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Abstract

Selfish behavior at the Medium Access (MAC) Layer can have devastating side effects on the performance of

wireless networks, with effects similar to those of Denial of Service (DoS) attacks. In this paper we consider the

problem of detection and prevention of node misbehavior at the MAC layer, focusing on the back-off manipulation by

selfish nodes. We first propose an algorithm that ensures honest behavior of non-colluding participants. Furthermore,

we analyze the problem of colluding selfish nodes, casting the problem within a minimax robust detection framework

and providing an optimal detection rule for the worst-case attack scenarios. Finally, we evaluate the performance of

single and colluding attackers in terms of detection delay. Although our approach is general and can be used with any

probabilistic distributed MAC protocol, we focus our analysis on the IEEE 802.11 MAC.
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1 Introduction

With the rise and flexibility of ubiquitous computing, new and unforeseeable ways of user interactions are expected,

such as establishing collaborative networks with minimum or almost no central control. One such example can be the

use of ad hoc networks for providing fast and efficient network deployment in a wide variety of scenarios with no fixed

networking infrastructure and where each node is its own authority. However, in order for this interactions to reach

their full potential, these networks should support minimum security and performance guarantees defined by the end

users. For example, some current P2P file-sharing networks suffer from the abundance of corrupted files introduced by

attackers and from selfish participants who only download files but never share them with other users. These factors

limit the utility of P2P file-sharing networks as an efficient way to recover files.

The communication protocols in different layers of an ad hoc network can also be subject to manipulation by

selfish users. For example, the MAC protocol, the routing protocol and the transport protocol were designed under the

assumption that all participating nodes obey the given specifications. However, when these protocols are implemented

in an environment where each node has its own authority, nodes can deviate from the protocol specification in order to

obtain a given goal, at the expense of honest participants. A selfish user for example, can disobey the rules to access

the wireless channel in order to obtain a higher throughput than the other nodes. A selfish user can also change the

congestion avoidance parameters of TCP in order to obtain unfair advantage over the rest of the nodes in the network

[2]. In devices with limited power resources, certain nodes might refuse to forward packets on behalf of other sources

in order to save battery power [3]. In all these cases, the misbehaving nodes will degrade the performance of the

network from the point of view of the honest participants.

To fully address these problems, a layered reputation mechanism should be deployed in order to either reward

cooperation (e.g. payments) or penalize misbehaving nodes (e.g. revocation). In this paper we focus on the detection

of individual and colluding selfish users at the MAC layer in ad hoc networks.

1.1 Summary of Our Approach

In our approach we point out that a key element that facilitates misbehavior in contention based MAC layer protocols

is the fact that they areprobabilistic distributed protocols. The random nature of these protocols and the nature of
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the wireless medium makes the detection of misbehaving nodes very difficult, since it is not easy for the detector

to distinguish between a peer misbehavior, an occasional protocol malfunction due to a wireless link impairment or

a greedy back-off strategy. In order to facilitate the detection of a single attacker, we propose the use of Blum’s

coin flipping protocol [9] that facilitates the exchange of a truly random parameter that can be used as a seed for a

pseudorandom number generator. This allows anyone who monitors the execution of the protocol to determine the

exact source of randomness used by the participating nodes and detect any deviations. We believe this idea facilitates

the monitoring procedure of misbehavior in any distributed probabilistic MAC layer protocol such as ALOHA [1],

SEEDEX [26], MACA [20], MACAW [8] and IEEE 802.11 [19].

Since we assume an ad hoc network where each node is its own authority, the usual assumption of a trusted receiver

(e.g. a base station) might no longer hold, and therefore we need to worry about colluding nodes. However, the Blum’s

scheme cannot be used in the detection of colluding nodes due to the large overhead required for the randomness

agreement among more than two nodes. Instead, we base our approach on sequential detection procedures, placing

the emphasis on the class of attacks that incur larger gain for the attackers. This approach should also cope with the

uncertain environment of a wireless network. Hence, we adopt the minimax robust detection approach where the goal

is to optimize performance for the worst-case instance of uncertainty. More specifically, the goal is to identify the least

favorable operating point of a system in the presence of uncertainty and subsequently find the strategy the optimizes

system performance when operating in that point. In our case, the least favorable operating point corresponds to the

worst-case instance of an attack and the optimal strategy amounts to the optimal detection rule.

Throughout this work we assume existence of intelligent adaptive attackers that are aware of the environment

and its changes over a given period of time. We assume that, in order to minimize the probability of detection,

the attackers choose legitimate over selfish behavior when the level of congestion in the network is low. That is,

if neighboring honest nodes have nothing to transmit, then there is no incentive for the selfish node to misbehave,

since it will always get access to the channel. However, the attackers will choose adaptive selfish strategies in a

congested network in order to obtain better access to the channel. Due to these reasons, we assume a benchmark

scenario where all the participants are backlogged, i.e., have packets to send at any given time in both theoretical

and experimental evaluations. We assume that the attackers will employ the worst-case misbehavior strategy in this
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setting, and consequently the detection system can estimate the maximum detection delay. It is important to mention

that this setting represents the worst-case scenario with regard to the number of false alarms per unit of time due to the

fact that the detection system is forced to make maximum number of decisions per time unit.

Our work contributes to the current literature by: (i) proposing a solution for preventing misbehavior of a single

intelligent node, (ii) formulating the problem of optimal detection against misbehavior of intelligent colluding attackers

(iii) quantifying performance losses incurred by an attack and defining an uncertainty class such that the focus is

only on attacks that incur “large enough” performance losses, (iv) obtaining analytical expressions for the worst-

case attack and the optimal detection rule (and its performance), (v) establishing an upper bound on the number of

required samples for detection of any of the attacks of interest. Therefore our work constitutes a first step towards

understanding the complex issue of collaboration among colluding nodes in wireless networks, obtaining bounds on

achievable performance and characterizing the impact of different system parameters on it.

The paper is organized as follows. Section 2 summarizes related work dealing with MAC layer misbehavior.

Section 3 deals with misbehavior in IEEE 802.11 DCF protocol. In Section 4 we present an algorithm that prevents

the manipulation of back-off values for a single selfish node. In Section 5 we analyze the detection problem in the

presence of colluding nodes. Following that, we present the minimax robust detection model and basic assumptions

and demonstrate our approach comparing the results with the scenario that includes a single attacker. Finally, Section

7 concludes our study.

2 Background Work

2.1 MAC Layer Misbehavior

The MAC layer in a communication network manages a multiaccess link (e.g., a wireless link) so that frames can

be sent by each node without constant interference from other nodes. MAC layer misbehavior is possible in network

access cards that run the MAC protocol in software rather than hardware or firmware, allowing a selfish user or attacker

to easily change MAC layer parameters. Even network interface cards implementing most MAC layer functions in

hardware and firmware usually provide an expanded set of functionalities which can be exploited to circumvent the
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limitations imposed by the firmware [5]. In the worst case scenario, an untrusted vendor might manufacture NIC cards

violating the MAC protocol to create an improved performance of its products.

In this work we assume that a selfish node in the MAC layer attempts to maximize its own throughput and therefore

keeps the channel busy. As a side effect of this behavior, regular nodes cannot use the channel for transmission, which

leads to a denial of service (DoS) attack [17].

Selfish misbehavior at the MAC layer has been addressed mostly from a game theoretic perspective considering

that all nodes are selfish. The goal in a game theoretic setting is to design distributed protocols that guarantee the

existence, uniqueness and convergence to a Nash equilibrium with an acceptable throughput for each node. However,

if users try to maximize their throughput, every node will attempt to transmit continuously in such way that users deny

access to any other node until the network collapses. This collapse is in fact, a (very impractical) Nash equilibrium of

the game. In order to obtain a more efficient Nash equilibrium, each node needs to be assigned a cost for each time

it accesses the channel. For example [22, 16] consider the case of selfish users in Aloha that attempt to maximize

their throughput and minimize the cost for accessing the channel (e.g. energy consumption). Another game theoretic

scheme for CSMA/CA schemes is presented in [13]. Using a dynamic game model, the authors derive the strategy

that each node should follow in terms of controlling channel access probability by adjustment of contention window,

so that the network reaches its equilibrium. They also provide conditions under which the Nash equilibrium of the

network with several misbehaving nodes is Pareto optimal for each node as well. The underlying assumption is that

all nodes are within wireless range of each other so as to avoid the hidden terminal problem, therefore this scheme is

mostly intended for wireless LANs, as opposed to ad hoc networks.

Since game theoretic protocols assume all nodes are selfish (the worst case scenario), the throughput achieved in

these protocols is substantially less than in protocols where the honest majority cooperates. Under the assumption of

an honest majority, detection of misbehaving nodes becomes the primary goal in dealing with misbehavior.

2.1.1 Detecting MAC layer misbehavior

Due to the popularity of the IEEE 802.11, most of the work in detecting MAC layer misbehavior has focused in this

protocol. A selfish user in the IEEE 802.11 can implement a whole range of strategies to maximize its access to the
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medium. The most effective strategy that a selfish user can employ is to use different schemes for manipulating the

rules of the MAC layer. For example, the attacker can manipulate the size of the Network Allocation Vector (NAV)

and assign large idle time periods to its neighbors, it can decrease the size of Interframe Spaces (both SIFS and DIFS),

it can select small back-off values, it can deauthenticate neighboring nodes etc. A successful detection scheme should

take into account all possible cheating options in the MAC layer and detect both: users that employ only one scheme

and users that employ a combination of several schemes (e.g. first choosing small back-off values, then assigning large

NAV values to its neighbors etc).

However, the most challenging detection task is that of detecting back-off manipulation [25, 5]. Due to the ran-

domness introduced in the choice of the back-off, it is difficult to decide if a node has chosen small back-off values by

chance or if the small back-off values are part of a misbehavior strategy. The back-off detection scheme provided in

[25] works well for adversaries that are unaware of the detection scheme, however an intelligent adversary would try

to maximize his own gain (e.g. throughput) while minimizing the chances of being detected. [24] addresses this con-

cern by providing a theoretical foundation for the design of optimal detection schemes against intelligent adversaries.

These algorithms however have only focused on individual misbehaving nodes, and do not consider collusion.

Another approach for the detection of single misbehaving nodes was proposed in [21]. In this work, the authors

propose a modification to the IEEE 802.11 for facilitating the detection of misbehaving nodes. In their scheme,

the receiver (a trusted host -e.g. a base station-) assigns the back-off value to be used by the sender. The receiver

can therefore detect any misbehavior of the sender and penalize it by increasing the back-off values for the next

transmission. The protocol consists of Detection, Penalty and Diagnosis Schemes. The sender is considered to be

deviating from the protocol if the observed number of idle slots, the actual back-offBact, is smaller than a specified

fractionα of the assigned (expected) back-offBexp. For a detected node, a penalty for the next assigned back-off is

selected given a measure of the deviationD = max(αBexp−Bact,0). If the sender deviates repeatedly, i.e. if the sum

of misbehavior in a sliding window is bigger than some threshold, then the sender is labeled as misbehaving and the

receiver takes drastic measures, for example, by dropping all packets by the sender. However, as we have pointed out

in the introduction, the problem of applying this protocol in autonomous ad hoc networks is the fact that the receiver

might not be trusted.
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2.2 Additional Assumptions for Detection in a Distributed Setting

The scenario presented in this work differs from the one presented in [21] due to the fact that we attempt to solve

the problem in the environment with no central authority. Consequently, the penalization of misbehaving nodes by

the central authority cannot be performed in our setting. Therefore a comprehensive strategy against greedy behavior

requires at least three steps: local detection of misbehaving nodes, information propagation to other honest nodes in

the network and response.

Upon local detection of misbehavior, the other major issue is propagation of the obtained information throughout

the network. Although a misbehaving node can be detected by our system, the detection mechanism opens a new

opportunity for attacks since honest nodes can be falsely incriminated by an adversary, imposing the new problem of

obtaining secure information from a distributed reputation management system, while maintaining accurate identifi-

cation of the misbehaving identities and minimizing the probability of false incrimination.

Finally, the system needs to react to the information gathered from the reputation system by other nodes. The

response can be either a reward for cooperation (e.g. payments) or the penalization of misbehaving nodes (e.g. revoca-

tion). We note that response algorithms can be done more efficiently at different layers (as opposed to doing response

just at the MAC layer). For example, a possible response against selfish MAC users is employment of a rate-limiting

algorithm at the routing layer that limits the amount of traffic selfish nodes can receive or send. The idea of reacting

to MAC layer misbehavior at different layers (routing in this case) coincides with the current interest of cross-layer

design for wireless networks [27].

Overall, the issue of designing such a distributed reputation management system is a large and complex subject

by itself that has received much attention recently, [12, 11, 10, 29, 23, 28]. In this paper however, we focus on the

fundamental problem of local detection. This detection is accomplished by the involvement of the neighboring nodes

that monitor the behavior of both the sender and the receiver.

We also note that all the schemes presented in the previous sections as well as the ones we propose, require

the proper use of MAC layer authentication schemes, providing uniquely verifiable identities in order to prevent

impersonation and Sybil attacks [15].
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3 IEEE 802.11 DCF

The most frequently used MAC protocol for wireless networks is the IEEE 802.11 MAC protocol, which uses a

distributed contention resolution mechanism for sharing the wireless channel. Its design attempts to ensure a relatively

fair access to the medium for all participants of the protocol. In order to avoid collisions, the nodes follow a binary

exponential back-off scheme that favors the last winner amongst the contending nodes.

In the distributed coordinating function (DCF) of the IEEE 802.11 MAC protocol, coordination of channel access

for contending nodes is achieved with carrier sense multiple access with collision avoidance (CSMA/CA). A node with

a packet to transmit selects a random back-off valueb uniformly from the set{0,1, . . . ,W−1}, whereW is the (fixed)

size of the contention window. The back-off counter decreases by one at each time slot that is sensed to be idle and

the node transmits afterb idle slots. In case the channel is perceived to be busy in one slot, the back-off counter stops

momentarily. After the back-off counter is decreased to zero, the transmitter can reserve the channel for the duration

of data transfer. First, it sends a request-to-send (RTS) packet to the receiver, which responds with a clear-to-send

(CTS) packet. Thus, the channel is reserved for the transmission. Both RTS and CTS messages contain the intended

duration of data transmission in the duration field. Other hosts overhearing either the RTS or the CTS are required to

adjust their network allocation vector (NAV) that indicates the duration for which they will defer transmission. This

duration includes the SIFS intervals, data packets and acknowledgment frame following the transmitted data frame.

An unsuccessful transmission instance due to collision or interference is denoted by lack of CTS or ACK for the

data sent and causes the value of contention window to double. If the transmission is successful, the host resets its

contention window to the minimum valueW.

Fig. 1 illustrates the scenario of contending nodes using the protocol.

Typical parameter values for the MAC protocol depend on the physical layer that IEEE 802.11 uses. For example,

Table 1 shows the parameters used when the physical layer is using direct sequence spread spectrum (DSSS).

IEEE 802.11 DCF favors the node that selects the smallest back-off value among a set of contending nodes.

Therefore, a malicious or selfish node may choose not to comply to protocol rules by selecting small back-off intervals,

thereby gaining significant advantage in channel sharing over regularly behaving, honest nodes. Moreover, due to the

exponential increase of the contention window after each unsuccessful transmission, non-malicious nodes are forced
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to select their future back-offs from larger intervals after every access failure. Therefore the chance of their accessing

the channel becomes even smaller. Apart from intentional selection of small back-off values, a node can deviate from

the MAC protocol in other ways as well. He can choose a smaller size of contention window or he may wait for a

shorter interval than DIFS, or reserve the channel for a larger interval than the maximum allowed network allocation

vector (NAV) duration. In this work, we will adhere to protocol deviations that occur due to manipulation of the

back-off value, since the other types of misbehavior have been properly addressed in [25, 5].

The nodes that are instructed by the protocol to defer transmission are able to overhear transmissions from nodes

whose transmission range they reside in. Therefore, silenced nodes can observe the behavior of transmitting nodes.

Due to the fact that the protocol participants are energy-constrained devices, we cannot assume participation of all

nodes in the process of detection. Instead, we utilize the fact that each node that needs to access the channel and is

forced to defer its transmission due to an ongoing communication will be able to overhear the transmissions of either

the transmitter or the receiver (or both). Consequently, each node that attempts to access the channel and has to defer

its transmission can serve as a monitoring node and does not need to use any additional power apart from the one used

for attempting to access the channel. The question that arises is whether there exists a way to take advantage of this

observation capability and use it to identify potential misbehavior instances. If observations indicate a misbehavior

event, the observer nodes should notify the rest of the network about this situation or could launch a response action

in order to isolate the misbehaving nodes. Detecting misbehavior is not straightforward even in the simplest case,

namely that of unobstructed observations. The difficulty stems primarily from the non-deterministic nature of the

access protocol that does not lead to a straightforward way of distinguishing between a legitimate sender, that happens

to select small back-offs, and a misbehaving node that maliciously selects small back-offs. The open wireless medium

and the different perceived channel conditions at different locations add to the difficulty of the problem. Additional

challenges arise from the presence of interference due to ongoing concurrent transmissions.

4 Preventing Misbehavior of a Single Node

As it has been mentioned, [21] requires the receiver to be trusted. This assumption is well suited for infrastructure-

based wireless networks, where the base station can be trusted. However, we consider ad hoc networks where the
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receiver can misbehave by selectively assigning the back-off values to different senders. Depending on the concrete

situation, a receiver may benefit by assigning small back-off values to a particular sender (when data from that partic-

ular sender need to be received) or by assigning large back-off values to different neighbors (when it wants to degrade

overall performance of neighbors and improve its own throughput). Furthermore, existence of multiple sender-receiver

pairs in the interference range of each other creates additional security issues. More specifically, a malicious receiver

D in Fig. 2 can overhear the back-off value assigned to nodeA by nodeC and unilaterally select a back-off for nodeB

in order to create a collision withC.

In this section we propose an extension to the IEEE 802.11 CSMA/CA protocol that ensures a uniformly distributed

random back-off, when at least one of the parties is honest. The basic idea follows the protocol for flipping coins over

the telephone by Blum [9]. The adopted approach is that the sender and the receiver agree through a public discussion

on a random value. The main property of the protocol is that an honest party will always be sure that the agreed value

is truly random. For an honest sender this means that he can expect a fair treatment in order to access the channel. On

the other hand, an honest receiver can monitor the behavior of the sender (as in [21]) and report a misbehaving node

to the reputation management system.

It has been mentioned in the introduction that Blum’s protocol can be used to select the seed for a pseudorandom

number generator. However, the four way handshake in the IEEE 802.11, that is used every time a new reservation

of the channel takes place, is particularly well suited for implementing Blum’s protocol as a way of selecting the next

back-off value for a node. Selecting the next back-off value in each reservation round, as opposed to selecting a seed

for a pseudorandom number generator, has the advantage that there need not be any synchronization between nodes

keeping states of random number generators for the other participating nodes (each node would need to keep the seed

and the current state of the random generator for other nodes). Furthermore, selecting the next back-off value in each

channel reservation, allows any node in the neighborhood to monitor the behavior of the parties accessing the channel,

a feature that will be of importance in the next section.

The protocol can be described as follows (the extra messages are appended -denoted by a double bar||- to the

normal message exchange of 802.11):
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S R

n←{0,1}knonce
RTS||n

−−−−−−−−−−−−−−−→ r ←{0, . . . ,W−1}
CTS||σ

←−−−−−−−−−−−−−−− σ = Commit(r||n)

r ′←{0, . . . ,W−1}
DATA||r ′

−−−−−−−−−−−−−−−→ σ′ = Open

ACK||σ′
←−−−−−−−−−−−−−−−

Commit(r||n) ?= σ

bi = r i ⊕ r ′i bi = r i ⊕ r ′i

for i ∈ {1, . . . ,m} for i ∈ {1, . . . ,m}
We now explain the protocol step by step.

1. In the first step the senderSselects a nonce: a numbernselected uniformly at random from the set{0,1, . . . ,2knonce},

(denoted asn← {0,1}knonce). knonce is a security parameter indicating the level of difficulty of guessingn. For

exampleknoncecan be 64. This step is done in order to prevent an off-line attack on the commitment scheme.

2. In the second step the receiverRselects a random back-offr from the set{0,1, . . . ,W−1} and commits to it. In

binary notationr is a random bit string of lengthm (r = r1r2 · · · rm), wherem= log2W (note that the contention

window sizeW is always a power of two). The commitment schemeCommit is such that the following two

properties are satisfied (at least before the time-out for channel reservation:300µs−350µs):

Binding: After sendingCommit(r||n), the receiver cannot open the commitment to a different valuer̃ 6= r

(except with negligible probability). This protects against a dishonestR that might try to change the

committed value depending on ther ′ received byS.

Hiding: GivenCommit(r||n), Scannot extract any information aboutr that will enable it to distinguishr from

any other bit string of lengthm (except with negligible probability). This protects against a dishonestS

that will try to tailor r ′ based on its guess ofr.

3. After receiving the commitmentσ, Sselects a random valuer ′ = r ′1r ′2 · · · r ′m from {0,1, . . . ,W−1}.
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4. Finally R opens its commitment toS. Opening a commitment is an operation that reveals the committed value

r and some additional information toS. This enables the other party to verify that the revealed and committed

values are the same. If the value opened by theR is correct, both sender and receiver compute the back-off

b = b1b2 · · ·bm as the XOR of the bits:bi = r i ⊕ r ′i . Otherwise, the sender can report misbehavior of the node to

the reputation management system.

Several commitment schemes are known under very different computational assumptions. Very efficient commitment

schemes in terms of computation and communication, can be implemented under the random oracle model [6]. In

this setting it is a standard practice to assume that hash functionsH, such as SHA-1, are random oracles. Under

this assumption it is easy to confirm that the following commitment scheme satisfies the binding (by assumingH is

collision resistant) and hiding properties (by assumingH is a random oracle):

Commit(r||n)

i ←{0,1}k

Output = H(i||r||n)

Open

Output = (i, r)

wherek is a security parameter (e.g.k = 64). To open the commitment,R has to send bothr andi so thatScan check

validity of the commitment.

We now consider 802.11 with Direct Sequence Spread Spectrum (DSSS) physical layer. In DSSS mode the

minimum contention window size is 32 time slots, thereforem= log2W = 5, that is,r ′ andr are only 5 bits long which

is an insignificant quantity to be appended to aDATA frame. The acknowledgement frame is appendedk+ m= 69

bits.

If we use SHA-1 to implement the hash function of the commitment then we obtain a message digest of 160 bits.

TheCTSframe is doubled in size if the full message digest is used. If doubling the size of aCTSframe is a concern,

the output of SHA-1 can always be truncated (for example to 80 bits). The security reduction of the message digest

has to be evaluated under the birthday paradox: if the message digest hash bits, then it would take only about2h/2
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messages (out of2k+m+knonce), chosen at random, before one would find two (inputs) with the same value (message

digest). Considering the normal timeout between frames to be300µs, we can safely assume240 computations cannot

be done in this time. Finally the nonce parameter should discourage off-line attacks, with for exampleknonce= 64.

In this section we have thus introduced an efficient mechanism to guarantee honest back-off assignments in dis-

tributed environments. The computational and communication complexities of our proposed algorithm are kept to

the minimum by the use of efficient primitives such as hash functions, and by adding only a small payoff to each

message exchange. Once the sender and the receiver have agreed on a given back-off value, each of them can report

misbehavior by using the same detection algorithm as the one proposed in [21].

5 Optimal Detection of Misbehaving Colluding Nodes

The problem treatment above assumed the existence of a single attacker and did not include the scenario of colluding

nodes. To illustrate the difference between detection of a single attacker and colluding attackers we analyze the

communication scenario in Fig. 3. We assume that nodeC is in the wireless range ofM andD and that it is capable

of monitoring access times of its neighboring nodes. WhenM reserves the channel following the protocol described

in the previous section, any neighboring node can computeM’s exact back-off values by listening to the exchanged

valuesn,σ, r ′,σ′ (betweenM and and the receiver) and then computing the back-off asbi = r i⊕ r ′i . However, nodesD

andM may collude and deny network access to nodesB andC. This effect can be easily achieved when back-off values

of both sender and receiver are selected a priori (i.e. when both nodes select the back-off values using a pre-specified

p.d.f.). Obviously, the previously outlined monitoring procedure does not work in this case due to the fact that both the

sender and the receiver follow the specific sequence of back-off values that have been assigned a priori. For example,

they can collude by selecting back-off values equal to zero as follows:
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M D

n←{0,1}knonce
RTS||n

−−−−−−−−−−−−−−−→
CTS||σ

←−−−−−−−−−−−−−−− σ = Commit(00000||n)
DATA||00000

−−−−−−−−−−−−−−−→ σ′ = Open(σ)
ACK||σ′

←−−−−−−−−−−−−−−−

b = 00000 b = 00000

In this scenario the sender chooses the back-off period equal to zero and sends immediately upon the expiration

of its DIFS period. In Figure 4 we show how the sequence of small backoffs0,1,2, . . . from nodeM causes the timer

for theCTSframe of nodeA to time out. NodeA will therefore back-off repeatedly, making it less likely to access the

network.

Obviously, nodeC cannot detect misbehavior by observing whether nodesD andM deviate from agreed back-off

values and other detection procedures need to be applied.

5.1 Detection and Attack Assumptions

We now consider detection strategies in the presence of an intelligent misbehaving node: a node that is aware of the

existence of monitoring neighboring nodes and adapts its access policy in order to avoid detection. In general, we

adopt the following assumptions about the colluding nodes:

1. They areknowledgeable, i.e. they know everything a monitoring node knows about the detection scheme.

2. They areintelligent, i.e. they can make inferences about the situation in the same way as the monitoring nodes

can.

Therefore we assume that the goal of the misbehaving hosts is to choose an optimal attack strategy that minimizes the

probability of detectionPD (or equivalently a strategy that maximizes the probability of avoiding detectionPM), while

maximizing their gain (access to the channel).

However, it is difficult to come up with a universal access policy for misbehaving nodes due to the random nature

of the wireless channel and the nature of the access protocol itself. A naive detection system may assume that the
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misbehaving nodes always select small back-off values. This strategy can be modeled with a scheme that selects

backoffs uniformly from the set{0,1, . . . ,W/4}. Given this model, the detector raises an alarm when any of the

monitored nodes back-off in the interval[0,W/4] for k consecutive times (wherek is chosen given an acceptable false

alarm ratePFA). However, an intelligent misbehaving node can easily defeat this detection mechanism by selecting

k−1 backoffs equal to zero and selecting a value aboveW/4 as thekth back-off.

Therefore, our desired detection procedure has to fulfill two basic conditions:

• decisions about the occurence of misbehavior should berobust, i.e. they need to perform well for a wide range

of attack strategies

• decisions should be performed on-line as the observations are revealed to facilitate the quickest attack detection

given the desired performance in terms of the false alarm ratePFA and the probability of missing the detection

of misbehaviorPM.

The first condition gives rise to the application of a minimax formulation that identifies the rule that optimizes

worst-case performance over the class of allowed uncertainty conditions. A minimax formulation translates to finding

the detection rule with the minimum required number of observations to reach a decision for the worst instance of

misbehavior. Clearly, such scheme guarantees a minimum level of performance which is the best minimum level

possible over all classes of attacks.

The second condition implies that sequential detection procedures need to be used. A sequential decision rule

consists of a stopping time which indicates when to stop observing and a final decision rule that indicates which

hypothesis (i.e, occurrence or not of misbehavior) should be selected. A sequential decision rule is efficient if it can

provide reliable decision as fast as possible. It has been shown by Wald [30] that the decision rule that minimizes the

expected number of required observations to reach a decision over all sequential and non-sequential decision rules is

the sequential probability ratio test (SPRT).

5.1.1 The SPRT

The SPRT collects observations until significant evidence in favor of one of the two hypotheses is accumulated. After

each observation at thek-th stage, we choose between the following options: accept one or the other hypothesis
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and stop collecting observations, or defer decision for the moment and obtain observationk+ 1. The SPRT has two

thresholdsa andb that aid the decision. The figure of merit at each step is the logarithm of the the likelihood ratio

of the accumulated sample vector until that stage. For the case of testing between hypothesesH0 (normal behavior)

andH1 (misbehaving node) that involve probability density functionsf0 and f1, the logarithm of the likelihood ratio

at stagek with accumulated samplesx1, . . . ,xk, wherexi represents the backoff value collected at thek-th stage, is

Sk = ln
f1(x1, . . . ,xk)
f0(x1, . . . ,xk)

, (1)

where fi(x1, . . . ,xk) is the joint probability density function of data(x1, . . . ,xk) based on hypothesisH i , i = 0,1. If the

observation samples are statistically independent

Sk =
k

∑
j=1

Λ j =
k

∑
j=1

ln
f1(x j)
f0(x j)

, (2)

with fi(·) the probability density function of hypothesisH i , i = 0,1. The decision is taken based on the criteria:

Sk ≥ a ⇒ acceptH1,

Sk < b ⇒ acceptH0, (3)

b≤ Sk < a ⇒ take another observation.

Thresholdsa andb depend on the specified values ofPFA andPM. From Wald’s identity [30]

E[SN] = E[N]×E[Λ] (4)

whereE[Λ] is the expected value of the logarithm of the likelihood ratio. By using a similar derivation as the one in

[18, pp.339-340], we can derive the following inequalities

1−PM ≥ eaPFA andPM ≤ eb(1−PFA), (5)

wherea and b are the thresholds of SPRT. When the average number of required observations is very large, the

incrementsΛ j in the logarithm of the likelihood ratio are also small. Therefore, when the test terminates with selection

of hypothesisH1, SN will be slightly larger thana, while when it terminates with selection ofH0, SN will be very close

to b. Therefore, the above inequalities hold to a good approximation as equalities. Under this assumption, the decision
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levelsa andb that are required for attaining performance(PFA,PM) are given by,

a = ln
1−PM

PFA
andb = ln

PM

1−PFA
. (6)

Following the derivations of [30, 18],

E[SN] = aPD +b(1−PD) (7)

wherePD = 1−PM is the probability of detection of SPRT.

5.2 Minimax Robust Detection Approach

Previously, we stressed the sequential nature of our approach and the implicit need to consider most significant attacks

that result in higher chances of channel access for the attacker. An attack in that class would have most devastating

effects for the network, in the sense that it would deny channel access to the other nodes and would lead to unfair

sharing of the channel. Besides, if we assume that the detection of an attack is followed by communication of the

attack event further in the network so as to launch a network response, it would be rather inefficient for the algorithm

to consider less significant (and potentially more frequent) attacks and initiate responses for them. Instead, it is

meaningful for the detection system to focus on encountering the most significant attacks and at the same time not to

consume resources of any kind (processor power, energy, time or bandwidth) for dealing with attacks whose effect on

performance is rather marginal.

The approach should also cope with the encountered uncertain operational environment of a wireless network,

namely the random nature of protocols and the unpredictable misbehavior or attack instances. Hence, it is desirable

to rely on robust detection rules that would perform well regardless of uncertain conditions. In this work, we adopt

the minimax robust detection approach where the goal is to optimize the performance for the worst-case instance of

uncertainty. More specifically, the goal is to identify the least favorable operating point of a system in the presence of

uncertainty and subsequently find the strategy that optimizes system performance when operating at that point. In our

case, the least favorable operating point corresponds to the worst-case instance of an attack and the optimal strategy

amounts to the optimal detection rule. System performance is measured in terms of number of missed attacks, the

number of false alarms and number of required observation samples to derive a decision.
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A basic notion in minimax approaches is that of a saddle point. A strategy (detection rule)d∗ and an operating

point (attack)f ∗ in the uncertainty class form a saddle point if:

1. For the attackf ∗, any detection ruled other thand∗ has worse performance. Namelyd∗ is the optimal detection

rule for attackf ∗ in terms of number of minimum number of required observations.

2. For the detection ruled∗, any attackf other thanf ∗ gives better performance. Namely, detection ruled∗ has its

worst performance for attackf ∗.

We now describe formally our approach. Let hypothesisH0 denote legitimate operation and thus the corresponding

pdf f0 is the uniform one. Let also HypothesisH1 correspond to misbehavior with unknown pdff (·).

Given the maximum allowed false alarm rate (PFA) and missed detection rate (PM), the objective of a sequential

detection rule is to minimize the number of the required observation samplesN so as to derive a decision regarding

the existence or not of misbehavior. The performance is therefore quantified by the average number of samplesE[N]

needed until a decision is reached, where the average is taken with respect to the distribution of the observations. This

number is a function of the adopted decision ruled and the attack p.d.ff , that is

E[N] = φ(d, f ). (8)

Let D denote the class of all (sequential and non-sequential) statistical hypothesis testsd for which the false alarm and

missed detection probabilities do not exceed some specified levelsPFA andPM respectively. Generally, a hypothesis

test consists of a decision functiong(·) that acts on a set ofk observations (taking values inΩ) and takes values in

the set of hypotheses, i.e,g : Ωk → {H0,H1}. Let G be the space of all decision functions. A sequential test is a pair

(gT(·),T) whereT is the stopping time andgT(·) is the decision function that acts on observation samples collected

up to timeT. Thus,D = G
S

(G × [0,∞]). In the context of the minimax robust detection framework, the problem is

to optimize performance in the presence of worst-case attack, that is to findd and f such that

E[N]∗ = min
d∈D

max
f∈Fη

φ(d, f ) , (9)

assuming that finite number of samples are needed (otherwise the “min-max” notation should change to “inf-sup”).

We proceed to a formal definition of a saddle point.
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Definition 1 A pair (d∗, f ∗) is called a saddle point of the functionφ if

φ(d∗, f )≤ φ(d∗, f ∗)≤ φ(d, f ∗) ∀d ∈D, ∀ f ∈ Fη. (10)

A saddle point(d∗, f ∗) of φ consists of a detection testd∗ and an attack distributionf ∗. In order to find the solution

of problem (9), we find the saddle point ofφ.

However, as we now show, finding the detection strategy satisfying the saddle point is easy (if we havef ∗). First,

recall that the optimal detection test in the sense of minimizing expected number of samples needed for detection

is the SPRT. This means that the SPRT is the testd∗ ∈ D, such that for a fixed (but unknown) attackf we have

φ(d∗, f ) ≤ φ(d, f ) for all other testsd ∈ D. The inequality above also holds forf = f ∗, and hence the second

inequality in (10) has been established. Therefore in the remainder of this paper we focus on how to obtain the worst

attack distributionf ∗ satisfying the first inequality of equation (10).

5.2.1 Definition of the Uncertainty Class

Implicit in the minimax approach is the assumption that the attacker has full knowledge of the employed detection rule.

Thus, it can create a misbehavior strategy that maximizes the number of required samples for misbehavior detection

delaying the detection as much as possible. Therefore, our approach refers to the case of an intelligent attacker that

can adapt its misbehavior policy so as to avoid detection. One issue that needs to be clarified is the structure of this

attack strategy. Subsequently, by deriving the detection rule and the performance for that case, we can obtain an upper

bound on performance over all possible attacks.

In order to quantify the performance of the detection scheme and the attacker, we introduce the parameterη, which

defines the class of attacks of interest and specifies the incurred relative gain of the attacker in terms of the probability

of channel access. In that sense,η can be interpreted as a sensitivity parameter of the detection scheme with respect

to attacks, which is determined according to the IDS requirements.

According to the IEEE 802.11 MAC standard, the back-off for each legitimate node is selected from a set of

values in a contention window interval based on a uniform distribution. The length of contention window is2iW for

the ith retransmission attempt, whereW is the minimum contention window. In general, some back-off values will

be selected uniformly from[0,W] and others will be selected uniformly from intervals[0,2iW], for i = 1, . . . , Imax
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whereImax is the maximum number of re-transmission attempts. Without loss of generality, we can scale down a

back-off value that is selected uniformly in[0,2iW] by a factor of2i , so that all back-offs can be considered to be

uniformly selected from[0,W]. This scaling property emerges from the linear cumulative distribution function of the

uniform distribution. An attack strategy is mapped to a probability density function based on which the attacker selects

the back-off value. Although the possible back-off values are discrete, without loss of generality we use continuous

distributions to represent attacks in order to facilitate mathematical treatment and to demonstrate better the problem

intuition. We consider continuously back-logged nodes that always have packets to send. Thus, the gain of the attacker

is signified by the percentage of time in which it obtains access to the medium. This in turn depends directly on the

relative values of back-offs used by the attacker and by the legitimate nodes. In particular, the attacker competes with

the node that has selected the smallest back-off value out of all nodes.

Assume that a misbehaving and legitimate node intend to access the channel. In order to have a fair basis for

comparison, assume that they start their back-off timers at the same time and that none of the counters freezes due

to a perceived busy channel. Let the random variableX0 stand for the back-off value of a legitimate user, hence it is

uniformly distributed in[0,W]. Also, let the random variablesX1 andX2 stand for the misbehaving nodes (attackers),

with unknown pdff12(x1,x2) with support[0,W]. The relative advantage of the attacker is quantified as the probability

of accessing the channel, or equivalently the probability that its back-off is smaller than that of the legitimate node,

Pr(X0 < min(X1,X2)).

Suppose that all nodes were legitimate. Ifp is the access probability of each node, then the probability of successful

channel access achieves fairness forp∗ = 1/3 for each node. Now, if two nodes collude, they receive gain from their

attack if Pr(X0 < min(X1,X2))≤ η
3 . In order to quantify this, letη ∈ [0,1] and define the class of attacks

Fη =
{

f12(x1,x2) :
Z W

0

Z W

0

min(x1,x2)
W

f12(x1,x2)dx1dx2 ≤ η
3

}
. (11)

This class includes attacks for which the incurred relative gain compared to legitimate operation exceeds a certain

amount. The classFη is the uncertainty class of the robust approach and the parameterη is a tunable parameter.

By defining the classFη, we imply that the detection scheme should focus on attacks with larger impact to system

performance and not on small-scale or short-term attacks.
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5.2.2 Derivation of the worst-case attack

Assuming that the SPRT is used, we seek an attack distributionf ∗ such thatφ(d∗, f ∗)≥ φ(d∗, f ) for all other attacks

f ∈ Fη.

From Eq.(4) the average number of samples is

E[N] =
E[SN]
E[Λ]

=
C

E12

[
ln f12(X1,X2)

f0(X1) f0(X2)

] (12)

where f0(xi) = 1/W (denotes the uniform distribution of normal operation),C = aPD +b(1−PD), and the expectation

in the denominator is with respect to the unknown attack distributionf . SinceC is a constant, the problem of finding

the attack that maximizes the required number of observations reduces to the problem:

min
f12

Z W

0

Z W

0
f12(x1x2) ln f12(x1x2)dx1dx2 (13)

subject to the constraints,

Z W

0

Z W

0
f12(x1x2)dx1dx2 = 1 (14)

Z W

0

Z W

0

min(x1x2)
W

f12(x1x2)dx1dx2 ≤ η
3

(15)

The first constraint enforces the fact thatf is a pdf and the second one holds due to the fact thatf ∈ Fη. By

applying the Karush-Kuhn-Tucker (KKT) conditions, we find that the functionf ∗12(x1,x2) has the following form:

f ∗12(x1,x2) = e−1−λe−µmin(x1,x2)/W (16)

whereλ andµ are the Lagrange multipliers that correspond to the constraints and are functions ofW andη only.

These can be obtained by the system of equations:

2W2(e−µ+µ−1)
µ2 = e1+λ (17)

2W2

µ3 (2e−µ+µe−µ−2+µ) =
η
3

e1+λ
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Interestingly, Eq.(16) shows that the worst-case attack distributionf ∗12 is an exponential distribution.

Sinceφ(d∗, f ∗)≥ φ(d∗, f ) for all f ∈ Fη, we proved the left inequality in (10). We have now shown that the pair

(d∗, f ∗), whered∗ is SPRT andf ∗(x) is the exponential density constitute a saddle point ofφ. This means that the

so-called minimax equality holds and we can interchange the order ofmin andsupin the optimization problem above

[7]. Then, the problem

max
f∈Fη

min
d∈D

φ(d, f ) (18)

has the same solution with (9).

As was mentioned above, the minimax robust detection approach captures the case of an intelligent adaptive

attacker. The SPRT algorithm is part of the intrusion detection system module that resides at an observer node. In

other words, the observer (and hence the system) attempts to minimize the number of required samples so as to

improve its payoff in terms of improved chances for channel access. On the other hand, an intelligent attacker that

knows the detection algorithm attempts to delay this decision as much as possible so as to increase his own benefit

in terms of chances for channel access. The attacker aims at a strategy that causes performance degradation for other

nodes by remaining undetected.

Naturally, if the attacker is intelligent and is aware of the optimal detection strategy of the given system, he can

choose to misbehave until the estimated detection point and after that he can either obey the protocol rules for certain

time or choose to relocate. The quickest detection framework employed in our analysis forces the adversary to follow

the protocol rules or relocate as often as possible, thereby increasing the cost of launching an attack.

6 Experimental Results

We now proceed to experimental evaluation of the analyzed scenario. In order to correctly capture the behavior of

colluding attackers and evaluate the advantage over the non-colluding strategies, we compare the performance of

a single optimal attackerfrom [24] with the performance of colluding attackers who generate the optimal backoff

sequence according to the pdff ∗12. The detection schemes employed in [25, 24] use different metrics to evaluate the

performance of attackers and the detection algorithms. We believe that the performance of the detection algorithms
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is better captured by employing the expected time before detectionE[TD] and the average time between false alarms

E[TFA] instead of detection delayE[N], used in [24], or throughput, used in [25], as the evaluation parameters.

It is important to note that the chosen values of the parametera in all the experiments are small and vary from10−2

to 10−10. We claim that this represents an accurate estimate of the false alarm rates that need to be satisfied in actual

anomaly detection systems [14, 4], a fact that was not taken into account in the evaluation of previously proposed

systems.

The backoff distribution of both optimal single attacker from [24] and optimal colluding attackers from Eq. (16)

was implemented in the network simulator Opnet and tests were performed for various levels of false alarms and

various values of the parameterη. The sequence of optimal backoff values was then exported to Matlab and the

quickest detection tests were performed on the given sets of data.

We first analyze the effectiveness of the quickest detection scheme against colluding attackers with different levels

of aggressiveness (different values ofη). We chose 3 different values ofη: 0.3, 0.6 and 0.9, whereη=1 represents the

scenario where all nodes follow the rules of the protocol. The results of the above strategies are presented in Fig. 5.

As expected, the detection delay increases withη and is almost identical for higher values ofη. This re-confirms the

effectiveness of the optimal SPRT-based detection scheme for detection of nodes that significantly deviate from the

protocol rules. However, it is important to quantify the advantage of the colluding scheme over a single attacker in

order to justify employment of an additional attacker. It is to be expected that the colluding nodes will experience

larger detection delays, depending on theη they choose for their access strategy. Fig. 6 compares the performance of

colluding and single attackers forη=0.6. It is important to mention that the crucial advantage of colluding nodes is that

the detection system is not aware of collaboration among the attackers and performs detection on asinglemalicious

node. As expected, the detection delay for colluding nodes is approximately 2 times higher than for a single attacker.

In order to illustrate the effect ofη on the detection delay, we now perform the same test withη=0.9. As it can be

seen from Fig. 7, the detection delay for colluding nodes increases even further as the aggressiveness of the attackers

decreases. Finally, we fixη=0.9 for the case of a single attacker and attempt to find the corresponding value ofη for

the case of colluding nodes that will have the same detection delay. As it can be seen from Fig. 8, the corresponding

value ofη is approximately 0.4, which represents a significant gain (recall thatη=0 represents the DoS attack) and
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enables colluding attackers to significantly deviate from the protocol rules with the detection delay equivalent to the

one when there is almost no misbehavior.

Finally, it is important to address the issue of overhead of the proposed detection algorithm. The SPRT is highly

efficient since no observation vectors need to be stored. The only storage complexity is the one needed for the pdfs

f1 and f0, the thresholds “a” and “b” and the current statisticSn. In addition to that, the SPRT algorithm is also

time-efficient, since in order to compute the log-likelihood we only need to compute the ratio of two functions (f0 and

f1, which are very simple to evaluate) and add this value to the current statisticSn. Therefore, the overhead of the

proposed algorithm is low and can be obtained by adding the two previously mentioned values.

7 Conclusions and Future Work

Misbehavior at the MAC layer achieved by changing the back-off mechanism can lead to performance degradation and

even DoS attacks in ad hoc networks. In this paper we have presented an algorithm based on Blum’s protocol, in order

to prevent misbehavior of non-colluding selfish nodes. A far more challenging problem arises when two or more nodes

collude in order to obtain more than fair share of channel access. Our approach encompasses the case of intelligent

colluding attackers that adapt their misbehavior strategy with the objective to remain undetected as long as possible.

We cast the problem within a minimax robust detection framework, characterize the worst-case misbehavior strategy

showing that the optimal detection rule is SPRT. Clearly, if the attacker is ignorant of the detection mechanism, the

number of required observations to detect it under the same values ofPD andPFA is smaller than the corresponding

value for the adaptive attacker. On the other hand, if the detection system is ignorant of the collusion among two or

more protocol participants, this brings significant advantage to the attackers, as seen in Fig. 8. This gives rise to an

additional issue in misbehavior detection. An intelligent detection system should perform not only optimal detection

of the attacker, but should also be able tolocalizemalicious colluding nodes. Our results can thus shed light in the

characterization of fundamental performance limits in terms of accuracy or detection delay for misbehavior detection.

Our work constitutes the first step towards building a theoretical framework for studying the structure of network

attacks in the presence of colluding nodes. We assume continuously backlogged nodes and use channel access prob-

ability as a means of measuring the benefit of the attacker and corresponding performance loss of legitimate nodes.
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Implicitly, we assume that fair sharing of the medium is reflected by this measure. However, fair sharing also involves

the intention of a node to send a packet and therefore it is affected by packet arrivals from higher layers and backlogs

at different nodes. This introduces the issue of throughput fairness and throughput benefit. The attacker causes more

damage to the system if it prevents legitimate nodes from transmitting their payload. It is important to note that we do

not attempt to address the problem of finding hidden terminals in this work. We assume that a monitoring node can

only monitor neighboring nodes and cannot detect hidden terminals, even if they are transmitting to the same receiver.

Therefore, our solution is best-effort only.

The treatment of more than one attacker in the network presents the first step in quantifying the benefits of co-

operation of intelligent attackers and its effects on performance degradation of legitimate nodes.

The effects of the unreliable nature of the wireless medium on the performance of the detection scheme were not

addressed in this work. The unreliable nature of the medium affects not only the detection scheme, but also affects the

performance of the attackers. For example, either the monitoring nodes or one of the colluding attackers can fail to

recognize RTS/CTS signaling due to the low SNR ratio, which consequently delays detection (in case the monitoring

nodes fail to hear the transmission) or gives advantage to legitimate nodes (in case one of the colluding nodes fails

to transmit). Finally, it would be very interesting to extend our approach and obtain results in the context of more

sophisticated MAC protocols such as 802.11e with the special features regarding back-off control and differentiation

in channel access opportunities that are incorporated in its enhanced DCF (EDCF) operation mode.
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Tables

DIFS 50µs

SIFS 10µs

SlotTime 20µs

ACK 112bits+PHYheader=203µs

RTS 160bits+PHYheader=207µs

CTS 112bits+PHYheader=203µs

DATA MAC header (30b)+DATA(0-2312b)+FCS(4b)

Timeouts 300-350µs

CWmin 32 time slots

CWmax 1024 time slots

Table 1: Parameters for DSSS
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Figure Captions

Figure 1: Nodes A and C contend for accessing node B. The first time A reserves the channel, and in the second time

C accesses the channel.

Figure 2: Node C transmits to A and node B wants to transmit to D. After hearing the back-off assigned by A to C,

node D assigns a back-off to node B such that it collides with C.

Figure 3: Nodes M and D collude and interfere in the communication path of nodes B and C.

Figure 4: Nodes M and D collude and select a very small back-off, thereby denying access to node A by causing CTS

timeouts.

Figure 5: Tradeoff curves for 2 colluding nodes andη = 0.3, 0.6 and 0.9.

Figure 6: Tradeoff curves forη = 0.6: detection times for colluding nodes are up to 2 times longer than for a single

node with identical strategy.

Figure 7: Tradeoff curves forη = 0.9: detection times for colluding nodes are up to 3 times longer than for a single

node with identical strategy.

Figure 8: Tradeoff curves forη = 0.9 (single attacker) andη = 0.4 (colluding attackers).
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