
Probabilistic Non-Repudiation for Source Authentication with
TESLA Certificates in Hybrid Satellite/Wireless Networks and

Performance Analysis of the Authentication Protocol

Ayan Roy-Chowdhury
Maryland Hybrid Networks Center, Institute for Systems Research, University of Maryland,

College Park, MD 20742, USA. +1(301)4056561, ayan@umd.edu
John S. Baras

Electrical and Computer Engineering and Institute for Systems Research, University of
Maryland, College Park, MD 20742, USA. +1(301)4056606, baras@umd.edu

Abstract

In this work, we describe a novel non-repudiation mechanism for an authentication protocol based on
the extended TESLA certificate construct. With the non-repudiation mechanism, the authentication
protocol is ideally suited for source authentication of low-powered nodes that participate in group
communication in hybrid satellite/wireless networks.

Security is a necessary parameter in hybrid wireless networks (consisting of groups of terrestrial
wireless nodes interconnected by a satellite overlay) if the communication between a pair of nodes, or
amongst a group of nodes, is to be protected from unauthorized The focus of our research work is on
user authentication and message integrity protocols, which are required to enable communications
and ensure that messages between communicating nodes are correctly delivered. This is a non-trivial
problem in group communication, where authentication has been traditionally done using asymmetric
cryptographic techniques such as public key certificates and digital signatures. However, such
asymmetric techniques can be very expensive in terms of processing power and node energy for
wireless nodes in hybrid networks. As a solution to this problem, we have proposed a new class of
lightweight, symmetric key certificates called extended TESLA certificates, and we have designed an
energy-efficient source authentication protocol for group communication that utilizes the infrastructure
present in hybrid satellite networks.

In our authentication protocol based on the extended TESLA certificate, we propose to add non-
repudiation by taking advantage of the satellite infrastructure and the proposed mechanism of key
disclosure by proxy. This is a major improvement over previous authentication algorithms based on
TESLA, which do not provide for non-repudiation due to the symmetric nature of the underlying
cryptographic primitive, Message Authentication Codes. In this paper, we describe the mechanism by
which non-repudiation is achieved in our authentication protocol. The non-repudiation is probabilistic in
nature, and we analyze the tradeoff between the degree of non-repudiation and the overhead due to
the additional information necessary for non-repudiation. Furthermore, through simulations we
compare the performance between the basic authentication protocol and authentication with non-
repudiation, and also compare the latter to public key-based schemes.

1. Introduction

Large wireless networks have the ability to provide rapid connectivity in disaster areas or military
battlefields, or to inter-connect users in far-flung geographical locations. In [1], we have shown that the
addition of a satellite overlay to such wireless networks can lead to a great improvement in the
network performance. We term this network architecture a hybrid network, which has clusters of
terrestrial wireless nodes with dual satellite connectivity providing alternate high bandwidth and robust
forwarding paths through satellite links.

Security is a necessary parameter in hybrid wireless networks to protect the communication amongst
user nodes from unauthorized access or unauthorized modifications. Many envisioned applications for
hybrid networks are collaborative in nature, and it is necessary to ensure that routing control
messages and the application data between communicating nodes are properly authenticated to
enable communication. Authentication in group communication is traditionally done by digital

1

signatures [2], based on public-key cryptography. However, generation and verification of digital
signatures for messages are expensive in CPU cycles and therefore energy expenditure [3]–[5]. In
wireless networks where many nodes have limited processor power, storage capacity and available
energy, performing digital signature generation and verification frequently can prevent the CPU from
other functions and drain the battery quickly. Therefore in hybrid wireless networks it is preferable to
use authentication protocols that are based on symmetric cryptographic primitives like Message
Authentication Code or MAC (for example, HMAC [6]) - which expend less node energy. However,
designing authentication protocols for group communication using symmetric cryptography is a
significant challenge. The primary difficulty in designing a scalable scheme is how to create the
asymmetry efficiently such that receivers can authenticate the messages without heavy expenditure of
system resources.

We have proposed to achieve authentication in hybrid satellite/wireless networks using a new class of
certificates called TESLA Certificate. The TESLA certificate concept was originally proposed in [7],
and it was used to build a basic authentication scheme in [8]. In [9], we have extended the TESLA
certificate design and used the extended construct to propose an authentication protocol for hybrid
networks, taking advantage of the presence of the satellite overlay network. In our proposed
authentication protocol, source authentication using TESLA certificate is based on MAC computation
using keyed hash functions, with delayed disclosure of the key by the Certificate Authority (CA), to
achieve the asymmetry required for authentication in group communication.

Apart from facilitating secure authentication of nodes and message integrity checks, public-key
cryptography also provides non-repudiation – a node cannot deny later that it generated a message
that has been signed using its private key. This is considered an essential element for building a
comprehensive authentication and message integrity protocol. In comparison, the TESLA
authentication algorithm [7] or the prior TESLA certificate proposal [8] do not provide non-repudiation.
The symmetric nature of the basic cryptographic primitive used here - MACs - does not allow for non-
repudiation. Once the hash key for a particular MAC is disclosed, any group member would be able to
generate the MAC for the given message. Therefore, at a later instant in time, it is impossible to prove
that the message was generated by a particular source. The lack of non-repudiation is a major
drawback of the TESLA certificate protocol compared to digital signatures based on public keys. In our
extended TESLA certificate algorithm, we add a probabilistic non-repudiation mechanism by taking
advantage of the satellite infrastructure and the proposed mechanism of key disclosure by proxy. In
this paper, we describe the method by which probabilistic non-repudiation is added to the TESLA
authentication algorithm. In addition, we analyze the tradeoff between the degree of non-repudiation
and the overhead due to the additional information necessary for non-repudiation. Through
simulations we also compare the performance between the base authentication protocol and
authentication with non-repudiation, and also compare the latter to public key-based schemes.

The rest of the paper is organized as follows. In sections 2 and 3, we briefly review the TESLA
algorithm and the original TESLA certificate protocol, respectively. We describe our proposed source
authentication protocol using TESLA certificates in section 4. The non-repudiation mechanism for the
authentication protocol is described in section 5. An analysis of the protocol performance with and
without non-repudiation is given in section 6. We conclude with a brief discussion in section 7.

2. Review of TESLA Authentication Protocol

The TESLA protocol [7] achieves asymmetric authentication between a source and receivers through
the use of symmetric cryptographic MAC functions. The asymmetry is obtained through the delayed
disclosure of the authentication keys.

TESLA divides the time of transmission by the source into n intervals of equal duration. The source
generates a random key seed sn for interval n, and computes a one-way hash chain by repeatedly
applying a public one-way function F1 to sn. The number of elements of the hash chain corresponds to
the number of intervals in which the source transmits. The source computes the MAC key for each
interval by applying a second public one-way function F2 to each element of the hash chain. The
algorithm is illustrated in fig. 1.

2

Fig. 1 TESLA key generation

The sender uses the keys in the
reverse order of their generation,
that is, starting with K1 in interval
1, followed by K2 in interval 2, and
so on. The sender bootstraps the
hash chain by broadcasting to all
the receivers the anchor element
of the chain, s0. For each packet
generated in time slot i, the
sender uses the authentication
key Ki to compute a MAC on the
packet. The sender discloses Ki at

a later time instant by
broadcasting the corresponding
key seed si. Upon receiving si,

each receiver first verifies the authenticity of si by checking si
F
1→ si−1

F
1→ ...

F
1→ s0. If si verifies

correctly, each receiver can compute Ki : si
F
2→ Ki and subsequently use Ki to verify the MAC on the

packets received during interval i. si is disclosed only d time slots after i so that no malicious node can
compute Ki and forge packets in the intervening period. This is the principle of delayed disclosure of
keys.

3. Review of TESLA Certificate Protocol

In the algorithm described in [8], there is a certificate authority CA who creates certificates for an entity
B. During time slot n, the CA generates authentication key aKBn for B to use to compute the MAC on its
messages in that interval. The CA creates a certificate CertCAn(B) to bind aKBn to B for interval n. The
CA uses its TESLA key tKCAn to encrypt aKBn in the certificate, and uses the same key to compute a
MAC on the certificate: CertCAn(B) = (IDB,{aKBn}tKCan, n+d, MACtKCAn(..)). aKBn is known only to the CA
and B during period n, while tKCAn is known only to the CA. n+d indicates the time at which the CA will
disclose tKCAn to the nodes, that is, it is the expiration time of the certificate. The CA sends CertCAn(B)
to B along with aKBn, which is encrypted with key KCA,B that is shared between the CA and B.

In the time interval <n, n+di>, D sends a request to B for using B′s service: D → B: (request). To
authenticate itself to D, B sends an authentication packet containing its certificate and a MAC on the
request: B → D: (CertCAn(B),MACaKBn(request)). When D receives the authentication message, it
checks the timestamp of CertCAn(B) to make sure it has arrived before time n+d. At time n+d, the CA
discloses tKCAn. Upon receiving the key, D verifies CertCAn(B) by checking the MAC in the certificate
using tKCAn. If the MAC verifies correctly, D obtains aKBn from the certificate by decrypting with tKCAn.
Subsequently, D checks MACaKBn(request) to verify the authenticity of B.

A TESLA certificate, as envisioned in [8], allows a node to add authentication to packets for a single
period in time. Therefore, a source node B that transmits for multiple time intervals will need several
TESLA certificates from the CA. If there are many sources that send data over long intervals, this can
add up to a substantial overhead.

4. Extension to TESLA Certificate and Authentication in Hybrid Networks

We extend the lifetime of the TESLA certificate from single use to multiple uses by combining key
chains with the certificate. We use this extended TESLA certificate in the authentication protocol
proposed in [9] and disclose TESLA keys used by the source node by allowing the satellite in the
hybrid network to broadcast the sender’s MAC keys to the receivers – the satellite therefore acts as a
proxy for the sender. We also use the satellite as the CA to generate the TESLA certificates for the
sender nodes. The authentication protocol is described in brief as follows.

3

4.1 Setup: Key Chain Generation by CA and Source Node

During the initial setup, before any messages are transmitted, the CA and all sources generate the key
chains that each use for message authentication.

The CA uses a key chain {tKCA,i} (where i = 1, ..,N) to authenticate the TESLA certificates that it
creates. It starts with a random seed sCA,N and applies one-way function F1 to sCA,N to form a TESLA
chain in a manner similar to that described in section 2. Subsequently the CA applies function F2 to
each element sCA,i of the TESLA chain obtain key tKCA,i. sCA,0 is the anchor element of the CA’s
authentication key chain. All TESLA certificates and signed messages from the CA are authenticated
using the anchor element during the protocol run. sCA,0 is broadcast to the network in time t < t0: CA →
network: (sCA,0, SIGN−KCA (..)) where -KCA is the private key of the CA’s public-private key pair.

Similar to the CA, each source node A generates a random seed sA,n and applies one-way function F1
to sA,n to form a hash chain. A subsequently applies F2 to each key sA,i of the chain and obtains s′A,i. At
time t < t0, A sends sA,n and n to the CA, along with details on A’s key disclosure interval. The
message from A to the CA is secured using the shared secret KCA,A between A and the CA. The CA
can obtain all the elements of A’s TESLA key chain from sA,n and n.

On successful verification of A′s identity, the CA generates the TESLA certificate for A. The key sA,0 is
included in the certificate as the anchor element of A’s key chain. It is encrypted using key tKCA,1 from
the CA’s key chain. The certificate also includes the identity of the source node A and the time t0+d up
to which the certificate is valid, i.e., after time t0+d, key sA,0 is made public to the group and it can no
longer be used for new messages. The certificate also contains a MAC for authentication, computed
on the previous elements using tKCA,1. For added security, the certificate may also be signed by CA’s
digital signature: CertCA(A) = (IDA,{sA,0}tKCA,1,t0+d,MACtKCA,1(..),SIGN−KCA(..)). Here d is the key
disclosure delay for the CA TESLA signature key, and tKCA,1 is the CA MAC key for the time period <t0,
t0+di>.

4.2 Message Transmission from Source to Receiver

A sends messages M0..Mi to B and C starting in the time interval <t0, t0+di>. A computes a MAC over
the message m0 using s′A,0 and includes its TESLA certificate CertCA(A) with the message:
A→{B,C}:{M0|M0 : m0,MACs′A,0(m0),CertCA(A)}. Each of B and C checks the freshness of the certificate
by checking the timestamp of CertCA(A) to make sure it has arrived within the period <t,t0+di>. The
receivers also check that s′A,0 is not publicly known, i.e., MACs′A,0(m0) cannot yet be computed by
them. If all the checks pass, B and C store M0 in their respective buffers, else they discard the
message.

4.3 Message Authentication at Receiver

At time t1 = t0+d, the CA broadcasts the key sCA,1: CA → network : (<t0, t0+di>, sCA,1, SIGN−KCA(..)).
Receiver B or C can check the authenticity of sCA,1 by verifying sCA,1 against the anchor element sCA,0:
sCA,1

F
1→ sCA,0. B or C can alternatively verify sCA,1 from the digital signature using CA’s public key

+KCA. If verification is successful, each receiver derives tKCA,1 from sCA,1 using F2 and uses tKCA,1 to
verify the MAC on CertCA(A). If the MAC is correct, each receiver obtains sA,0 from CertCA(A) by
decrypting with tKCA,1. B or C obtains s′A,0 from sA,0, then checks MACs′A,0(m0) using s′A,0 and accepts
m0 if the MAC verifies correctly. Each receiver saves CertCA(A) and the anchor element sA,0 of A′s key
chain in long-term memory - they are used for authenticating future keys and messages from A.

Messages from A in subsequent time intervals are authenticated using the corresponding key of A′s
key chain. A does not have to include its TESLA certificate in messages subsequent to M0, under the
assumption that every receiver has received M0 correctly. For example, in the period <ti, ti+i>,
message Mi from A to B would look like: A → B: {Mi | Mi: mi,MACs′A,i(mi)}. At time ti+d, the CA
broadcasts sA,i to the network. When sA,i is disclosed, A is no longer using s′A,i for computing the MACs
on its messages. Any receiver B that receives the CA broadcast, verifies that sA,i indeed belongs to A’s
MAC key chain as: sA,i

F
1→ sA,i-1

F
1→ ...

F
1→ sA,0 where sA,0 has already been verified from CertCA(A).

4

5. Non-repudiation with TESLA Certificate Authentication in Hybrid Networks

In the extended TESLA certificate authentication protocol described in section 4, we propose to add
non-repudiation by taking advantage of the satellite infrastructure and the proposed mechanism of
MAC key disclosure by proxy. This is achieved as described in the following section.

The authentication protocol in section 4 is described using one MAC per message. For allowing non-
repudiation, we propose that the source authenticates each message by two or more MACs,
computed using keys from two or more key chains, respectively. The anchor element of the root key of
each chain is shared between the source and the CA (the satellite) as described in 4.2. The source
includes all the MACs with each message transmission. Each receiver buffers the message along with
all the MACs if the basic security check is satisfied, as described in the protocol in 4.2.6. At the time of
key disclosure, the CA broadcasts only one of the MAC keys out of the set of MAC keys for the given
source and message. Each receiver verifies the single MAC associated with the key broadcast by the
CA, and accepts the message as correct if the MAC is verified. If any receiver wants to be able to
check the message for non-repudiation at a later time instant, it saves the message along with all its
MACs.

The MAC key that is disclosed by the CA is chosen at every disclosure instant, with uniform probability
from the set of available keys for that time interval. Therefore, the source cannot know in advance,
with a high degree of probability, which key will be used by the receivers for authentication. Hence, if
the source would like its messages to be accepted by the receivers, it will have to include all the MACs
correctly computed with the corresponding keys.

If at a later instant in time, a receiver would like to prove that a message was indeed generated by the
source (i.e., non-repudiation), the receiver can simply send a non-repudiation request to the CA. Upon
receiving the request, the CA discloses one of the previously undisclosed MAC keys for the message
in question. The receiver can compute the MAC for the message with the newly disclosed key and
compare the MAC with the set of MACs it had saved previously. If the CA and the receiver operate
correctly, the newly computed MAC will match one of the saved MACs. Since: (i) the undisclosed MAC
keys were known only to the source and the CA, and (ii) the CA is universally trusted, therefore the
saved MAC must have been computed by the source using its MAC key and hence the message must
have been generated by the source. Thus non-repudiation is achieved.

The security of the above algorithm is proportional to the number of MACs included with each
message. For two MACs per message, the probability of a particular key being disclosed by the CA is
0.5. We term this probability the r-factor, where r is acronym for repudiation. It is computed as the
inverse of the number of MACs included with each message. A non-conforming source who includes
only one correctly computed MAC with its message in order to avoid non-repudiation, can expect the
message to be accepted by the receivers only with 50% probability. If four MACs are included with
every message, the r-factor drops to 0.25, and so on. There is hence a trade-off between the strength
of the non-repudiation algorithm and the security overhead per message in terms of number of MACs
involved. There is also the processing overhead at the source since it node has to compute M, number
of MACs per message where M >1.

The number of MACs per message also affects the security of the algorithm in the context of the
receivers. If there are two MACs per message, the non-repudiation mechanism will be successful for
the request from one receiver. For any subsequent request from other receivers for that particular
message, non-repudiation will fail since both MAC keys are now known to the receivers. The number
of successful non-repudiation requests for a given message is therefore directly proportional to the
number of MACs per message. This drawback can be solved by modifying the protocol steps for non-
repudiation. Instead of sending a request for an undisclosed key, the receiver can send the entire
message along with the saved MACs, to the CA. The CA itself will compute the MACs on the message
with any one of the undisclosed keys and compare with the saved MACs sent by the receiver. Since
the undisclosed keys are known only to the CA and the source, in the event of a match, the CA can
confirm to the receiver that the message was indeed generated by the source. The security of this
mechanism depends only on the amount of trust placed on the CA and is independent of the number
of MACs per message. The tradeoff is the additional load on the CA and the network overhead in
transmission of the message with the MACs, to the CA.

5

Fig. 2 Comparison of percentage byte
overhead between TESLA with HMAC-

MD5 and DSA, RSA

Fig. 3 Comparison of percentage byte
overhead between TESLA with HMAC-

SHA1 and DSA, RSA

Fig. 4 Energy consumption per packet for
HMAC-MD5 authentication

Fig. 5 Percentage node energy consumed for
HMAC-MD5 authentication of 500MB data,

6. Performance Analysis

As part of simulations conducted for quantifying the performance of the proposed authentication
algorithm, we have analyzed the overhead of allowing non-repudiation. The simulations show that the
size of the TESLA certificate and the MACs computed on each message, compare favorably to digital
certificates and signatures used in public key-based cryptography.

A comparison of the size overhead incurred for authenticating 500MB data using our proposed
protocol or with public-key algorithms DSA or RSA, is shown in figures 2 and 3. Figure 2 compares
extended TESLA with HMAC-MD5 (size of one MAC = 128 bits) against DSA and RSA, while figure 3
compares extended TESLA with HMAC-SHA1 (size of one MAC = 160 bits) against DSA and RSA.
The graphs show how the overhead varies as a percentage of the total bytes transferred (message +
MAC/signature) as the size of the IP packet varies between 316 bytes and 1528 bytes.

6

Fig. 6 Comparison of maximum data processable.

For extended TESLA, we consider three cases based on the degree of non-repudiation present - for
each packet that is authentication, r-factor is either 1 (one MAC), or 0.25 (four MACs) or 0.125 (eight
MACs). These are compared to DSA with signature sizes 40, 64 and 128 bytes, and RSA with
signature sizes 64, 128 and 256 bytes (for modulus N=512,1024 and 2048 respectively). For all the
cases, the overhead decreases with increase in the packet size because for the higher packet sizes
there are lesser number of chunks and hence lesser number of MACs or signatures. The overhead for
our basic protocol is the lowest of all the cases. As we add more MACs for non-repudiation, the
overhead goes up and is a significant percentage for eight MACs (r-factor 0.125). This is the tradeoff
in terms of size for our non-repudiation scheme. However, even then the overhead for our protocol is
significantly less than the overhead due to strong RSA (256 byte signature) or DSA (128 byte
signature)-based security.

Another parameter where non-repudiation has a measureable impact is in the amount of node energy
required for processing the authentication data. We simulate the energy consumption for a Compaq
iPAQ H3670 handheld computer based on the energy expenditure measures of different crypto-
graphic operations given in [11]. Figure 4 shows that the energy consumption for authenticating each
packet ranges between 0.7238mJ and 12.73mJ, with larger packets and higher r-factors consuming
more energy. Figure 5 shows the total energy consumed for authenticating 500MB data, as a
percentage of the battery capacity. For higher r-factors, the energy consumption is a significant
percentage of the capacity and implies that more than 500MB data cannot be authenticated without
recharging. It is to be noted that in most cases, the higher energy expense for the higher r-factors is
incurred by the source node only. The receivers can authenticate the messages by computing only
one MAC and hence the figures for r-factor 1 are indicative of the energy expense of the receivers.

Despite the higher energy
requirement for non-
repudiation, the TESLA
authentication protocol
performs significantly better
than standard public-key
algorithms like RSA and
DSA even when non-
repudiation is allowed. This
is illustrated by figure 6,
which compares the amount
of data that can be
authenticated using 50% of
the node energy. As the
figure illustrates, the
standard protocols can
authenticate only a few
mega-bytes of data before
they completely spend the
available energy. The best

scenario for the standard
protocols is for RSA
signature verification, where
a node can authenticate nearly 543MB of data if it is split into 1528 byte packets. The worst scenario
is for RSA signature generation, where only 6MB of data can be authenticated, for 668 byte packets.
The extended TESLA protocol with HMAC-MD5 performs significantly better in comparison - being
capable of authenticating 682MB even with r-factor 0.125.

7. Conclusion

In this paper we have described a novel concept of probabilistic non-repudiation that is used as part of
the TESLA certificate multicast authentication protocol in hybrid satellite/wireless networks. The non-
repudiation mechanism makes use of having the satellite node act as the source node’s proxy for key
disclosure to the receivers. This allows the satellite node to be used as an arbitrator when the
requirement for non-repudiation arises. Through simulations we have analyzed the trade-off of the

7

non-repudiation mechanism. We have shown that the non-repudiation has a higher byte overhead and
higher energy consumption compared to authentication without repudiation. However, the simulations
also show that the authentication protocol with non-repudiation still performs significantly better than
comparable public cryptography-based authentication algorithms.

Even though we have described the non-repudiation mechanism as a part of our proposed
authentication protocol, the method can also be used with other symmetric-MAC based multicast
authentication protocols, provided a trusted infrastructure is present for proxy key disclosure and to
provide arbitration.

Acknowledgement

The material presented here is based upon work supported by National Aeronautics and Space
Administration under award No. NCC8235. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Aeronautics and Space Administration.

References

1 A. Roy-Chowdhury and J. S. Baras, “Improving network performance in hybrid wireless networks

using a satellite overlay,” in Proc. 13
th
 Ka and Broadband Communications Conference. Turin, Italy:

Instituto Internazionale delle Comunicazioni (IIC), September 24-26 2007.

2 N.I.S.T., “Digital signature standard (DSS),” May 19 1994.

3 P. Prasithsangaree and P. Krishnamurthy, “On a framework for energy efficient security protocols in

wireless networks,” Elsevier Computer Communications, vol. 27, pp. 1716–1729, 2004.

4 S. Seys and B. Preneel, “Power consumption evaluation of efficient digital signature schemes for low

power devices,” in Proc. 2005 IEEE International Conference on Wireless and Mobile Computing,

Networking and Communications (IEEE WiMOb 2005), vol. 1. IEEE, 2005, pp. 79–86.

5 W. Freeman and E. Miller, “An experimental analysis of cryptographic overhead in performance-

critical systems,” in Proc. 7th International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOT’99). College Park, MD, USA: IEEE, October

1999, pp. 348–357. [Online]. Available:citeseer.ist.psu.edu/freeman99experimental.html

6 H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for Message Authentication, IETF

RFC 2104, February 1997.

 7 A. Perrig, R. Canetti, D. Song, and J. D. Tygar, “Efficient and secure source authentication for

multicast,” in Proc. Network and Distributed System Security Symposium (NDSS), 2001.

8 M. Bohge and W. Trappe, “An authentication framework for hierarchical ad hoc sensor networks,” in

Proceedings of the 2003 ACM Workshop on Wireless Security (WiSE’03). San Diego, USA: ACM,

August 2003, pp. 79–87.
9 A. Roy-Chowdhury and J. Baras, “A lightweight certificate-based source authentication protocol for
group communications in hybrid wireless/satellite networks,” in Proc. IEEE Global Communications
Conference (Globecom) 2008. New Orleans, Louisiana, USA: IEEE, November 30 - December 4
2008.
10 A. Roy-Chowdhury, “Improving network performance, security and robustness in hybrid wireless
networks using a satellite overlay,” Ph.D. dissertation, University of Maryland, College Park, Maryland,
USA, September 2008.
11 Compaq iPAQ Pocket PC H3600 series. http://h18002.www1.hp.com/products/quickspecs/10632
div/10632 div.HTML#QuickSpecs.

8

