic advertisements. In addition, DRCP allows 
for: a) efficient use of scarce wireless bandwidth, b) 
dynamic addition or deletion of address pools to support 
server fail over, c) message exchange without broadcast, 
and d) clients to be routers.  

 
YAP 
 

The Configuration Database Update Protocol (YAP) is 
a simple bandwidth efficient reporting mechanism for 
dynamic networks. YAP has three elements: 1) Clients 
running on every node periodically report its node’s 
capabilities, configuration, and operational status, 2) 
Relays forwarding information from clients to a server, and 
3) Server storing the information in a configuration 
database (see Figure 2). The capabilities say, for example: 
“This node can be a DNS server with priority 0” or  “a 
YAP server with priority 3” (priority reflecting a node’s 
willingness to perform a function).  Other YAP information 
includes name and IP address, Rx/Tx packets, bit rate, link 
quality, routing table, and address pool. 

 
ACA 
 

The brain of IPAS is the Adaptive Configuration 
Agent (ACA). The ACA can even reset the network and 
distribute a new address pool from human input or from a 
predefined private address pool (e.g., 10.x.x.x). The 
configuration decisions are distributed to the network’s 
nodes through the DCDP process. Through the 
Configuration Database (filled by YAP), ACA observes the 
state of the network, which allows it to initiate 
reconfiguration based on its rules or policies. The rules in 
the ACA are specific to the mission and network 
characteristics. Currently, ACA has a few simple and 
general rules, such as selecting a new DNS server if the 
current one does not report. 
 
2.3 Interoperation of IPAS Modules 
 

In each subnet there is at least one DRCP server 
responsible to configure interfaces. The rest of nodes in the 
subnet may perform as DRCP clients. The ACA runs on a 
dedicated node in the network.  The YAP server, the ACA 
and the mySQL can either be located in the same node or 
distributed. However, for load balancing and fault taulerant 
reasons those entities better be distributed.  

 
In each node, independent of its capabilities, there are 

three processes running: 
 
• DCDP  
• DRCP (server or client)   
• YAP (client, relay or server) 

Figure 2 shows how these processes communicate on a 
single node and how interoperate in different nodes in the 
network. If the node is the ACA, then its ACA process 
passes information to DCDP. The DCDP processes 
communicate with other nodes to distribute configuration 
information. At each DRCP server, the DCDP process 
passes configuration information to the DRCP process, so 
this can configure interfaces in the corresponding subnet. If 
there is a change or update in configuration information the 
DRCP process informs the local YAP client, which sends 
the information to the YAP relay for the subnet, which in 
turn relays the information to the YAP server. If the node is 
the YAP server it collects the information and stores it 
either locally or remotely on a configuration database. The 
ACA node can contact the Configuration Database locally 
or remotely to get the latest configuration information.  
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Figure 2 IPAS inter-process and inter-node 
communication 

 
3. TOPOLOGICAL DOMAINS  

 
Domains follow the architectural framework presented 

in (Morera and McAuley, 2002). Such framework extends 
the use of domains beyond mere administrative domains 
(autonomous systems) and focuses on the use of domains 
to provide scalability to the network layer protocols.  

 
A group of topologically connected interfaces or nodes 

running a common networking protocol define a 
topological domain. We can define different types of 
topological domains depending on the networking protocol 
we focus on, i.e. configuration, routing, security, QoS and 
multicast domains. Each domain type is defined 
independently of the rest, i.e. a group of nodes that belong 
to the same configuration domain can belong to different 
routing domains.  

 
Nodes within the same topological domain must be 

able to communicate without going out of the domain 
boundaries. Each domain runs intra-domain networking 



protocols independently of other domains, and border 
nodes allow for inter-domain communication. For example, 
all the interfaces in one routing domain run the same 
routing protocol and can reach any other interface in that 
routing domain without going outside the domain. Border 
nodes perform routing aggregation functions for the 
domain and export this aggregated information to other 
domains. Border nodes are also responsible for importing 
information from other domains (which may be running a 
different routing protocol).  

 
A domain hierarchy is defined to allow for network 

and protocol scalability. Level-1 is the lowest level in the 
domain hierarchy and it is defined by a set of interfaces 
that can reach all other interfaces within that domain 
without going outside that domain. In an Ethernet network, 
for example all nodes are directly connected to each other 
(one IP-hop neighbors). Typically, a level-1 domain 
corresponds to current IP subnets. Nodes that have 
interfaces in multiple level-1 domains must in turn become 
members of a level-2 domain. The hierarchy is defined 
recursively; thus, nodes with interfaces in multiple level-i 
domains must become members of a level-(i+1) domain. 

 
Figure 3 shows a simple example of a two domain 

hierarchy for an adhoc network. In ad-hoc networks such 
hierarchy can be dynamically created as domains are being 
configured. The nodes, all with a single interface (and 
represented by small circles with lines to their 1-hop 
neighbors), are grouped into four level-1 domains (“1a,” 
“1b,” “1c” and “1d”). Some border routers (shown with 
hash lines) are members of multiple level-1 domains and 
are also part of a single level-2 domain “2g.” The two 
border routers with lines at the edge of the domain 2g are 
also members of other level-2 domains (not shown) and are 
a level-3 domain (also not shown). 
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Figure 3 Example of domain hierarchy in adhoc 
networks 

 
 
 

4. DOMAIN INFORMATION DISTRIBUTION  
 

Domain configuration needs to be distributed not only 
at network deployment, i.e. with the initial configuration, 
but also as network topology and network characteristics 
change and the network needs to be reconfigured. 

 
We assume all nodes in a network are initially 

completely unconfigured, except for some location-
independent information  (e.g., a node identifier and secret 
key). There are then many elements that must be 
configured (McAuley et al., 2001): 

 
• IP address information. 
• Server Location (e.g., location of DNS server). 
• Networking Protocols (e.g., routing or authentication 

protocol). 
 

The current IPAS provides already the mechanisms to 
configure these elements in a single domain. However, 
with multiple domains there is additional information that 
must be configured, such as which domains an interface is 
a member of and whether a node is a border node. 

 
Moreover, nodes need to be reconfigured to maintain 

communication as nodes and links change. Thus, for 
example, if a host moves into a subnet where its IP address 
does not match the subnet prefix, then the node must 
change its IP address. Also if a DNS server is no longer 
available, the location of a new DNS server must be 
configured (McAuley et al., 2002). IPAS also provides 
mechanisms for network reconfiguration in a single 
domain. But, with multiple domains there is additional 
information that must be reconfigured. For example, if a 
node is running AODV and moves into a domain that is 
running TBRPF then it must change its routing protocol. 

 
This section describes what information is needed to 

create and configure domains and how such information 
must be distributed in dynamic plug-and-play networks.  
 
 
4.1 Domain Information 
 

The following information is needed to properly 
configure domains, 

 
• Domain Identifier (e.g. domain name) which must be 

unique. 
• Domain membership information, i.e. what network 

elements define the domain (e.g. interfaces, subnets or 
nodes). Thus, each element must have a unique 
member identifier (UID) 

• Domain configuration information, such as domain 
type (e.g., routing or configuration). In case of routing 
domains, nodes must also be informed of what type of 
routing protocol must run.  



Domain names and UID can either be meaningless or 
reflect some of the domain or member characteristics (e.g., 
domain type and/or domain hierarchy). There are many 
different ways of obtaining unique domain names. For 
simplicity, in our experiments, we assign domain names in 
a random manner and we make sure that the same name 
has not been assigned to another existing domain. UIDs 
identify interfaces and are a random number chosen by the 
node. We ensure, however, that other mechanisms of 
obtaining unique names and identifiers can be explored in 
the future. 
 
4.2 Domain information distribution mechanisms 
 

Domain information is very critical network 
information and therefore the distribution mechanisms need 
to be very reliable in any kind of networks and 
environments to ensure that all elements in the domain 
receive the proper information at the right time. We 
considered different approaches for domain information 
distribution,  

 
• Unicast to the specific nodes (or all the neighbor 

nodes) within that domain.  
• IP multicast tree. 
• Flooding.  
 

We qualitatively assessed the performance of these 
three mechanisms according to four parameters: bandwidth 
efficiency, information distribution delay, simplicity, and 
reliance on the routing protocol. In terms of bandwidth 
efficiency, multicast is the best mechanism out of the three 
provided the overhead of tree maintenance is small. A 
given message only goes over a link once and it does not 
go to nodes that do not need the information (either 
because they are not at that level or are in a different 
domain).  Unicast is only a little less efficient since it still 
limits information to those nodes that need it and may be 
the most efficient in dynamic networks where tree 
maintenance costs are higher. Flooding is the least 
bandwidth efficient in static networks, but becomes more 
attractive in dynamic networks. In terms of delay, there is 
little difference between the different methods. In terms of 
robustness, flooding is the clear winner. It does not rely on 
any unicast or multicast routing and it does not need any 
periodic messages. 

 
Hence, we conclude that the best mechanism to 

distribute domain configuration information is by flooding. 
It is simple, it depends least on network dynamics and it is 
robust. The latter is a very important factor since the reason 
for reconfiguring domains may be the poor performance of 
the existing routing protocol.  

 
 
 
 

5. ENHANCEMENTS ON IPAS MODULES 
 

This section combines the requirements for domain 
configuration (from Section 4) with the IPAS protocol 
(summarized in Section 2). 

 
5.1 DCDP, DRCP Enhancements 
 

In IPAS, the DCDP module distributes the 
configuration information. We propose also using DCDP to 
distribute domain information. However, while the current 
DCDP implementation uses specific IP addresses and the 
underlying routing protocol to deliver the configuration 
information to the corresponding nodes, we propose 
enhancing DCDP to flood domain configuration 
information. Furthermore, we considered flooding to be the 
most robust mechanism to distribute any kind of 
configuration information (as we discussed in the previous 
section), so we changed the DCDP module to flood all 
configuration information. However, there is a difference 
in the flooding mechanism between domain configuration 
information and the initial configuration information. For 
domain configuration, information is flooded only through 
the configured interfaces (i.e., network interfaces that have 
been assigned an IP address) while in the initial 
configuration process, information is flooded through every 
active network interface, independently of its configuration 
status.  

 
DRCP has also been enhanced so it processes and 

stores domain configuration information (i.e., to what 
domain each configured interface belongs to, interfaces that 
belong in domain D1 should run AODV). 
 

In the enhanced IPAS, the interface between 
DCDP/DRCP at each local node must inform DCDP about 
the configured interfaces (i.e., the interfaces that DCDP 
will use for flooding).  

 
 

5.2 Processing Domain Configuration Information 
 
We here describe how the domain information 

distributed by DCDP is through the network and analyzed 
at every node. Domain configuration information is treated 
the same way as in the original IPAS implementation, i.e. 
 
Step I:  Configuration messages are distributed through the 
DCDP modules. 
 
Step II: When configuration messages reach the 
corresponding nodes, the local DCDP module passes these 
messages to the local DRCP process. DRCP then takes the 
appropriate configuration actions based on the received 
message. 
   



The ACA module generates the configuration 
commands that latter DCDP will distribute. In every 
subnet, interfaces are configured through DRCP which gets 
the configuration information from DCDP. The operation 
steps are described in the list below: 
 
1. At the time there is a decision taken for the update of 

domains, ACA constructs the appropriate 
configuration message. Such message is passed to the 
local DCDP module.  

 
2. DCDP starts the distribution of the configuration 

message. At every node, the local DCDP process 
checks whether the configuration message is referred 
to any of its local network interfaces.  

 
3. If the configuration message refers to any of the local 

network interfaces, the local DCDP process passes the 
configuration message to the local DRCP process.   

 
4. If the configuration message does not refer to any of is 

local interfaces, the DCDP module broadcasts the 
message to reach its one-hop neighbors.  

 
5.3 New Domain Configuration Messages 

In summary, domain messages are initiated in ACA 
from an optimization process (which we will not discuss 
here), then those messages are passed to the local to ACA 
DCDP process that starts the flooding. In the case where 
the message reaches to a node whose network interface is 
listed in the message, then this message is passed to the 
local DRCP process, which is responsible for the 
processing of the message. In order to enable this sequence 
of communication we had to design three groups of 
messages: 

1. Messages from ACA to DCDP 
2. Messages from DCDP to DCDP  
3. Messages from DCDP to DRCP 

 
From ACA to DCDP 
 

The general format of the messages that are sent from 
ACA to its local DCDP process is: 

 
 

 
 
The OPCODE field is related to the domain 

configuration action to be taken. The DOMAIN_NAME 
field specifies the domain for which the action will be 
taken and the EXTRA_INFO field is related to the action, 
since it provides the corresponding DRCP processes with 
the appropriate information for the successful processing of 
the domain message. The specific messages for the actions 
that are supported from IPAS are: 

 Single Domain Generation: Every configured interface 
belongs to the same domain (For initialization purposes/ 
cover the case where we do not want to have multiple 
domains) 
 
 
 
 
 
 Domain Generation: Specific network interfaces are 

configured to belong in the same domain 
 
 
  

 
 
 
 Domain Rename: Modification/change of the current 

domain name 
 
 
 
 
 
 

The following message is needed to configure 
domains. In case of routing domains, the message has the 
following format: 
 
 Routing Protocol Assignment: indicates what routing 

protocol to run in an existing domain.  
 
 
 
 
 
DCDP to DCDP 
 

The messages that DCDP passes to other DCDP 
processed through flooding are the same as the ones 
generated from the ACA module. 
 
DCDP to DRCP 
 

The messages that DCDP passes to DRCP are the 
same as the ones generated from the ACA module as we 
described above. DRCP upon the reception of those 
messages, processes them and utilizes the information 
contained in those messages (i.e., assigns the appropriate 
network interfaces to the corresponding domain, or enables 
the appropriate routing protocols for the corresponding 
network interfacesii). 

                                                 
ii In a node with multiple network interfaces may run more 
than one routing protocols, since each interface can belong 
to different domain, where those domains run different 
routing protocols. In this case the routing signaling that is 
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6. PROTOTYPE AND PERFORMANCE ANALYSIS 
 

In order to demonstrate the effectiveness of the domain 
configuration mechanisms and configuration information 
distribution we built a testbed. We then run an experiment 
were that consists on reconfiguring a single routing domain 
into two independent routing domains. After 
reconfiguration, each routing domain runs a different 
routing protocol and a border router acts as a gateway 
between the two domains. Nodes, however, keep their IP 
addresses.  
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Figure 4 Domain Autoconfiguration Testbed 

 
6.1 Testbed 
 

The testbed is formed of five IBM thinkpad nodes (as 
shown in figure 4). Each node runs RedHat 7.1 LINUX has 
two network interfaces and is loaded with the IPAS 
software, i.e. every node (independently of its capabilities) 
runs the DRCP, DCDP and YAP modules. The first node 
runs the Adaptive Configuration Agent (ACA) mode, i.e. 
this is where all the decisions are generated and where 
configuration information is distributed to the DCDP 
process. Figure 5 shows how configuration information is 
distributed through the network.  
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Figure 5 IPAS Message Flow 
 

                                                                                 
received in one interface has to be translated to the 
appropriate routing signaling for the other interface. This is 
done from the Border Gateway module. 

Initially, interfaces are autoconfigured through the 
enhanced DCDP/DRCP processes. Once interfaces have an 
IP address assigned, we configure the routing domains and 
activate the appropriate routing protocols. Communication 
cannot start until there is a routing protocol running in each 
node that builds the appropriate routing tables. 

 
First, we organize the configured nodes into a single 

routing domain using the ONEDOMAIN command. We 
then configure the routing domain using 
RTPROTOCONFIG, so nodes activate one of the available 
routing protocols. Figure 6 shows a single domain (called 
d1) running RIP. 
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Figure 6 One domain Configuration 

 
Second, we split domain d1 into two routings domains 

(d1 and d2). In order to better control the configuration, we 
do not run any automatic algorithms yet; rather we 
manually identify the interfaces (identified by their unique 
interface ID) that will form the new routing domain. A 
CONFIG message includes the domain name, the number 
of interfaces that are configured with that command and the 
interfaces ID. Figure 7 shows node a and the left interface 
in node b configured into a new domain d2. We  also 
change the routing protocol running in the new domain to 
AODV with the command RTPROTOCONFIG (as we did 
with the original domain). Node b automatically configures 
itself as a border node between the domains with the border 
gateway functionalities. 
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Figure 7 Two domain configuration 

  
We also configured the network in three different 

domains as shown in figure 8. 
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Figure 8 Three domain configuration 

 
6.2 Measurements 
 

We repeat the above experiment and this time we 
measure the time required to distribute domain information. 
Figure 9 shows the domain configuration time extrapolated 
to a thousand of nodes. The y-axis represents the time and 
the x-axis represents the number of configured nodes. The 
time here evaluated only takes into account the domain 
configuration information distribution, i.e. does not take 
into account the time it takes to restart the routing protocol. 
As the configuration messages are a few tens of bytes (see 
section 4) and information is distributed by broadcasting, 
networks of a thousand nodes can be configured in seconds 
even in sparse networks. 

 

Figure 9 Domain Configuration Time 
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CONCLUSION AND FUTURE WORK 

 
This work represents the first part of an effort to 
incorporate the notion of domains into autoconfigured 
adhoc networks. Our implementation proves that the 
mechanisms can be incorportated into existing IP 
autoconfiguration protocols with little additional 
complexity, delay or bandwidth.  
 
A lot of additional research is needed to measure how 
much domain autoconfiguration can improve the 
performance of large adhoc networks, whether in terms of 
robustness, scalability, throughput, security, or other 
measures. We must not only design decision/optimization 
processes, but also decide kind of information we need to 
collect from the network in order to reach into the optimal 
domain decisions quicklyi.  
 
 
                                                 
i The views and conclusions contained in this document are 
those of the authors and should not be interpreted as 
representing the official policies, either expressed or 
implied of the Army Research Laboratory or the U.S. 
Government 
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