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ABSTRACT 

We describe an architecture andalgorithms forderiving an 
access contml policy by composing access control require- 
ments specified at multiple levels in a command hierarchy. 
Our method can detect conflicts in requirements, andfind 
a policy that maximally satisfies the requirements, by satis- 
fying higherprioriq requirements at the expense of lower 
priority ones. It  also allows for easy verification of the 
final policy by an administrato,: The architecture allows 
quick adaptation ofpolicies to changing situations, bypm- 
viding f o r  delegation of authoriq while ensuring that high 
priority requirements will always be satisfied. 

INTRODUCTION 

Modem military operations increasingly depend on the 
rapid deployment and secure operation of exceedingly 
complex computer systems and networks, involving tens 
of thousands of users and an even greater number of data 
objects and applications. Such systems need clearly de- 
fined access control policies which define the privileges of 
each user with regard to each data or program object, in 
accordance with overall doctrine and mission objectives. 
However, due to the large number of variables and inter- 
dependencies involved, it is neither efficient nor practical 
to specify such detailed policies manually. To make mat- 
ters worse, a single mission may require the cooperation 
of multiple units or policy domains, each with their own 
systems and policies. FuIther, military policies are gen- 
erally specified through a hierarchical chain of command; 
commanders at the top of the hierarchy specify doctrines 
and missions in general terms, and commanders at lower 
levels refine this into a specific policy in accordance with 
their specific needs and capabilities. 

Current methods and systems for access control often 
do not meet these needs. Access control policies must be 
specified manually at a very detailed level, often in a lan- 

guage that is not easily accessible to the average user. Few 
automated tools exist for composing or refining policies, or 
for checking that a given access control state accomplishes 
the objective it is supposed to. It is hard to adapt policies 
to changing mission needs; the entire policy may have to 
he changed, and this must be done through the same man- 
ual process used for specifying :he original policy. These 
problems are exacerbated when coalition operations are in- 
volved. In that case, each coalition member may not even 
be willing to completely divulge their internal access con- 
trol policies, or the capabilities and limitations of their ac- 
cess control systems. 

In this paper we describe an architecture and algorithms 
that allow an access control state to be automatically com- 
puted by synthesizing component policies specified at dif- 
ferent levels of detail. This work arose from our previous 
research on dynamic coalitions [I, 21. In our framework, 
mission and operational requirements are treated as con- 
straints on the final access control state. These constraints 
are specified at varying levels of abstraction by human ad- 
ministrators. Software agents then combine them with the 
existing access control policies and hierarchies to derive 
the access control state that is maximally consistent with 
all the constraints. This is done through the use of soft 
constraints, which mark some constraints as more impor- 
tant than others and express hints to the system regarding 
which states are more desirable than others. 

In the following sections, we summarize some prior 
work on access control and constraint programming. We 
then describe our proposed architecture, and how such a 
system can adapt to changing requirements. Finally, we 
present the algorithms for deriving access control policies 
in such an architecture, along with some illustrative exam- 
ples. 
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RELATED WORK 

An access control policy consists of all the d e s  that a sys- 
tem uses to control access to its resources. It includes a 
definition of the objects to which access is controlled, the 
mechanism for controlling access, and the rules for deter- 
mining whether or not to grant an access request. Thus, in 
large systems, access control policies can be very compli- 
cated. 

An access control model is an abstract mathemati- 
cal representation of an access control system. Military 
systems commonly use a multilevel Mandatory Access 
Control (MAC, [ 3 ] )   model.^ In such a model, each ob- 
ject and each subject is assigned an access class con- 
sisting of a security level and a set of categories. The 
security level is drawn from an ordered set, such as 
< TopSecrer,Secrer,Confidential,Unclassified >. The 
set of categories is a subset of an unordered set and is as- 
signed on a need-to,know principle. An access class A is 
said to dominate another class B (denoted A 2 B )  if A has 
a security level at least as great.as B and A's categories in- 
clude those of B.  Thus the access classes form a lattice un- 
der the dominance relation. These classifications are used 
to restrict the access privileges of subjects to objects - the 
exact semantics depends on whether the system is intended 
to protect secrecy or integrity. 

Moffett and Sloman [4] were among the first to discuss 
the problem of automated management of large distributed 
systems. They define policy hierarchies, where the ab- 
straction levels of policies increase as we go up the hierar- 
chy. They explore the refinement of policies in such a'sys- 
tem, where high level policy is set by managers, and this 
policy is refined and implemented at lower levels by hu- 
man or automated agents. The authors also discuss the use 
of Prolog to determine whether a set of lower level policies 
completely satisfy a higher level policy without any con- 
flicts between subjects. However, they did not discuss the 
application of their work to a practical system. 

Constraint solving has been an active area of research 
in Artificial Intelligence. A Constraint Satisfaction Prob- 
lem (CSP, [ 5 ] )  consists.of a set of problem variables, a 
domain of possible values for each variable, and a set of 
constraints, each of which specifies an acceptable combi- 
nation of values for one or more of the problem variables. 
Therefore in a CSP, each constraint is simply a set of tu- 
ples over some subset of the problem variables. A solution 
for a CSP is an assignment of values to the variables that 
satisfies all the constraints of the problem. 

Semiring-based CSPs (SCSPs, [6, 71) a e  an extension 

of CSPs wherein the constraints an: not Boolean but de- 
fined over an appropriate semiring. [n this way SCSPs are 
able to model soft constraints (i.e. preferences), partial 
knowledge and prioritized constraints. 

Asemiringisatuple <A,+,x,0,1 > where 
A is a set with 0 , l  E A: 
f, the additive operation, is closed, commutative and 
associative over A with 0 as its identity element; 
x ,  the multiplicative operation, is closed and associa- 
tive over A with 1 as its identity element and 0 as its 
absorbing element; 

0 x distributes over +. 
An Ic-semiring [6] is a special kind of semiring which 

can represent a complete distributive lattice; the + and x 
operations of the semiring correspond to the lub and glb 
operations of the lattice. Thus the + operation defines a 
partial order ss over the set A; we say a ss b if a + b = b. 

A semiring-based constraint system is a tuple < 
S,D,  V > where S is a semiring, D is a finite set and V is an 
ordered set of variables. A constraint over such a system is 
a tuple < def,con > where con c V is known as the type 
of the constraint, and def : Dk + A  (where k is the cardi- 
nality of V) is the value of the constraint. Thus def assigns 
a value from the semiring to each combination of values of 
the variables in con. This value can be interpreted as a 
strength of preference, a probabilitf, a cost, or something 
else depending on the problem. An SCSP is then a tuple 
< C,v > where Y C_ V and C is a set of constraints. 

The solution of an SCSP is the constraint obtained by 
combining all the constraints in the SCSP and projecting 
it over the set v of variables of interest. The best level of 
consistency (blevel) of the SCSP is the projection of the 
solution over the empty set. Thus the blevel represents the 
highest valuation that can be attained by a tuple under the 
constraints. In other words, the blevel gives the maximum 
extent to which a given set of constraints can be satisfied. 

SCSPs have also been used in a variety of applica- 
tions. For instance, Bella and Bistarelli [8] used them to 
model the Needham-Schroeder protocol and showed that 
the model can be used to "discovei:" a well-known attack 
on this protocol. 

Constraint Logic Programming ICLP, [91) incorporates 
the notion of constraints into Logic Programming, by re- 
placing term equalities with consl.raints, and unification 
with constraint solving. This allows much more concise 
representation of problems; it also allows for more effi- 
cient implementations of constrain! solvers, as it provides 
additional information that helps guide the search for a so- 
lution. 
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Figure 1: Policy refinement in organizations 

Semiring-based CLP (SCLP) generalizes CLP to soft 
constraints. The syntax and semantics of SCLP programs 
are described in [lo]. Briefly, an SCLP program consists 
of a set of clauses of the form H : -B. We say this clause 
holds in an interpretation I iff for any ground instantiation 
of H ,  say H e ,  we have / ( H e )  Is / (3BB) .  

PROPOSED ARCHITECTURE 

In large organizations, various requirements, specified at 
various levels in the command hierarchy, impose con- 
straints on the access control state. Usually, more general 
constraints are imposed by higher levels in the hierarchy 
whereas details are specified at lower levels. For instance, 
i n  corporations, policies such as “no employee may per- 
form both ordering and procurement functions” are gener- 
ally specified by upper management whereas details such 
as “file orders.xls is related to purchasing” are filled in by 
lower level employees. This process is illustrated in Fig- 
ure 1. 

In our system, access control policy is developed 
through a multi-step process of composition as shown in 
Figure 2. Each level in the command hierarchy has an 
administrator. At each step, this administrator specifies a 
set of constraints arising from requirements at that level 
and a set of tests on the final access control state. These 
constraints and tests are translated into SCLP clauses and 
goals respectively, and communicated to a central server. 
The server combines the constraints into a complete SCLP 
program, which is then solved to obtain an access control 
state. The different tests are then carried out on the state, 
and results returned to the administrators, who may then 
specify more constraints and tests. In later stages, admin- 
istrators can also retract previously specified constraints. 
The process concludes when all administrators send a null 
message to the server, signifying that they have no more 

Figure 2: Policy composition architecture 

tests or constraints to specify. The server then communi- 
cates the access control state to the entities responsible for 
access control in the domain. 

This architecture allows for rapid reconfiguration of the 
access control state when requirements (and hence con- 
straints) change. When this happens, the administrators 
engage in a process similar to that described above, except 
that constraints are added to or retracted from the previ- 
ously existing SCSP. Such changes may require revocation 
of privileges already held by users; in some systems, such 
as those using certificates for access control, this can be a 
significant problem. However, this is beyond the scope of 
this paper. Some issues relating to certificate revocation 
are discussed in [ll]. 

CONSTRUCTING THE ACCESS STATE 

The problem of constructing an access state can be formu- 
lated as follows. Given a set of access classes A,  a set of 
objectsoandac-semiringY=<V,+,x,O,l >,wewant 
to construct a scheme to assign access classes to objects. 
The scheme must allow multiple administrators to specify 
constraints over this semiring, and then compute the opti- 
mal access state satisfying these constraints. We assume 
that access classes are assigned to users and subjects by 
some other mechanism. 

We observe that when a set of constraints is constructed 
from different sources as above, there may not exist a 
unique access control state satisfying all the constraints. 
In some cases, there may be many such states: in this case 
the system must pick the best one. Other times, constraints 
may conflict with each other, such that no access control 
state satisfies all of them. 

We overcome these problems by attaching a priority 
(taken from Y )  to each constraint. The system tries to sat- 
isfy high priority constraints first. During the multi-step 
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process described above, administrators can add or retract 
constraints to guide the server to a better state. 

Given A, the set of access levels, and 0, the set of ob- 
jects to classify, we express the problem as an SCSP over 
the constraint system < Y , A ,  8 >, where B is a set of 
variables containing one variable for every object in 0. We 
proceed as follows. 

Choose a semiring Y for prioritizing constraints. The 
semiring is chosen so that the minimal element of Y 
represents the highest constraint priority. 
Let the highest level administrator specify a set of 
constraints on the final access state. Each constraint 
associates the value 1 (the maximal value of the 
semiring) with tuples of variable values that are ac- 
ceptable and its priority v E V to the rest. 
Proceed to the next highest administrator, and so on. 
Solve the resulting SCSP. The blevel gives the pri- 
ority of the highest priority unsatisfied constraint - a 
blevel of 1 means all constraints were satisfied. The 
maximal solution of the SCSP gives the required clas- 
sification. 

The choice of Y will depend on the application. For 
example, a reasonable choice might be to use the access 
class of the administrator specifying the constraint as its 
priority. However, the rest of the algorithm is not altered 
by the choice of Y .  

In practice, the SCSP and its constraints are specified as 
predicates in an SCLP language. In our initial implementa- 
tion of this concept, we are using the c l p ( F D , S )  [12] sys- 
tem, which provides support for user-defined semirings. 
So far, we have implemented some simple scenarios simi- 
lar to those described below. 

Note that by using SCLP, we also obtain the capability 
to verify the algorithm's output. By formulating appropri- 
ate goal clauses for the constraint solver, an administrator 
can run sanity checks to see if the final state satisfies some 
desired property. Also, we can allow for hierarchical pol- 
icy refinement. 

More formally, we assume that the domain and the o b  
jects in it are divided hierarchically into parts, with a corre- 
sponding hierarchy of administrators, as in Figure 3. The 
highest level (Level 1) administrator sets the high-level 
policy, much like in Moffett and Sloman [4], by defining 
a few high-level predicates, and leaves some of the pred- 
icates undefined. The level 2 administrators then define 
these predicates and state some high-level objectives for 
the level 3 administrators, and so on. At the lowest level, 
constraints are defined on the variables in 8. 

We use a logical language with the following useful fea- 

Figure 3: Hierarchical administration 

tures added to c l p ( F D , S ) :  . .  . .  
Constant Symbols: Every member of A,  the set of 
access classes. 
Variable Symbols: We have finite domain variables 
ranging over A. In particular, there is one such symbol 
per object to be classified. 
Predicate Symbols: The predicate dominates / 2 
expresses the dominance relation on A .  The predi- 
cate classify_up/3, which takes an object (Obj), 
an access class (Class) and a semiring value (Val) 
as arguments, is defined to yield a constraint which 
assigns semiring value 1 to all assignments which 
classify Obj in a class that dominates Class, and 
Val to all other assignments. The predicate clas- 
sify.down/3 is similar, excrept it assigns 1 to as- 
signments that classify Obj lower than Class. In ad- 
dition to these, a number of application-specific pred- 
icates are also used. 

Since our language does not cont;in any function sym- 
bols, we have from [lo] that once the program is fixed, the 
value of any goal is computable in time that is finite and 
bounded by a constant. Thus our language is efficient. 

EXAMPLE: CLASSIFYING OBJECTS IN A 
MULTILEVEL MAC SYSTEM 

To illustrate our techniques, we now show how to solve 
a classification problem given in [13]. As mentioned in 
the previous section, we could use the access level of the 
administrator who specifies a constraint as the priority of 
that constraint. However, in order to achieve a minimal 
classification, we also need to prioritize states that assign 
lower classification levels to objects while satisfying the 
constraints. 

Consider the Ic-semiring Y =< V, +, x,O, 1 > where A 
represents the set of all possible access classes, and 0 and 1 
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denote the highest and lowest access classes respectively. 
Now define the + operation as follows: for two access 
classes a and b having classification levels 1, and I ,  and 
access groups Sa and S,, c = a + b is the access level with 
classification level min(l,,lb) and access groups S, m S b .  
Similarly, d = a x b is the access level with classification 
level mnx(l,,Ib) and access groups S, USb. Thus c is the 
highest access class dominated by both a and b, whereas d 
is the lowest access class that dominates both a and b. 

Now consider the semiring Y =< V 2 , + * ,  x2,0,, 1, >, 
where V z  is the Cartesian product of V with itself, while 
+,, x2, 0, and 1, are simply componentwise extensions 
of the corresponding elements of Y .  Then Y is also an Ic- 
semiring [6]. Now we associate each assignment of access 
classes to objects with an ordered pair < v , ,  v, > where v ,  
is the access class of the highest level administrator whose 
constraint it violates, while v, is the highest access class 
it assigns to an object. Due to the inverted nature of the 
semiring we have chosen, this means that a maximal solu- 
tion will be one which tries harder to satisfy higher level 
administrators, while also trying to avoid overclassifying 
data. 

It is easy to see that basic constraints (lower bound 
and upper bound constraints) are easily expressed using 
c l a s s i f y - u p  and classify-down respectively. Ex- 
pressing more complicated constraints from [13], such 
as inference and association constraints, is also fairly 
straightforward, if a bit messy to include here. 

It is worth mentioning that once the constraints from our 
example are translated into an SCLP, the semiring can be 
changed completely without altering the program. So if we 
wanted to find the maximally closed solution that satisfied 
a set of constraints, all we would need to do is to exchange 
the action of the + and x operators on the second com- 
ponent of W .  In this configuration, the constraint solver 
would try and make sure that no object was underclassi- 
fied. This ability to switch from a “trusting” to a “para- 
noid” mode of operation without the need for rewriting the 
policy may in itself be a useful feature in some situations. 

CONCLUSION 

In this paper we described an architecture and mathemat- 
ical framework for composing access control policies and 
to allow for quick adaptation of policies to changing re- 
quirements, as well as verification of the resulting policy. 
The framework is very flexible: we can accommodate both 
MAC and RBAC systems by simply configuring some pa- 
rameters. We investigated the automated negotiation of ac- 

cess state in RBAC systems in a separate paper 1141. 
Many questions remain open. This paper did not address 

in detail the computational issues related to the constraint 
solver and with regard to incremental solvers. We also did 
not address user interface issues in this paper. Finally, we 
are still working on extending the framework to incorpo- 
rate more general operators for composing policies, such 
as those defined in [15]. 
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