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Abstract— We consider the multi-class classification problem,
based on vector observation sequences, where the conditional
(given class observations) probability distributions for each class
as well as the unconditional probability distribution of the
observations are unknown. We develop a novel formulation
that combines training with the quality of classification that
can be obtained using the ’learned’ (via training) models. The
parametric models we use are finite mixture models, where the
same component densities are used in the model for each class,
albeit with different mixture weights. Thus we use a model
known as All-Class-One-Network (ACON) model in the neural
network literature. We argue why this is a more appropriate
model for context-dependent classification, as is common in
bioinformatics. We derive rigorously the solution to this joint
optimization problem. A key step in our approach is to consider
a tight (provably) bound between the average Bayes error (the
true minimal classification error) and the average model-based
classification error. We rigorously show that the parameter
estimates maximize the likelihood of the model-based class
posterior probability distributions. We illustrate by application
examples in the bioinformatics of cancer.

I. INTRODUCTION

The identification of principal structures and features
within large sets of high-dimensional data and the generation
of simplified models for such data distributions are important
tasks, which arise in many and diverse technical fields in-
cluding pattern recognition [22], [15] or the study of complex
physical systems. Various approaches have been proposed
[22], [11], [19], [20]. In this paper we consider the multi-
class classification problem, based on vector observation
sequences, where the conditional (given class observations)
probability distributions for each class as well as the un-
conditional probability distribution of the observations are
unknown. We formulate the problem of training in classifying
observations, using parametric models for the conditional
pdf for each class, as well as the unconditional pdf of
the observations. The parametric models we use for these
pdfs are finite mixtures of normal densities [37], [2], [32],
[21]. We develop a novel formulation that combines training
with the quality of classification that can be obtained using
the ‘learned’ models. Our approach differs from existing
approaches in the literature in two fundamental ways.

First, the common approach in the literature [22] is to use
labelled observations from each class to obtain a maximum
likelihood estimate of each class conditional pdf, which
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is typically obtained via Expectation Maximization (EM)
iterations [22], [11]. In the neural network literature this
is known as One-Class-One-Network (OCON) model [22].
Then these estimated class conditional pdfs are used for
classifying observations (data) using a variety of criteria (and
methods) for obtaining optimal decisions (classifications). In
our approach we formulate the problem of optimal decision
making (i.e. learning the optimal decision rule) and model
parameter estimation as a joint optimization problem. Sec-
ond, the parametric models we use are finite mixture models,
where the same component densities are used in the model
for each class, albeit with different mixture weights. Thus
we use a model known as All-Class-One-Network (ACON)
model in the neural network literature [22].

We argue that the ACON model is a more appropriate
model for context-dependent classification, as is common in
bioinformatics [13], [1], [28], or in network security [38].
The advantages and disadvantages are discussed in [22].
In biology as well as in security (intrusion detection and
classification) the patterns and classes are very dependent
on the context of the data collection (observations). On the
other hand in problems such as face recognition, or speech
recognition, the signal patterns are much less sensitive to
context, and in these cases the OCON model offers several
advantages [22].

Discriminative criteria for classification and regression
have attracted recent attention by the machine learning
community. Examples include support vector machines [22],
decision directed probabilistic neural networks [23], [25],
[20], discriminatively trained HMMs [19], [26], [4], [29],
predictively trained neural networks [23], [22]. These newer
approaches optimize models and model parameters driven
by the goal of better performing classifiers; the main task
at hand. This is to be contrasted with more traditional
methods where models and model parameters are optimally
estimated using maximum likelihood (ML) or maximum
aposteriori probability (MAP) so that each density is trained
separately to escribe observations [22] rather than trained to
aid in better classification. Naturally this affects performance
adversely and at the same time increases the complexity
of the classification algorithm, which in turn increases the
possibility of overfitting. Some recent papers [22] have
indeed substantiated these adverse effects on performance.

The problem considered here is the classification of C
classes, using N samples of vector valued data, while using
K component densities. These component densities are also
known as ‘features’ in pattern recognition [22]. The number
of components used in these approximations is a design

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

FrC15.5

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 8523

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 20,2010 at 20:41:33 UTC from IEEE Xplore.  Restrictions apply. 



variable to be selected as well; we describe our results on
this aspect of the problem elsewhere [5]. In our approach,
described in this paper, we derive rigorously the solution to
this joint optimization problem. A key step in our approach
is to consider a tight (provably) bound between the average
Bayes error (the true minimal classification error) and the
average model-based classification error. The bound is given
in terms of the average (with respect to observations) of
the Kullback-Leibler divergence (or relative entropy) of the
true (but unknown) class a-posteriori distribution given the
measurements and the approximate (model-based) class a-
posteriori distribution given the measurements.

We minimize this bound to determine the optimal paramet-
ric model for each class that obtains the best approximation
to the average Bayes error. We rigorously show that the
parameter estimates maximize the likelihood of the model-
based class posterior probability distributions. This is differ-
ent from the common approach where first the model param-
eters are estimated by maximizing the likelihood of the class
conditional probability distribution. Our approach is closer
to the more recently developed methods for discriminative
training [20], [26], [2], [14], conditional maximum likelihood
[27], [14], [33], [18], or maximum mutual information [27],
[12], [7], [4], albeit in a multi-class, multi-component setting.

As discriminative model estimation and conditional like-
lihood maximization have attracted more attention recently,
the need for developing similar lower bounding and maxi-
mization, two step algorithms (i.e. EM-like) has increased.
Some developments towards this end have recently appeared
in [18], [9], [33]. Using properly constructed upper and
lower bounds we have derived [6] an ‘EM-like’ algorithm
for computing these ‘most discriminating’ model parameter
estimates.

II. PRELIMINARIES, NOTATION, MODELS

The formulation is as follows. We have N data samples,
x1,x2, ...,xt, ...,xN all vectors in RD. These data points
can come from C distinct classes. These data points together
with the class index Yt, t = 1, 2, ..., N , for each, constitute
the training data in our framework. That is Yt is a categorical
(discrete) variable with values in {1, 2, ..., c, ..., C} . Thus we
let the training set be denoted as

S = {(xt, yt); t = 1, 2, . . . , N}. (1)

When data come from class c , we will denote by pc
X(.)

the class-conditional probability distribution of the random
variable X . We will also use the notation pX|c(.) for the
same pdf. We will give to almost all variables a probabilistic
interpretation, and then we will use the more generic no-
tations pXt|Yt

(.|.) and pXt|Yt
(xt|yt) . The true probability

distribution functions pX(.) and pX|c(.|.) are unknown. We
will use approximate models for both from the class of finite
normal mixture models. Thus we will use the model

pX|Y (x|y;θ) = pX|Y (x|c;θ) =
K∑

k=1

αc,kG(x;μk,Σk)

where G(x;μk,Sigmak) is a multivariable (D - dimen-
sional) normal (Gaussian) probability distribution with mean
μk and covariance matrix Σk. These Gaussians constitute
the component distributions (or simply the components) of
the finite mixture model. In our formalism above there are K
components, the same for all classes, consistent with our use
of the ACON model. The weights αc,k represent the ‘mixture
coefficients’ in the model, and satisfy the constraints

0 ≤ αc,k ≤ 1 , and
K∑

k=1

αc,k = 1, for all c.

We will also use the notation whereby the coefficients αc,k

for the same class c are collected into a vector αc. We collect
these coefficients into a C × K matrix A; a row-stochastic
matrix.

In this finite mixture model θ represents the vector of
parameters of this parametric class of models

θ =

⎡
⎣ μk; k = 1, 2, . . . ,K

Σk; k = 1, 2, . . . ,K
αc,k; k = 1, 2, . . . ,K; c = 1, 2, . . . , C

⎤
⎦ . (2)

We let πc, c = 1, 2, ..., C , be the prior probabilities that
data belong to class c. Then the model we use to approximate
the unknown probability distribution of the data X is

pX(x) =
C∑

c=1

pX|c(x;θ)πc =
C∑

c=1

K∑
k=1

πcαc,kG(x;μk,Σk).

The data vectors {x1,x2, ...,xt, ...,xN} are considered
as independent and identically distributed samples from the
unknown probability distribution pX(.) . In the classification
literature these data are referred to as the incomplete data
[22]. On the other hand the set of data vectors together with
their classes {(x1, y1), (x2, y2), ..., (xt, yt), ..., (xN , yN )}
are referred to as the complete data [22].

III. ML AND EM FOR MODELS WITH HIERARCHICAL

STRUCTURE

In this section we formulate and solve the ML estimation
problem of the parameter vector θ when we have a hierar-
chical structure, i.e. we have both classes and components.
We let xt denote the generic D- vector of measurements, yt

denote the generic categorical value indicating the class of
the experimental sample, zt denote the generic categorical
value indicating the component of the experimental sample.
Figure 1 illustrates the hierarchical mixture model with two
classes and three components.

The training data S are used to “learn” a good classi-
fication rule, which will be applied to experimental data
from similar situations as the training data, but which have
not been used in the training [22], [15]. One way to learn
a good classification rule is to learn a good set of the
model parameters, for the models we use to represent the
classes, and then use the learned models in constructing a
good classification rule. In this section we solve the problem
following this approach. The novelty of the results rests
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Fig. 1. Illustrating a hierarchical mixture model with K = 3 and C = 2.

with the derivation of the algorithms using only convexity
arguments and bounds, and with the treatment of the ACON
model.

Omitting some details, the likelihood function for the
entire set of training data, is

L(θ;xN
1 , yN

1 )) =
N∑

t=1

log pXt,Yt
(xt, yt;θ)

=
N∑

t=1

{log
K∑

k=1

{αyt,kG(xt;μk,Σk)} + log πyt
} (3)

Thus the ML parameter estimation problem becomes:

θ̂(xN
1 , yN

1 ) = arg max
θ

N∑
t=1

log{
K∑

k=1

{αyt,kG(xt;μk,Σk)}

Our solution of this optimization problem uses convex
analysis [8] and does not utilize differentials. The method
has important implications for deriving an efficient EM-like
algorithm (see [6] for details).

The EM algorithm is an iterative optimization technique
specifically designed for probabilistic models. It uses a
different strategy than gradient decent or Newton’s method
and sometimes provides faster convergence. A very insightful
explanation of why EM has some key properties, including
the property that it always computes a local maximum, can
be given via lower-bound maximization. EM constructs a
local approximation that is a lower bound to the objective
function. The lower bound can have any functional form,
in principle. Choosing the new estimate of the maximum
as the maximizer of the lower bound will always be an
improvement over the previous estimate, unless the gradient
was zero there. So EM alternates between computing a lower
bound (the ‘E-step’) and maximizing this lower bound (the
‘M-step’), until a point where the gradient zero is reached.
This two step approach for optimization is captured in its
more general form by the following lemma.

Lemma 3.1: Let f(θ) be a scalar function of the vector
valued variable θ, which is to be maximized over θ. Let
θ(n) be a sequence of points, and bn(θ) a sequence of
scalar functions, such that: (i) bn is a local lower bound
for f around θ(n), that is bn(θ) ≤ f(θ) everywhere in a
neighborhood of θ(n); (ii) θ(n+1) is the maximum of bn in a
neighborhood of θ(n) and (iii) the functions bn and f touch at

θ(n), that is bn(θ(n)) ≤ f(θ(n)). Then f(θ(n+1)) ≥ f(θ(n)).

Proof: Follows immediately from the inequalities
f(θ(n+1)) ≥ bn(θ(n+1)) ≥ bn(θ(n)) = f(θ(n).

Thus progress is guaranteed through these iterations. It
is not absolutely necessary to maximize the lower bound
over θ. The so-called ‘generalized EM’ demonstrates that
any improvement of the lower bound is sufficient.

The first step, in the development of the explicit iterations
for the E-M algorithm, which will lead us to the E-step
computation is to compute a lower bound to L(θ ; xN

1 , yN
1 ).

We introduce an arbitrary distribution qZN
1

over the compo-
nent variables, over the set {1 , 2 ,..., K}, and using Jensen’s
inequality [10], [6] we obtain the lower bound

L(θ;xN
1 , yN

1 ) ≥ B(θ; qZN
1

, xN
1 , yN

1 )

= −
N∑

t=1

D
{
qZt

(.)||pZt|Xt,Yt
(.|xt, yt;θ)

}

+
N∑

t=1

log pXt|Yt
(xt|yt;θ) +

N∑
t=1

log pYt
(yt) (4)

The qZN
1

maximizing this lower bound is clearly

q̃ZN
1

(zN
1 ) =

N∏
t=1

pZt|Xt,Yt
(zt|xt, yt;θ) . (5)

For the finite normal mixture of interest here

pZt|Xt,Yt
(zt|xt, yt;θ) =

αyt, kG (xt ; μk,Σk)
K∑

k=1

αyt, kG (xt ; μk,Σk)
(6)

The corresponding maximum value of B(θ; qZN
1

, xN
1 , yN

1 ),
which is the ‘best’ lower bound to L(θ;xN

1 , yN
1 ) at θ, is

N∑
t=1

log pXt|Yt
(xt|yt;θ) +

N∑
t=1

log pYt
(yt) = L(θ;xN

1 , yN
1 ).

Thus conditions (ii) and (iii) of Lemma (3.1) are satisfied.
We next proceed to derive the E- and M-steps of the

EM algorithm for hierarchical mixture models, following
the convex optimization approach of [6], where we refer for
details. We simplify notation and rewrite the bound (4) as

B(θ; q̃ZN
1

, xN
1 , yN

1 ) = B̂(n)(θ; θ̂
(n)

, xN
1 , yN

1 )

= B̃(n)(θ; pZN
1 |XN

1 ,Y N
1

(.|xN
1 ; θ̂

(n)
(xN

1 , yN
1 )),xN

1 , yN
1 )

= −
N∑

t=1

D
{

pZt|Xt,Yt
(.|xt, yt; θ̂

(n)
)||pZt|Xt,Yt

(.|xt, yt;θ)
}

+
N∑

t=1

log pXt|Yt
(xt|yt;θ) +

N∑
t=1

log pYt
(yt) (7)

The next step is to maximize B̂(n)(θ; θ̂
(n)

,xN
1 , yN

1 ) (locally)
w.r.t. θ to obtain the next estimate (M-step) as

θ̂
(n+1)

(xN
1 , yN

1 ) = arg max
θ

B̂(n)(θ; θ̂
(n)

,xN
1 , yN

1 ). (8)
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Applying Lemma 3.1 we obtain the desired increase in
the log-likelihood. We decompose the best lower bound as
follows

B̂(n)(θ; θ̂
(n)

,xN
1 , yN

1 ) = Q(n)(θ) + H(n) + log pY N
1

(yN
1 ).
(9)

where Q(n)(θ)is the expected complete log-likelihood:

Q(n)(θ) =
N∑

t=1

K∑
zt=1

pZt|Xt,Yt
(zt|xt, yt; θ̂

(n)
)log pXt, Zt|Yt

(xt, zt|yt;θ),

and H(n) is the entropy of the distribution

pZN
1 |XN

1 ,Y N
1

(. |xN
1 , yN

1 ; θ̂
(n)

(xN
1 , yN

1 )).
The resulting EM algorithm for the ML estimate of the

model parameter vector θ given (xN
1 , yN

1 ) can be summa-
rized in the following two steps:

1) E – step: compute pZt|Xt,Yt
(.|xt, yt; θ̂

(n)
(xN

1 , yN
1 )),

for t = 1, . . . , N and use it to compute the
conditional expectation (with respect to the pdf

pZN
1 |XN

1 , Y N
1

(.|xN
1 , yN

1 ; θ̂
(n)

(xN
1 , yN

1 ))

Q(n)(θ) = E{log pXN
1 , ZN

1 |Y N
1

(xN
1 , .|yN

1 ;θ)}
2) M – step: compute

θ̂
(n+1)

(xN
1 ) = arg max

θ
{Q(n)(θ)},

.

The E-step, consists of first computing the current con-
ditional distribution of the hidden component-indicator cat-

egorical variable pZt|Xt,Yt
(. |xt, yt; θ̂

(n)
(xN

1 , yN
1 )), for t =

1, . . . , N , given the current estimate of the parameter vector

θ̂
(n)

. Subsequently the E-step uses this conditional prob-
ability distribution to compute the conditional expectation
Q(n)(θ). From eq. (6) we already have the answer to the
first step

h
(n)
k (xt, yt) = pZt|Xt,Yt

(k|xt, yt; θ̂
(n)

)

= pZt|Xt,Yt
(zt, k = 1|xt, yt; θ̂

(n)
) = E

{
zt, k|xt, yt, θ̂

(n)
}

=
α̂

(n)
yt,k

G (xt ; μ̂(n)
k , Σ̂

(n)

k )
K∑

k=1

α̂
(n)
yt,k

G (xt ; μ̂
(n)
k , Σ̂

(n)

k )
, k = 1, 2, ...,K. (10)

The second computation of the E-step results in

Q(n)(θ)

= −1
2
ND log(2π) +

1
2

N∑
t=1

K∑
k=1

{
h

(n)
k (xt, yt) log |Σ−1

k |
}

− 1
2

N∑
t=1

K∑
k=1

{
h

(n)
k (xt, yt)(xt − μk)T Σ−1

k (xt − μk)
}

+
N∑

t=1

K∑
k=1

{
h

(n)
k (xt, yt) log αyt, k

}
(11)

The M – step consists of maximizing Q(n)(θ) w.r.t. θ, i.e.
w.r.t. μk, Σk, k = 1, . . . , K and αc, k, c = 1, 2, . . . , C, k =
1, 2, . . . ,K. We rewrite the part of Q(n)(θ) that involves
components of the model parameters, namely μk and Λk

(where Λk = Σ−1
k ≥ 0 and symmetric) as (we left out the

1/2 factor)

F(μ,Λ) =
K∑

k=1

Tr
[
ρk log Λk − ΓkΛk +

1
ρk

ξkξT
k Λk

− ρk

(
μk − 1

ρk
ξk

)(
μk − 1

ρk
ξk

)T

Λk

]
. (12)

In eq. (12) we have introduced scalars (ρk), D-vectors ξk

and matrices (D × D nonnegative and symmetric) Γk):

ρk =
N∑

t=1

h
(n)
k (xt, yt), k = 1, 2, . . . , K,

K∑
k=1

ρk = N,

Γk =
N∑

t=1

h
(n)
k (xt, yt)xtx

T
t , k = 1, 2, . . . ,K,

ξk =
N∑

t=1

h
(n)
k (xt, yt)xt, k = 1, 2, . . . ,K.

It is well known [8], [10], that log Det[.] is concave
over the set of symmetric positive definite matrices. It then
follows, since Tr[BΛ] is linear in Λ for any matrix B
and the negative of a positive semidefinite quadratic form
is concave, that F(μ,Λ) is concave jointly in all variables.
Since it is also continuous in all variables it has a unique
maximum, achieved at the point (μ∗,Λ∗).

Let

G(Λ ) =
K∑

k=1

Tr
[
ρk log Λk − ΓkΛk + 1

ρk
ξkξT

k Λk

]
=

K∑
k=1

ρk log DetΛk − Tr
[(

Γk − 1
ρk

ξkξT
k

)
Λk

]
.

Since G(Λ)is also concave and continuous jointly in all
variables, it also has a unique maximum. Note that the
matrix inside the trace, pre-multiplying Λk is symmetric and
positive semidefinite. Now considering the function H(Λ) =
α log DetΛ− Tr[BΛ], where α is a positive scalar and B
is a positive definite symmetric matrix, it can be shown [6]
that the unique maximum of H(Λ) is at Λ∗ = αB−1. Then
it can be shown [6] that

F(μ,Λ) ≤ F(μ̂(n+1),Λ) = G(Λ) ≤ G(Λ∗)

= F(μ̂(n+1), (Σ̂
(n+1)

)−1) , for all μ,Σ. (13)

Therefore the maximization of Q(n)(θ) w.r.t. μ and Σ is

achieved at the μ̂
(n+1)
k and Σ̂

(n+1)

k provided by the iterations
of eq. (17) below.

Third, with respect to the mixture coefficients αc, k, c =
1, 2, . . . , C, k = 1, 2, . . . ,K, or equivalently the class-
component mixture coefficient C × K matrix A, the part
of Q(n)(θ) that depends on these variables is
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I(A) =
N∑

t=1

K∑
k=1

{
h

(n)
k (xt, yt) log αyt,k

}

=
N∑

t=1

C∑
c=1

K∑
k=1

h
(n)
k (xt, yt)δ(c, yt) log αc, k , (14)

where δ(c, yt) is the Kronecker delta.
For each c = 1, . . . , C, let Nc = {t ∈ {1, 2, . . . , N}| yt =
c}, and Nc = |Nc| be its cardinality. The function I(A)
is a convex combination of concave functions of each of its
coordinates, and thus has clearly a unique maximum over the
multi-simplex SC in RKC , where S is the set of all vectors

γ in RK with 0 ≤ γk ≤ 1, k = 1, . . . ,K and
K∑

k=1

γk = 1.

By re-writing eq. (14) as

I(A) =
C∑

c=1

K∑
k=1

βc, k log αc, k, (15)

where

βc, k =
N∑

t=1

h
(n)
k (xt, yt)δ(c, yt) =

∑
t∈Nc

h
(n)
k (xt, c).

and using the log-sum inequality [10] we can show that for
each c the maximum is achieved for (see [6] for details)

βc, k

α̂
(n+1)
c, k

= γc = const. , k = 1, 2, . . . ,K

K∑
k=1

∑
t∈Nc

h
(n)
k (xt, c) = γc

K∑
k=1

α̂
(n+1)
k , or Nc = γc,

(16)

from which the last iteration, eq. (17), below results.
We have therefore established the following
Theorem 3.1: The EM algorithm for the hierarchical

model starts from an initial value of the estimate θ̂
(0)

and
computes iterative estimates θ̂

(n)
as follows

h
(n)
k (xt, yt) =

α̂
(n)
yt,k

G(xt; μ̂
(n)
k , Σ̂(n)

k )∑K
k=1 α̂

(n)
yt,k

G(xt; μ̂
(n)
k , Σ̂(n)

k )
,

k = 1, 2, . . . ,K

μ̂
(n+1)
k =

∑N
t=1 h

(n)
k (xt, yt)xt∑N

t=1 h
(n)
k (xt, yt)

,

k = 1, 2, . . . ,K

Σ̂(n+1)
k =

∑N
t=1 h

(n)
k (xt, yt)[xt − μ̂

(n+1)
k ][xt − μ̂

(n+1)
k ]T∑N

t=1 h
(n)
k (xt, yt)

,

k = 1, 2, . . . ,K

α̂
(n+1)
c,k =

∑
t∈Nc

h
(n)
k (xt, yt)

Nc
, (17)

c = 1, . . . , C, k = 1, . . . ,K

When this algorithm converges, we have, through the
parameters, estimates of the class probability distributions,
for each class c, which was learned from the training data.
These class models can then be used to compute likelihood
ratios for new data and assign the data to the class with
the highest value of the likelihood. First, compute for the
new sample xs the posterior probability using the “learned”
model

Pr{Y = c|X = xs; θ̂} =
πc

∑K
k=1 α̂c,kG(xs; μ̂k, Σ̂k)∑C

c=1

∑K
k=1 πcα̂c,kG(xs; μ̂k, Σ̂k)

for c = 1, . . . , C. Then compute the classification decision

d̂(xs) = arg max
c

πc

K∑
k=1

α̂c,kG(xs; μ̂k, Σ̂k). (18)

IV. SOLUTION OF THE JOINT OPTIMIZATION PROBLEM

We want to find a decision rule for assigning a class to
each data vector (i.e. a classification strategy) that is optimal
in some sense. That is we want to design a function, usually
called the classifier,

d : RD → {1, 2, . . . , C},
where d(x) is the class estimate for the data vector x .

A. Costs and Approximate Costs

We follow a Bayesian framework [22]. Let Bcc′ denote
the penalty (cost) for deciding that the class of a data vector
x is c′ (d(x) = c′ ) when the true (but unknown) class is c
. We consider the simpler cost [22]

Bcc′ =
{

0, if c = c′ = d(x)
1, if c �= c′ = d(x) = 1−δ(c, c′) = 1−Id(x)=c

where δ(c, c′) denotes the Kronecker delta, as it captures all
the essential ingredients of the problem and of our approach.
The expression 1−I{d(x)=c}, with c being the true class of
the data x, and IH the characteristic function of the set H , is
commonly known as the classification error associated with
the classifier d(.). The probability of correct classification
for the classifier d(.) is Pr{d(x) = c}.

Following the Bayesian framework we want to find a clas-
sifier d∗(.) to minimize the expected cost for a classifier d(.)
over the joint distribution of data vectors and their classes,
which in this case becomes the expected classification error
for classifier d(.). As is well known the optimal classifier for
this formulation is the Bayes decision rule

d∗(x) = arg max
c′

{pY |X(c′|x)}, (19)

that is assign to the data vector x the class ĉ for which
pY |X(ĉ|x) ≥ pY |X(c′|x), for all c′ �= ĉ ; i.e. the class with
the maximum posterior probability given x .
The corresponding minimum classification error for a data
vector x when the Bayes rule d∗ is used, the Bayes error, is

J(d∗;x) = EY |X{1 − δ(y, d∗(x))} = 1 − pY |X(d∗(x)|x)

=
C∑

c=1

pY |X(c|x)[1 − δ(c, d∗(x))] (20)
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while the average Bayes error, is

J(d∗) = EX{J(d∗;x)} = min
d

J(d) (21)

Proceeding in exactly the same steps we obtain that for a
parametric model of all relevant distributions, like the finite
mixture models introduced earlier, i.e. pX,Y (x, y;φ) and all
marginals and conditional distributions obtained from this
model, the optimal classifier is the parametric Bayes rule

d̃(x;φ) = arg max
c′

{pY |X(c′|x;φ} (22)

The corresponding minimal parametric (or model-based)
classification error for a data vector x is then

J(d̃;x,θ) = EY |X{1 − δ(y, d̃(x;θ))} = 1 − pY |X(d̃(x;θ|x)

=
C∑

c=1

pY |X(c|x)[1 − δ(c, d̃(x;θ))] (23)

where we have used the true posterior distribution of the
classes given the data vectors pY |X . Proceeding, we com-
pute the optimal expected parametric (model-based) classifi-
cation error over the true distribution of the data vectors pX ,
for this optimal parametric Bayes rule d̃(.;θ)

J(d̃;θ) = EX{J(d̃;x,θ)} = min
d

J(d;θ). (24)

This quantity is also known as the optimal model-based
expected classification error and as the model-based (or
parametric) Bayes error [22]. We are interested to select the
parametric models so as to minimize the expected parametric
classification error. This is equivalent to minimizing J(d̃;θ)
with respect to the vector of the model parameters θ. This
minimization needs to be done based on what we have
available - the training data set S = {(xt, yt); t =
1, 2, ..., N}. This direct approach is infeasible because of
the nonlinearities involved in the functional J(d̃;θ) and most
importantly because the true distribution pX is unknown.

Instead, in the next subsection, we establish an upper
bound for the optimal model-based (parametric) expected
classification error (24), with the idea being to obtain the
‘best’ model parameters by minimizing this upper bound.

B. A Tight Upper Bound for the Model-Based Bayes Error

We derive bounds between the (true) Bayes error and the
minimum model-based classification error for a parametrized
class of models. From (19) and (22) we have the inequality

J(d̃;x,θ) − J(d∗;x) =

=
(
1 − pY |X(d̃(x;θ)|x)

)
− (1 − pY |X(d∗(x)|x)

)
≤ |pY |X(d∗(x)|x) − pY |X(d∗(x)|x;θ)|

+ |pY |X(d̃(x;θ)|x) − pY |X(d̃(x;θ)|x;θ)|. (25)

We can now proceed to obtain, as a direct consequence of
the inequality (25), the following useful bound

J((d̃;x,θ) − J(d∗;x) ≤
C∑

c=1

|pY |X(c|x) − pY |X(c|x;θ)|.
(26)

The usefulness of this bound comes from the fact that as the
approximate model class posterior probability distribution
pY |X(.|x;θ) becomes a better approximation to the true
class posterior probability distribution pY |X(.|x), the opti-
mal model-based classification error J(d̂;x,θ) comes closer
to the Bayes error J(d∗;x), for any observed data vector
x ∈ RD. Thus the bound can be considered tight from this
perspective. We next obtain a bound between the expected
Bayes error J(d∗) and the optimal model-based expected
classification error J(d̃;θ), by taking the expectation, with
respect to the true (but unknown) probability distribution of
the data pX(.), of both sides of (26).

For two probability distributions p1(.), p2(.) on the finite
set C = {1, 2, ..., C}, a useful and well known measure of
dissimilarity of the two distributions is the Kullback Leibler
‘distance’ , relative entropy, or information divergence be-
tween p1 and p2 [10]: D(p1||p2) =

∑C
c=1 p1(c) log p1(c)

p2(c)
=

Ep1

{
log p1(Y )

p2(Y )

}
; where log denotes natural logarithms. An-

other well known distance between two probability dis-
tributions is the l1 distance or variational distance [10]:
V (p1, p2) = ||p1 − p2||1 =

∑C
c=1 |p1(c) − p2(c)|. The

Pinsker inequality [10] establishes a useful relationship be-
tween these two important measures

D(p1 ‖ p2) ≥ 1
2
V (p1, p2)2.

Using the Pinsker inequality we obtain the following bound
Theorem 4.1:(

J(d̃;θ) − J(d∗)
)2

=
(∫

V (pY |X(.|x), pY |X(.|x;θ))pX(x)dx

)2

≤ 2
∫

D(pY |X(.|x) ‖ pY |X(.|x;θ))pX(x)dx (27)

= 2
∫ ( C∑

c=1

pY |X(c|x) log
pY |X(c|x)

pY |X(c|x;θ)

)
pX(x)dx

This bound between the average Bayes error (the true
minimal classification error) and the average model-based
classification error, is given in terms of the average (with
respect to observations, or data) of the Kullback-Leibler
divergence (or relative entropy) of the true (but unknown)
class a posteriori distribution given the measurements and
the approximate (model-based) class a posteriori distribution
given the measurements.

C. Optimal Discriminating Model Parameter Estimate

In this section we use the bound (27) to obtain rigorously
the “optimal discriminating” model parameter estimate. Thus
the first use of the bound is to determine the optimal
parametric model; i.e. the parametric model for a given class
that obtains the best approximation to the average Bayes
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error. For the finite normal mixtures used in our framework,
this amounts to finding the estimate θ̌ that minimizes the
bound (27) [6]. However, the true probability distribution of
the data pX(.) is unknown, and what we have to work with
is the set of training data S. Using these labelled training
data, we approximate, as usual, the unknown probability
distribution pX,Y (x, y), by the empirical distribution

p̂X,Y (x, y) =
1
N

N∑
t=1

δ(x − xt)δ(y, yt). (28)

Thus letting

B(θ) =
∫ ( C∑

c=1

pY |X(c|x) log
pY |X(c|x)

pY |X(c|x;θ)

)
pXdx,

we need to compute

θ̌ = arg min
θ

{B(θ)} . (29)

First, we expand B(θ) as follows

B(θ) =
∫ C∑

c=1

log pY |X(c|x)pX,Y (x, c)dx

−
∫ C∑

c=1

log pY |X(c|x;θ)pX,Y (x, c)dx (30)

Let

M(θ) =
∫ C∑

c=1

log pY |X(c|x;θ)pX,Y (x, c)dx. (31)

Since the first component in the expansion (30) of B(θ) does
not depend on θ, we have

θ̌ = arg min
θ

{B(θ)} = arg max
θ

{M(θ)} .

Using the empirical distribution approximation (28) we ob-
tain an empirical approximation to M(θ)

M̂(θ) =
1
N

N∑
t=1

log pY |X(yt|xt;θ). (32)

Thus we have established the following
Theorem 4.2: To get the best approximation to the Bayes

error, by learning from the labelled training data we compute
the estimate of the model parameters θ as follows

θ̌ = arg max
θ

{
N∑

t=1

log pY |X(yt|xt;θ)

}
. (33)

This model parameter estimate maximizes the likelihood of
the model-based class posterior probability distribution
pY |X(y|x;θ). This is different from the common approach
where first the model parameters are estimated by maxi-
mizing the likelihood of the class conditional probability
distribution pX|Y (x|y;θ). The criterion and maximization
we developed here are similar to conditional maximum like-
lihood [33], or maximum mutual information [4], [7]. Several
recent papers on classification comparisons have shown that
these methods provide better classification performance.

The second important use of the bound (27) that we have
developed (see [6]) is to derive an elegant and efficient
recursive (in terms of observed data sequences of increasing
length) algorithm, which is inspired by the EM algorithm
for maximum likelihood estimation of model parameters (see
section III), for the computation of the optimal discriminating
model parameter estimate θ̌.

V. CONTEXT DEPENDENCE IN BIOINFORMATICS AND

ACON

Let us first clarify, that when discussing bioinformatics
we are primarily referring to technologies that assess the
level of expression for many genes (˜20,000) in cells from a
given sample. Context dependent learning in classification
problems implies that without knowledge of all classes
possible, one cannot construct accurate decision boundaries.
In other words, we need the full context of the classification
question in order to properly characterize it.

One possible reason for this is the notion of heterogeneous
classes. This concept has received much attention recently in
cancer biology. The advent of new high-throughput technolo-
gies has allowed researchers and clinicians to dramatically
increase the number of features they can describe tumors
samples by. Rather straightforward unsupervised clustering
of tumors previously considered rather homogenous, e.g.
breast cancer specimens, has shown that a significant level
of unappreciated heterogeneity exists [17], [30], [34], [35].
The relevance of this heterogeneity to clinical parameters is
currently an active area of research. Particularly with regards
to examining if this information can help to better predict if
and with what type of agent a therapeutic response could be
achieved [3], [16], [24], [31], [36].

We argue that an ACON learning approach should fair
better than an OCON in this setting. This intuition basically
stems from the high possibility of overlapping groups given
the scenario described above. To illustrate this notion we
present a hypothetical example. Imagine that our task is to
classify instruments of an orchestra composed only of flutes,
saxophones, clarinets, and violins into two possibilities: 1)
made of wood 2) made of metal. This classification may
seem odd given our complete understanding of how these
instruments generate their sounds. However, the analogous
knowledge in characterizing disease states in biology is not
fully characterized. Rather we initially only had a crude
ability to observe the “instruments” and have noted that
some are made of wood and some are made of metal.
Additionally, we do not have the luxury of being able to
isolate each specific instrument. We can only isolate the
groups of instruments, wood versus metal. A new recording
technology now available, allows us to record many more
features from a given sample of instruments. From this data
we now observe heterogeneity is the wood instruments and
metal instrument with some overlap though.

Conceptually, we can consider the cell to be a black
box system with inputs and outputs. This is not far from
reality; we currently only have a marginal understanding of
all the circuits within the cell. The inputs to this system
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could represent various biological states or phenomena and
the outputs represent the expression levels observed for the
˜20,000 genes queried. In the most straightforward scenario,
a classification task would involve learning the biological
phenomenon of the cell from the expression data. Context
dependence in these types of scenarios arises primarily
because of the large degree of indirectness between the
phenomena examined and the data used to characterize them.
A large amount of processing happens in the cellular black
box that then may eventually result in changes of expression
patterns of the genes queried. The various different tissue
types (i.e. contexts with the body) may initiate different
expression programs in response to the same stimuli or under
the same biological state; however, some overlap may be
expected. A straightforward example of this concept comes
from cancer biology. It is now well established that given
samples of a specific tumor type, lung cancer, and its benign
counterpart, normal lung tissue, one will find many gene
expression alterations that can differentiate the two.

In our current research we are applying the methods and
algorithms described here in various lymphomas and lung
cancers. After training our ACON Gaussian Mixture Model
(GMM) in this feature space, independent test samples are
well characterized. In practice, the feature space, where our
ACON GMM will form decision boundaries, are usually of
5-10 dimensions [6].
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