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Abstract 

We propose a simulation-based algorithm for learning 
good policies for a Markov decision process with un- 
known transition law, with aggregated states. The state 
aggregation itself can be adapted on a slower time scale 
by an auxiliary learning algorithm. Rigorous justifica- 
tions are provided for both algorithms. 
KEY WORDS: reinforcement learning, Markov deci- 
sion processes, learning vector quantization, stochastic 
apprmimation, dynamic programming. 

1 INTRODUCTION 

In classical stochastic control, it is assumed that the 
state process or an associated observation process is 
exactly known to the controller. In many realistic sit- 
uations, however, this is not quite true. This is be- 
cause this information needs to be transmitted across 
a communication channel with rate constraints, calling 
for explicit data compression. At one level, one can 
view compressed observations as further ‘partial obser- 
vations’. But there is one important difference: The 
data compression scheme itself is a decision variable 
and should be optimized. Many recent works have ad- 
dressed these issues [a], [lo], [12], [13], [27]. 
Our aim here is to address this issue in the context of 
yet another important recent development, viz., rein- 
forcement learning algorithms for learning near-optimal 
policies. (See [3], [22] and the references therein.) 
These are computationally intensive simulation-based 
algorithms. They are particularly appealing for large 
complex systems for which exact analytic modelling and 
accurate model estimation are unfeasible or expensive, 
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but simulating typical system transitions is relatively 
easy (e.g., based on local update rules for intercon- 
nected systems). Even so, in their theoretically exact 
form, these algorithms suffer from the curse of dimen- 
sionality, in fact much more so than their classical an- 
tecedents like value and policy iteration. Hence there is 
a need to interface them with a suitable approximation 
architecture. 

The two standard paradigms for approximation are 
state aggregation and the use of parametrized families 
of functions (with a low dimensional parameter space) 
for approximating the value function [3], [NI, [25]. The 
latter, though it makes eminent sense as an approxima- 
tion scheme, is not much use from a data compression 
perspective, whereas state aggregation fits it naturally. 
This motivates our analysis of a learning algorithm with 
state aggregation. 

To be specific, we consider an ‘actor-critic’ type learn- 
ing algorithm. These were introduced in [l] and stud- 
ied extensively in [14]. We interface this algorithm with 
state aggregation as proposed in [24], except that this 
is an ‘on line’ learning algorithm based on a single sim- 
ulation run, eschewing in particular the ‘independent 
sampling’ over each aggregated state as in [24] which 
simplifies the analysis of [24] somewhat. Our analysis 
rigorously justifies aggregating states in terms of the 
value function. (This was also suggested in [lo].) We 
then propose ‘learning’ schemes to achieve this aggregrlr 
tion. Taken together, this provides a combined scheme 
for data compression and optimization. 

The paper is organized as follows. The next section 
formulates our control problem as a Markov decision 
process on a large but finite state space. It then con- 
siders a fixed aggregation of states and formulates the 
basic algorithm. Section 3 states the main theoretical 
results in this context, notably the key error estimates. 
These estimates justify state aggregation on the basis of 
clustering in the range of the value function. This mo- 
tivates the clustering algorithm proposed in section 4. 
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The prooh are quite technical, but a large part of them 
is standard and is adapted from analogous arguments 
in [5], [6], [14]. Hence in the interest of brevity we refer 
the reader to these references for detail, focusing here 
only on the few points of departure from these refer- 
ences. A complete version of the paper with detailed 
proofs wil l  appear elsewhere. 

[21]. We assume that the chain is irreducible under 
every stationary randomized policy. 

we wish to learn near-oPtimal Policies for an 
gated state space based on a shdat ion run. The state 
Wegat ion is achieved by 8 Partition of the state space 
into disjoint subsets: 

S = Si U Sz U. . . U Sm, Si n Sj = 4 for i # j ,  

2 THE LEARNING PROBLEM 

We consider a controlled Markov chain X(n) ,  n 2 0, on 
a large finite state space S = {1,2,. . . , s}, controlled 
by a control process Z(n),n 2 0, taking values in a 
finite action space A = {a,. . . , a t } .  (‘A’ could be a 
discretization of a compact metric space.) The transi- 
tion probability is given by p : S x S x A 3 [0,1]. That 
is, 

P ( X ( n  + 1) = i / X ( m ) ,  Z(m),  m 5 n) 

= p(X(n) ,  a’, Z(n)),n 2 0. 

{Z(n ) }  is said to be a stationary policy if Z(n) = 
v(X(n))  V n for some v : S -+ A, and a station- 
ary randomized policy if the conditional law of Z(n) 
given X(m) ,Z(m - 1),m 5 n, is cp(X(n)) V n for a 
cp : S -+ P(A).  (Here and later, P(. . .) stands for the 
space of probability measures on ‘. . .’ with topology of 
weak convergence.) By abuse of terminology, we may 
refer to the map U(.) (resp., cp(.)) itself as a stationary 
(resp. stationary randomized) policy. 

Our aim is to minimize over all admissible { Z(n) }  the 
cost 

E [ 2 amg(X(m), Z 0 ) ]  
m=O 

for a prescribed running cost g : S x R and discount 
factor a E (0,l). The value function V’ : S -+ R 
associated with this problem is defined as 

1 

i E S, 

and is the unique solution to the dynamic programming 
equations 

(2.1) 
In fact, cp : S -+ P ( A )  is an optimal stationary random- 
ized policy if and only if for each i, support (cp(i)) C 
Argmin (r.h.s. of (2.1). A stationary optimal policy 
always exists, obtainable by performing the minimiia- 
tion on the r.h.s. of (2.1). For these and other stan- 
dard facts concerning Markov decision processes, see 

where typically m << s. We view the Si’s as aggre 
gated “eta-states’. Correspondingly, define p( i ,  I ,  a),  
~ E S ,  l I l 5 m , a ~ A ,  by 

F ( i ,  I ,  a)  = d i 1 i  4. 
jESc 

Let S = (Si, Sz, . . . , Sm} and B(n), n 2 0, the S-valued 
process given by S(n) = Sj if X(n) E Sj,n 2 0. 
Finally, let {a(n)}, {b(n)} be prescribed sequences in 
(0,l) such that 

n=O n=O 
00 m 

a(n)21 b(n)Z < 00, 
n=O n=O 

a(n + l)/a(n) -+ 1, 

b(n)/a(n) -.) 0. 

The proposed learning algorithm is as follows: Let 
{ X ( n ) }  be a simulated trajectory of the chain with con- 
trol sequence {Z(n)} soon to be specifid. Let p0 > 0 
and I’ : R + [-&,Po] the projection map. The al- 
gorithm is a pair of coupled iterations on two merent 
time scales which are simulated by two different choices 
of stepsizes [4], The ‘fast’ component is as follows: For 
1 5  i I m and n 2 0, 

Wi(n + 1) = ~ i ( n )  + a(n>~{Sl(n) = i } b ( ~ ( n ) ,  
z(n>) + aWj.(,+l)(n) - wi(n)l. (2-2) 

Here Z(n) = a with probability t)D(n,(S(n)iu),a E A, 
where 

and P(n) 2 [[/3ia(n)]] is given recursively by the ‘slow’ 
iteration. 

Pia(, + 1) = r(pia(,) + b ( n ) ~ { S ( n )  = Si, ~ ( n )  = a} 

(2.3) 
V i ( . )  - g(x(n)la) - aW~(n+I)(n)l) 

To get an intuitive feel for this scheme, consider s = 
n,S, = { i }  V i (i.e., no aggregation), whence it re- 
duces to the ‘algorithm 3’ of [14]. As per the rationale 
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for two time scale stochastic appraximation developed 
in 141, the fast iteration (2.2) views the slow iteration, 
i.e. {p(n)}, as quasi-static. Thus (2.2) can be ' a p  
prourimated' by the corresponding iteration with fixed 
p(n)(= p, say). But then it is the stochastic approxi- 
mation version of fixed policy d u e  iteration, the fixed 
policy in question being the stationary randomized pol- 
icy cpp(- )  given by cpp(i)  = rp(i,.),i E S. Thus (2.2) 
iteratively tracks the fixed policy value function Vp(.) 
for the policy ~,g(.), given by 

I UJ 

Vp(i) = E cr"k(X(m), T ( ~ ) ) / X ( O )  = i , i E S, 
[m=o 

where the expectation is w.r.t. 'pp. Since p - p(n) 
varies slowly, it can then be expected to track Vpcn,. 
Plugging this into (2.3) in place of W(n),  (2.3) is seen 
to be a search scheme for minimizing 

-1 + a CP(i,j, .)V,g(j)l i E s, 
j 

thereby simulating the minimization step of policy it- 
eration. (See [14] for further discussion.) For m 5 s as 
here, our algorithm is then nothing but the algorithm 
3 of [14] suitably interfaced with state aggregation. 

3 CONVERGENCE ANALYSIS 

In this section, we state the main theoretical results 
concerning the algorithm (2.2)-(2.3). As is always the 
case with stochastic approximation algorithms, their 
convergence is contingent on their stability, i.e., on their 
iterates remainiig bounded a.s. This is no problem for 
(2.3) where the projection map I' ensures the bounded- 
ness for free. For (2.2), we need: 

Lemma 3.1 The iterates of (2.2) remain bounded as .  

The proof of this lemma is sketched in the appendix. 
Let @p(.) E P(S) denote the unique stationary distri- 
bution under the stationary randomized policy defined 
bY 

(pp(i) = xp( j ,  a )  E P ( A )  for i E Sj. 
Define 

,j E si, 1 I 2.5 m. 

Lemma 3.2 If we consider (2.2) with the following 
change: PJn) = 0, a covtant in [-&,,PO] V n, then 
W(n) + Wp as., where Wp is the unique solution to 

%3(9 = d P i ( j )  
j € S +  

The complete proof of this lemma will appear else- 
where. Here we confine ourselves to some important 
observations concerning (3.1). (3.1) is of the form 

f i p  = Gp($Vp) (3.4) 

for an appropriately defined Gp : Rm + Rm satisfying 

IlGp(z) - Gp(9)llUJ I Q11Z - Y l l o o l ~ l Y  E R", 
A Here llzllUJ = supi lzil is the "ax-norm' on Rm. That 

(3.2) (equivalently, (3.1)) has a unique solution then 
follows from the contraction mapping theorem. 

Returning to the original set-up, we have: 

Corollary 3.1 IlW(n) - l%'p,,,II + 0 a.s. 

Proof This follows from the above lemma and the two 
time scale argument of [4]. (See, e.g., Lemma 2.3 of 
[414 

The two time scale-argument of [4] then justifies 
analysing (2.3) with Wp,,) replacing W ( n )  on the r.h.s. 
Let W; denote the unique solution to 

w;(4 = "n [ p % W  k ( j , a )  + a ~ B ( j , l , a ) W '  1 
I )I] 

l l i l m  

where the existence and uniqueness is ensured as before 
by the contraction mapping theorem. Then we have 

Lemma 3.3 P(n) -t p' E [-po,pO] a.s., where p* 
satisfies: 

W&(i)  5 fi ,*(i)  5 Wi.(i) + € ( P O ) ,  (3.5) 
where e(&,) 1 0  as PO T 00. 

This follows along the lines of section 5.4 of [14]. 

Let P(j) = W'.(i), when j E Si, 1 5 i 5 m , j  E S. Let 
e=[e l ,  ..., e,] with 

ei = max IV'(j) - V*(Z)I, ( 3 4  3JESi  

Then we have: 

Lemma 3.4 IIP - v*llm 5 IlellUJ/(l -a). 
Proof This follows exactly as in Theorem 1 of [a]. 
Finally, define V ( j )  = 6'~- (i) when j E Si, 1 5 i 5 
m, j  E S. The following is then immediate: 

Corollary 3.2 IlV - V*llw 5 Ilelloo/(l -a) +e(&). 

The second term can be made arbitrarily small by mak- 
( T ~ p ( i ,  a) [&, a)  + a x g ( j ,  I, a)*&) , ing the parameter p0 sufEciently large (though one ex- 

pects a tradeoff with the convergence rate of (2.2)- 
(2.3)). The first term involves llellUJ, which depends 1 5 i S m .  

1 I )  
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only on the partition {Si}. Given the definition (3.5) 
of e, it then makes sense to aggregate states based on 
the value of the value function. The next section pro- 
poses a scheme for achieving this. 

4 CLUSTERING ALGORITHMS 

Having concluded that one should aggregate by cluster- 
ing (or ‘vector quantization’) in the range of the value 
function, one important problem remains: The value 
function is not known. Running a learning algorithm 
to estimate the value function for sake of state aggrega- 
tion defeats the purpose, as it brings back into picture 
the very ‘curse of dimensionality’ that (2.2)-(2.3) were 
supposed to work around. Thus a suitable approxima- 
tion to the value function is called for. Furthermore, we 
want to come up with a good state aggregation scheme 
concurrently with (2.2)-(2.3) based on a single simula- 
tion run. Hence we are not in a position to first estimate 
the value function and then aggregate on the basis of it 
using a batch-mode algorithm like Lloyd’s [17]. Once 
again, two time scale stochastic approximation comes 
to the rescue: One can run a clustering algorithm on 
estimated values concurrently, albeit on a slower time 
scale so as to achieve the desired ef€ect. Implicit in this 
is the requirement that the algorithm be sequential and 
based on ‘on l ie’  estimates of the value function as they 
arrive. Thus one has to resort to one of the ‘Learning 
Vector Quantization’ (LVQ) schemes. We briefly review 
them below. 

h a l l  that in vector quantization, one partitions the 
space into finitely many regions, the ‘Voronoi regions’, 
each identified with a point called the ‘centroid’ therein, 
as follows. The i-th Voronoi region is the set of all 
points that are closer to the i-th centroid w.r.t. a suit- 
able metric (usually Euclidean) than any other, any 
tie being resolved as per some k e d  convention. Thus 
specifying the centroids specifies the Voronoi regions. 
The connection with clustering is that all points which 
fall in a single Voronoi region are deemed to form a 
single cluster. In order that the partition be optimal 
w.r.t. the mean square error, there is a further require- 
ment. The ‘centroids’ must in fact be the centroids of 
the Voronoi regions associated with them w.r.t. the 
underlying sampling distribution. This, however, is a 
necessary condition and not sufficient, as there can be 
local minima of the error function that meet this re- 
quirement. 

The simplest LVQ algorithm is the ‘winner take all’ 
competitive learning algorithm described as follows 
([ll], Ch.9): Let &,(TI) denote the position of the i- 
th  centroid at time n. Given a new observation z(n), 
one first locates the centroid that is closest to it (the 
‘winner’), say q,(n), and then moves it a little towards 

z(n) according to the update 

qj(n + 1) = (1 - c(n))qj(n) + c(n)z(n).  

Here, c(n) E (O,l),n 2 0, is the usual stochastic 
approximation-type stepsize scheme satisfying 

C c ( n )  = 00, C c ( n ) 2  < 00. 
n n 

This algorithm can converge to a local minimum of 
the error function that may be far from the optimal. 
There are schemes which, while not guarranteeing con- 
vergence to the global minimum, do generally improve 
upon the above algorithm. One such scheme is the Ko- 
honen LVQ algorithm ([ll], Ch.9) wherein one updates 
not only qj(n), but also the centroids that are its neigh- 
bours as per some prespeciiied neighbourhood scheme. 
Various ‘weighting’ schemes have also been proposed to 
modulate the extent to which different centroids should 
be moved [18], [20]. A general formalism for such algo- 
rithms and its convergence analysis have been presented 
in 1151. We take this viewpoint here. 

Let q(n) = [ql(n), . . . ,qm(n)] denote the positions of 
the m centroids at the n-th iteration. The general al- 
gorithm is: 

qi(n + 1) = qi(n) +c(n)li(z(n),q(n)>(z(n) -q(n)), 
1 5 i I m .  

Here I , ( - ,  .), 1 5 i 5 m, is the ‘winner activation func- 
tion’. For the winner-take all LVQ, Ii(z,v) = 1 if 
llz-yiI( I ~ ~ z - g j ~ ~ , j  # i , O  otherwise. It can be corre- 
spondingly modified for the other LVQ algorithms. The 
analysis of [15] shows that 

with probability one, where each q: is indeed the cen- 
troid of the associated Voronoi region w.r.t. the under- 
lying sampling distribution. 

Based on this, we propose below a scheme for adaptive 
state aggregation to go with (2.2) - (2.3). Complete the- 
oretical analysis is not presented, as it would be quite 
lengthy, while much of it is standard fare in the analy- 
sis of stochastic approximation and related algorithms. 
This is not to say that there is nothing novel: Once 
again, it is these points of departure that we shall high- 
light. 

Our scheme is based on the algorithm of Tsitsiklis and 
Van Roy [25] for learning approximate value function 
for a fixed policy, based on linear parametrizations. 
Thus we seek for an approximation of the form 

d 

Vo(i) = C&(i, k)&, i E S, (4- 7) 
k= 1 
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where Q = [[Q(i, I C ) ] ]  is a prescribed s x d matrix and 
h = [ h ~ ,  . . . , hdIT is the variable parameter vector which 
we seek to optimize. One chooses s >> d so that the 
parameter search is in a space of dimension much lower 
than \Si = s. As before, let cpp(.) = T O ( - ,  e )  be a pre- 
scribed stationary randomized policy, and Vp(.) the cor- 
responding fixed policy value function. The algorithm 
of [25] for learning an approximation of Vp(.) of form 
(4.2) is (for prescribed X E [0, 11): 

h(n + 1 )  = h(n) + c(n)(g(X(n), z(4) 
+ a Q(X(n 11, k)hk(n) 

k 

- Q(X(n) ,  k)hk(n>)q(n) 
k 

q(n + 1) = a k ( n )  + Q(X(n + 11, -1, 
where c(n) = 00, c(n)' < 00. 

It is proved in [25] that h(n) -+ hp with probability 
one, where hP is the unique solution to the equations 

where: n is the projection operator from R" onto its 
d-dimensional subspace spanned by vectors of the form 
(4.2), and the operator T(') : RS -+ RS is defined for 
O < X < l b y  

m 

( T W ) ( i )  = (1 - A) XmE 
m=O 

a"g(X(n), ~ ( n ) )  + am+'J(X(m + 1) ) /X(O)  = i , 1 
and for X = 1 by 

(T(')J)(i)  = Vp(i), 

i E S. The control sequence {Z(n)}  is realized as per 
'PP. 

The aggregation scheme we propose appends (4.3)-(4.4) 
to (2.2)-(2.3), with one difference: Z(n)  is now gener- 
ated with conditional law cpp(,,(X(n)), conditional on 
X(m),Z(m - l ) , m  5 n. In view of the results of [15] 
recalled above and the two time scale analysis of [4], it 
is not hard to show that 

Viewing 
Vp(,,) k QhP(") 

as an approximation to VP(,,, one then aggregates 
states based on it by algorithm (4.1), with 

k 

Of course, the aggregation needs to be done on a 
much slower time scale than the rest of the algo- 
rithm. This is ensured by making c(n)/b(n) -+ 0. To 
make a correspondence with our earlier notation: Let 
S" = {e,. . . , S;} be the partition operative at time 
n. Then Sr = the Voronoi region associated with the 
centroid y,(n) for 1 5 i 5 m. Invoking the two time 
scale analysis of [4] in conjunction with the results of 
the preceding section and of 1151, we conclude that 

q(n) + q* as .  

where q' satisfies the 'centroid' condition w.r.t. ipp- for 
p' as in (3.4). 

It may be recalled that both state aggregation and use 
of linearly parametrized families were originally advo- 
cated as approximation schemes to soften the curse of 
dimensionality. We combine both, which may seem a 
bit redundant. The reason for doing so is, however, 
that our concern is not just ameliorating the curse, but 
also explicit data compression for purposes of transmit- 
ting information from the plant to the controller across 
a communication channel with limited capacity. The 
state aggregation approach is ideally suited for this, 
as it replaces an S-valued state taking s distinct val- 
ues by a meta-state that takes only m << s distinct 
values, thereby reducing per step bit requirement from 
log, s to log, m. This data compression aspect is not 
as apparent in the linear parameterization approach, 
which is more approximation-theoretic in its flavour. 
Our use thereof is for doing a secondary optimization, 
viz., that over possible aggregation schemes. This is 
done on a much slower time scale and can be rendered 
computationally inexpensive by choosing a small value 
of d. In our formulation, this is of secondary importance 
to the optimization over policies implicit in (2.2)-(2.3), 
hence some laxity in convergence speed and accuracy 
can be tolerated in the interests of lowering computa- 
tional overheads. 

In conclusion, we have presented a simulation based 
learning algorithm for Markov decision processes, 
based on the 'actor-critic' paradigm, that explicitly 
takes into account state aggregation motivated by data 
compression. A parallel treatment is possible for the 
alternative learning paradigm of 'Q-learning' [23], [26]. 
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