
INTEGRATED MANAGEMENT OF LARGE SATELLITE-TERRESTRIAL NETWORKS'

J. S. Baras, M. Ball, N. Roussopoulos, K. Jang, K. Stathatos, J. Valluri

Center for Satellite and Hybrid Communication Networks
Institute for Systems Research

University of Maryland
College Park, Maryland 20742

ABSTRACT

Hybrid communication networks provide an
economically feasible and technologically efficient means
to implement the global information infrastructure. The
management of such heterogeneous networks is a critical
market dijyrrentiator for telecommunications companies
and a formidable technical task. In this paper we
describe our efforts in the Center for Satellite and Hybrid
Communication Networks, to design and implement an
integrated network management system for such networks.
The major accomplishments to date are the design and
implementations of an object oriented data model for
hybrid networks consisting of satellite networks and
terrestrial ATM networks; the extension of the system to
hybrid networks with as many as 300,000 nodes; the
development of browsing graphical tools so that mesh-
connected graph networks (as opposed to tree networks)
can be efficiently queried; specially designed graphical
widgets for displaying pe$ormance data continuously
from the network management information database
(MIB); extensions of the GUI to distributed operation
including appropriate designs for consistency and
concurrency between the GUI display and the network
MIB; storage and organization issues for pe~ormunce
data in the MIB; integration of configuration management
and performance management.

INTRODUCTION

Hybrid communication networks provide an
economically feasible and technologically efficient means
to implement the global information infrastructure. The
management of such heterogeneous networks is a critical
market differentiator for telecommunications companies
and a formidable technical task. Hybrid networks are also

the architecture of choice for military networks. In this
paper we describe a prototype system under development
in the Center for Satellite and Hybrid Communication
Networks, for the integrated network management of such
networks. The major accomplishments todate are: the
extension of the object oriented data model to hybrid
networks consisting of satellite networks and terrestrial
ATM networks; the extension of the system to hybrid
networks with as many as 300,000 nodes; the
improvement of the browsing graphical tools so that mesh-
connected graph networks (as opposed to tree networks)
can be efficiently queried; specially designed graphical
widgets for displaying performance data continuously
from the network management information database
(MIB); extensions of the GUI to distributed operation
including appropriate designs for consistency and
concurrency between the GUI display and the network
MIB; storage and organization issues for performance data
in the MIB; integration of configuration management and
performance management.

A typical network for which the system developed is
intended consists of an ATM fiber network connected to a
high data rate satellite constellation. In addition to the
heterogeneity stemming from the interconnection of a
terrestrial ATM network to a satellite network, the system
must handle vendor and protocol heterogeneity as well as
operate in a distributed interactive (with the operators)
environment.

SYSTEM ARCHITECTURE

The approach we are following in designing and
implementing the INMS/HN is as follows. We first
represent the network in a carefully designed Object
Oriented data model in an OODB, following the principles

* This work was supported in part by the Center for Satellite and Hybrid Communication Networks under NASA cooperative agreement NCC3-528
and by grants from Hughes Network Systems and Space Systems Lord.

0-7803-4249-6/971$10.00 0 1997 IEEE

383

of [2]. We develop advanced GUIs linked to this OODB
representation of the network including efficient browsing
tools which exploit hierarchies in the data model. The
OODB is linked to network simulation for comparisons
and “what-if ’ decision assistance. We employ innovative
dynamic query techniques which can be invoked from the
GUI.

We develop and implement performance objects in the
OODB and link them to sophisticated graphical widgets in
the GUI for performance monitoring and management.
We allow multi-resolution (temporal and in dynamic
range) performance data storage for economy of storage
and speedy recovery of relevant information. We embed
operational and management constraints in the OODB and
we embed multi-criteria optimization tools and fast search
algorithms in the OODB for fast trade-off analysis and
decision assistance. The resulting architecture of the
software system is shown in Figure 1.

Figure 1. Architecture of the Integrated Network
Management System

We have currently completed a prototype of integrated
configuration and performance management. Our next
milestone is the efficient integration of fault management
as well. The current implementation has been tested with
simulated data of a 300,000 node hybrid network.

EXTENSIONS/IMPROVEMENTS OF THE MIB
DESIGN

Object Oriented Data Model
We have extended the data model to include ATM

networks. We also include frame relay and X.25 over
A l l 4 in the terrestrial portion of the hybrid network. A
hybrid network with an excess of 300,000 nodes and links
was created and stored in Object Store. The object model
hierarchy is depicted in Figure 2.

Figure 2. The implemented object class hierarchy for the
hybrid network data model

PERFORMANCE DATA MODEL AND STORAGE

We have developed and implemented efficient
methods for storing and viewing performance information
from a large hybrid network. A network simulation was
designed and implemented in order to populate the MlB
with performance data and related statistics. This
simulation can set up Permanent Virtual Circuits (PVC)
and vary traffic over them. The simulation periodically
reports network traffic, error rate and cell loss rate which
are stored in “Performance Objects” in Object Store.

The system supports two types of user queries:

Queries on a single object: Typical queries would
be
- Utilization of a particular Link at some

-
-
Queries across objects: These queries are more
complex and involve attributes of more than one
object. Typical queries would be of the form
- The aggregate delay over a specific Virtual

Circuit.

specified time.
Buffer.capacity at a given Node.
Delay and Error rate over a specific link.

The operator may want to see the state of the Network
at some earlier instant in order to analyze the nature of a
fault that may have occurred in some part of the Network.
Hence it is critical to store, the state of various Network
elements at different instants, along with the instant at
which it was recorded for a sufficient period of time. It

384

would be neither practical nor necessary to store all the
information gathered over a period of time at the same
granularity. A reasonable solution to this would be to
reduce the precision of information stored as the
information gets older, i.e. for the most recent information
we could store every update from the network, for slightly
older information we could store an average over 4
periods, for even older information we could store an
average over 20 periods etc.

There are three different processes in our
implementation, one for each level of granularity. The
high precision process periodically takes values stored in
memory and updates the database. The processes at the
other two levels periodically take a block of values stored
at the previous level of precision, compress them and store
them at the next lower level.

We have implemented a performance model that is
suited for distributed implementation shown in Figure 3.
Sensors periodically report snapshots of different network
elements recorded at certain time instants. These
snapshots include all the performance parameters being
monitored for each network element. Since all the
performance parameters for each time instant are being
reported together it would be more efficient if we stored
them together rather than storing them in different objects.
Another point in favor of this kind of storage is that in
cases where the performance of a particular network
element is degrading, we might want to see all the
parameters for that network element recorded at some time
instant. In the case of such queries it would be inefficient
to search for these values across several objects.

Figure 3. Integrated performance data model

IMPROVEMENTS IN GUI DESIGN

Efficient Browser for Mesh Connected Graph
Networks

In our previous work [l] we designed and
implemented efficient browsers and visualizations of the
OODB representing the network, by exploiting the tree
structure of the network. In the present extension to
hybrid networks which include ATM terrestrial networks,
we have to deal with fully mesh connected graph
topologies, not just tree topologies. Therefore, there are
no unique or obvious hierarchies to drive the browser, like
the Tree Map and Tree Browser of [l]. Instead we
designed the Mesh Network Browser which explores the
various partial orders the operator can create by using
subnetworks of the network, This browser can then be
used to invoke dynamic queries in the underlying OODB
representation of the network, for selectively viewing
desired parts of the hybrid network. The
display/visualization of the network obtained using the
Mesh Network Browser is shown in Figure 4.

We have adopted the Sgraph structure to display large
hybrid network configuration stored in an OODB. The
configuration data in the database consists of network
nodes, links, and connectivity information between nodes.
However it does not include x,y coordinates to efficiently
display a three dimensional network onto the two
dimensional computer screen. The Mesh Network Browse
constructs an Sgraph structure corresponding to the
network objects displayed. Each network object has an
assigned icon, of scaleable size. Then by the layout
algorithm employed, it traverses the Sgraph structure to
assign x,y coordinates for each network node (object)
without allowing nodes to overlap and eliminating
unnecessary edgecrossings at the same time. Based on
the Sgraph data structure, several layout algorithms are
currently available; we have used the Springer Embedder
algorithm which emphasizes display of symmetry and
isomorphic components.

Nevertheless, a major problem we have addressed is
generated from the fact that the area of a computer screen
cannot visibly represent large networks including
thousands of nodes. We designed our Mesh Network
Browser so as to allow the operator to select the
subnetworks and components of each subnetwork and
even network nodes that he/she wants to query for
network information. Our method provides an important
innovation and it is a significant departure from current
commercial practice, where this browsing is typically done
using zooming of subnetworks or nodes. We allow for

385

network component selection and display across a
subnetwork or node hierarchy. Our browser allows
selection capabilities based on a network element menu,
based on subnetworks and also based on filtering of
network elements using specific assignable attributes.
This is implemented by using the option menu to allow the
user to select specific attributes of nodes and by using a
Range widget to specify the range of the attribute. For
instance, Figure 4, only displays workstations within a
certain range of the load attribute. Our browser and
display also categorizes network components into several
groups. It allows the user to quickly navigate a network
group for status and concentrate only on group
components which are of interest. Components in the
layout are represented as an icon, a colored dot, or are
completely hidden by user definition or filtering.

Figure 4. Illustrating the Mesh Network Browser display

Our browser is directly connected to the OODB
representing the network and retrieves data (or objects)
using dynamic queries. In this way, it represents an
efficient way to capture and display network component
status dynamically, for continuous network monitoring
and management.

Distributed Concurrent Display of Network Data
Network management systems must be able to operate

in a distributed environment. This requirement creates
several problems related to the consistency, concurrency
and performance of the GUI and its link to the OODB
under distributed conditions. We describe here a summary
of our results and their implementations for network
management. For the full details we refer to [3].

One of the main concerns of application developers is
that users are very sensitive to the response time of the
system. Lengthy response times are usually detrimental to
productivity, increasing user error rates and decreasing
satisfaction. High variability in the response time of the
user interface should be prevented. So, building a GUI that

displays large amounts of information stored and managed
by a DBMS can be very challenging. Many potential
performance problems exist since the response to a user
action may require extensive data processing, a number of
network of message exchanges as well as several data
retrievals from secondary storage.

A non-trivial problem for the graphical user interfaces
of database applications is presenting a consistent and up-
to-date view of the database. This problem is more evident
and more difficult in a multi-user environment (as network
management) where different users may view and possibly
update the same database objects. Obviously, some sort of
display synchronization mechanism is required which
preserves the consistency of the user interfaces, under the
performance requirements mentioned above. Generally,
the straightforward approach of periodically refreshing the
user interfaces is not considered acceptable since it may
cause excessive overhead.

We propose that, for each interactive application, a
proper external display schema should be defined over the
existing database schema. Such display schema are
composed of display classes (Des) that encapsulate the
desired user interface functionality and form inheritance
and/or containment hierarchies that better meet GUI
requirements (e.g. for screen layout computation, for
screen navigation etc.) both in terms of implementation
effort and runtime efficiency.

The definition of a DC depends on the database
cIass(es) it represents as well as the user interface context.
It should include only attributes and methods that are
necessary for the display and manipulation of the
corresponding user interface elements. These attributes
may be a subset of the database class(es) attributes as well
as additional GUI specific attributes (e.g. screen
coordinates).

The graphical elements that compose the image
displayed by a CUI must be instances of display classes,
i.e. display objects (DOS). Display objects are created by
copying and/or computing the necessary information from
database objects. During their lifetime, they are explicitly
associated and kept consistent with those database objects.
This association turns the collection of display objects into
an active (updatable) view of the database as opposed to a
passive snapshot. We also propose the introduction of
display cache as an additional level in the memory
hierarchy on top of the client's database cache.

386

For the relaxed correctness requirements of display
transactions we propose a non-restrictive form of shared
locks, called display locks. These are non-restrictive in the
sense that display locked database objects can be updated,
provided that at any time all lock holders get notified
about the updates committed to the database.

The display locking protocol is quite simple and can
be easily integrated with a strict avoidance-based protocol.
A client requests display locks for all database objects that
are associated with display objects. The database lock
manager on the server is expected to grant those locks,
since display locks are compatible with all types of locks.
When a transaction wants to update some data, it does so
after obtaining an exclusive lock for that data. When the
update is committed to the database, the lock manager
releases the exclusive locks and notifies all clients that
hold display locks on the updated data. The notified
clients refresh the associated display objects (and
therefore the display) by reading the new data from the
database. We call this protocol post-commit notiJjr
protocol.

We have demonstrated these ideas in a multiple user,
limited functionality version of a network configuration
management application. This application employs two
different visualization tcchniqucs, the Tree-Map and the
PDQ Tree-browser, to display complex hardware
hierarchies [11. Objectstore, a commercial object-oriented
database system, was used to store the network database.

The implementation included three major tasks:
1. Extend the database server with display locking

capabilities,
2. Enhance the client applications structural design to

incorporate the display locking mechanism, and
3. Design the user interface in terms of

defining appropriate display classes for the tree-map
and PDQ tree-browserq

The overall system architecture is presented in Figure
5. For more details on the implementation for network
management we refer to [31.

. .

Figure 5. Implementation Architecture

CONCLUSIONS

We presented the design and implementation of an
integrated network management system which
incorporates several advanced technologies predicated by
current and future hybrid network management
requirements. The next step in our efforts is the
integration of Fault Management to the INMS/HN. The
prototype implementation has given ample evidence of the
advantages offered by our techniques and implementation
methods.

REFERENCES

Baras, John S . , et al., January 1995, “Next
Generation Network Management Technology”, in
AIP Conference Proceedings 325, Conference on
NASA Centers for Commercial Development of
Space, Albuquerque, NM, pp. 75-82.

Haritsa, J.R., et al, December 1993, “MANDATE:
Managing Networks Using Database Technology”,
EEE Journal on Selected Areas in Communications,
pp. 1360-1372.

Stathatos, K., S. Kelley, N. Roussopoulos and J.S.
Baras, “Consistency and Performance of Concurrent
Interactive Database Applications”, Institute for
Systems Research Technical Report TR 95-79.

387

