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a b s t r a c t

In this paper we introduce a consensus-based distributed filter, executed by a sensor network, inspired
by the Markovian jump linear system filtering theory. We show that the optimal filtering gains of
the Markovian jump linear system can be used as an approximate solution of the optimal distributed
filtering problem. This parallel allows us to interpret each filtering gain corresponding to a mode of
operation of the Markovian jump linear system as a filtering gain corresponding to a sensor in the
network. The approximate solution can be implemented distributively and guarantees a quantifiable level
of performance.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A fundamental problem in sensor networks is developing
distributed algorithms for estimating the state of a process of
interest. The goal of each sensor is to compute accurate state
estimates of the process in a distributedmanner, that is, using only
local information. The distributed filtering (estimation) problem
received a lot of attention during the past thirty years. Major
contributions were made by Borkar and Varaya (1982), Teneketzis
and Varaiya (1988), who addressed the distributed estimation
problem of a random variable by a group of sensors. The recent
technological advances in mobile sensor networks have re-ignited
the interest in the distributed estimation problem. Most papers
focusing on distributed estimation propose different mechanisms
for combining the standard Kalman filter with a consensus filter in
order to ensure that the estimates asymptotically converge to the
samevalue (Carli, Chiuso, Schenato, & Zampieri, 2008;Olfati-Saber,
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2005, 2007; Speranzon, Fischione, Johansson, & Sangiovanni-
Vincentelli, 2008). More recent contributions on the design of
distributed decentralized estimators can be found in Subbotin and
Smith (2009).

In this paper we argue that the optimal filtering gains
of a particular Markovian jump linear system (MJLS) can be
used as an approximate solution of the optimal consensus-
based distributed state estimation scheme. Namely, we show
that each (scaled) filtering gain corresponding to a mode of
operation of an (appropriately defined) MJLS can be used as a
local filtering gain corresponding to a sensor in the network.
In general, heuristic, sub-optimal schemes are used to compute
state estimates distributively, for which the performance of these
schemes is difficult to quantify. Although we do not to compute
the exact filtering performance under our sub-optimal solution,we
are able to guarantee a certain a level of performance which can be
evaluated. Partial results of this paper were presented in Matei and
Baras (2010).

Paper structure: In Section 2 we describe the models used in
the MJLS and the distributed filtering problems. In Section 3 we
introduce the optimal linear filtering gains of an appropriately
definedMJLS, while in Section 4 we showwhy these filtering gains
can be used as an approximate solution for the optimal distributed
filtering problem. We conclude with a numerical example in
Section 5.

Remark 1. Given a positive integer N , a set of vectors {xi}Ni=1, a
set of matrices {Ai}

N
i=1 and a set of non-negative scalars {pi}Ni=1
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summing up to one, the following holds
N
i=1

piAixi


N
i=1

piAixi

′

≼

N
i=1

piAixix′

iA
′

i.

2. Problem formulation

In this section, we first describe the distributed estimation
model, followed by the description of a particular MJLS.

2.1. Distributed estimation model

We consider a discrete-time, linear stochastic process, given by
x(k + 1) = Ax(k) + w(k), x(0) = x0, (1)
where x(k) ∈ Rn is the state vector and w(k) ∈ Rn is a driving
noise, assumed Gaussian with zero mean and covariance matrix
Σw . The initial condition x0 is assumed to be Gaussian with mean
µ0 and covariance matrix Σ0. The state of the process is observed
by a network of N sensors indexed by i, whose sensing models are
given by
yi(k) = Cix(k) + vi(k), i = 1 · · ·N, (2)
where yi(k) ∈ Rri is the observation made by sensor i and vi(k) ∈

Rri is the measurement noise, assumed Gaussian with zero mean
and covariance matrix Σvi . We assume that the matrices {Σvi}

N
i=1

and Σw are positive definite and that the initial state x0, the noises
vi(k) and w(k) are independent for all k ≥ 0.

The set of sensors form a communication network whose
topology is modeled by a directed graph that describes the
information exchanged among agents. The goal of the agents is
to distributively (using only local information) compute estimates
of the state of the process (1). Let x̂i(k) denote the state estimate
computed by sensor i at time k. The sensors update their estimates
in two steps. In the first step, an intermediate estimate, denoted by
ϕi(k), is produced using a Luenberger observer filter

ϕi(k) = Ax̂i(k) + Li(k)(yi(k) − Cix̂i(k)), i = 1 · · ·N, (3)
where Li(k) is the filter gain.

In the second step, the new state estimate of sensor i is
generated by a convex combination between ϕi(k) and all other
intermediate estimates within its communication neighborhood,
i.e.,

x̂i(k + 1) =

N
j=1

pijϕj(k), i = 1 · · ·N, (4)

where pij are the non-negative entries of a stochastic matrix (rows
sum up to one) P = (pij), whose structure is induced by the
communication topology (i.e., pij = 0 if no link from j to i exists).
Combining (3) and (4) we obtain the dynamic equations for the
consensus based distributed filter

x̂i(k + 1) =

N
j=1

pij

Ax̂j(k) + Lj(k)


yj(k) − Cjx̂j(k)


, (5)

for i = 1 · · ·N .

Assumption 2. For reasons we will make clear later in the paper,
we assume that the matrix P = (pij) is doubly stochastic.

2.2. Markovian jump linear system model

We define the following MJLS

ξ(k + 1) = Ãθ(k)ξ(k) + B̃θ(k)w̃(k)

z(k) = C̃θ(k)ξ(k) + D̃θ(k)ṽ(k), ξ(0) = ξ0,
(6)
where ξ(k) is the state, z(k) is the output, θ(k) ∈ {1, . . . ,N} is a
Markov chain with probability transition matrix P ′, w̃(k) and ṽ(k)
are independent Gaussian random variables with zero mean and
identity covariance matrices. Additionally, ξ0 is a Gaussian noise
with mean µ0 and covariance matrix Σ0. We denote by πi(k) the
probability distribution of θ(k) (Pr(θ(k) = i) = πi(k)) and we
assume that πi(0) > 0, for all i. We have that Ãθ(k) ∈ {Ãi}

N
i=1,

B̃θ(k) ∈ {B̃i}
N
i=1, C̃θ(k) ∈ {C̃i}

N
i=1 and D̃θ(k) ∈ {D̃i}

N
i=1, where the index

i refers to the state i of θ(k). We set

Ãi = A, B̃i =

√
πi(0)

√
πi(k)

Σ1/2
w ,

C̃i =
1

√
πi(0)

Ci, D̃i =
1

√
πi(k)

Σ1/2
vi

,

(7)

for all i. Note that since P is assumed doubly stochastic andπi(0) >
0, we have that πi(k) > 0 for all i, k ≥ 0. In addition, ξ0, θ(k),
w̃(k) and ṽ(k) are assumed independent for all k ≥ 0. The random
process θ(k) is also calledmode.

3. Markovian jump linear system filtering

In this section we introduce an optimal linear filter for the state
estimation of MJLSs. Assuming that the mode is directly observed,
a linear filter for the state estimation is given by

ξ̂ (k + 1) = Ãθ(k)ξ̂ (k) + Mθ(k)(z(k) − C̃θ(k)ξ̂ (k)), (8)
where we assume that the filter gain Mθ(k) depends only on the
current mode. The dynamics of the estimation error e(k) , ξ(k) −

ξ̂ (k) is given by

e(k + 1) =


Ãθ(k) − Mθ(k)C̃θ(k)


e(k) + B̃θ(k)w̃(k)

−Mθ(k)D̃θ(k)ṽ(k). (9)
Let Γ (k) denote the covariance matrix of e(k), i.e., Γ (k) ,
E[e(k)e(k)′].Wedefine also the covariancematrix of e(k), when the
system is inmode i, i.e.Γi(k) , E[e(k)e(k)′1{θ(k)=i}], where 1{θ(k)=i}
is the indicator function. Using (7), the dynamic equations of the
matrices Γi(k) are given by

Γi(k + 1) =

N
j=1

pij


A −

1
πj(0)

Mj(k)Cj


Γj(k) ×

×


A −

1
πj(0)

Mj(k)Cj

′

+

N
j=1

pij

Mj(k)ΣvjMj(k)′ + πj(0)Σw


,

(10)
with Γi(0) = πi(0)Σ0.

Remark 3. To be consistent with the distributed estimation
model, in the above expression we need the summation to be
over pij (and not pji). This was obtained by imposing P ′ to be the
transition probability matrix of θ(k), which explains the need for
Assumption 2.

The optimal filtering gains are obtained as a solution of the
following minimization problem

M∗(K) = argmin
M(K)

JK (M(K)), (11)

where JK (M(K)) is the finite horizon filtering cost

JK (M(K)) =

K
k=0

tr(Γ (k)) =

K
k=0

N
i=1

tr(Γi(k)),

andM(K) , {Mi(k), k = 0 · · · K − 1}Ni=1 is the set of filtering gains
corresponding to the operatingmodes of the system over the finite
horizon.
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Proposition 4. The optimal solution of (11) is given by

M∗

i (k) =
1

√
πi(0)

AΓ ∗

i (k)C ′

i


Σvi +

1
πi(0)

CiΓ
∗

i (k)C ′

i

−1

, (12)

for i = 1 · · ·N, where Γ ∗

i (k) satisfies

Γ ∗

i (k + 1)

=

N
j=1

pij


AΓ ∗

j (k)A′
+ πj(0)Σw −

1
πj(0)

AΓ ∗

j (k)C ′

j×

×


Σvj +

1
πj(0)

CjΓ
∗

j (k)C ′

j

−1 1
πj(0)

CjΓ
∗

j (k)A′


, (13)

with Γ ∗

i (0) = πi(0)Σ0.

Proof. Follows from Theorems 5.3–5.5 of Costa, Fragoso, and
Marques (2005). �

Let us now define a scaled version of the matrices Γi(k), namely
Qi(k) , 1

πi(0)
Γi(k). These matrices will appear in the next section

as ‘‘approximations’’ of the covariance matrices of the estimation
errors resulting from the distributed filter (5). It can be easily
checked that Qi(k) respects the following dynamic equation

Qi(k + 1) =

N
j=1

pij

A − Lj(k)Cj


Qj(k)


A − Lj(k)Cj

′
+

N
j=1

pijLj(k)ΣvjLj(k)
′
+ Σw, (14)

with Qi(0) = Σ0 and where Li(k) =
1

√
πi(0)

Mi(k). In the following
Corollary, we introduce the optimal solution of the optimization
problem

min
L(K)

J̄K (L(K)), (15)

where J̄K (L(K)) =
K

k=0
N

i=1 tr(Qi(k)) and L(K) , {Li(k), k =

0 · · · K − 1}Ni=1, which follows immediately from Proposition 4.

Corollary 5. The optimal solution of the optimization problem (15) is
given by

L∗

i (k) = AQ ∗

i (k)C ′

i


Σvi + CiQ ∗

i (k)C ′

i

−1
, (16)

for i = 1 · · ·N, where Q ∗

i (k) satisfies

Q ∗

i (k + 1) =

N
j=1

pij

AQ ∗

j (k)A′
+ Σw − AQ ∗

j (k)C ′

j×

×

Σvj + CjQ ∗

j (k)C ′

j

−1 CjQ ∗

j (k)A′


, (17)

with Q ∗

i (0) = Σ0.

4. Sub-optimal distributed consensus-based linear filtering

In this section we introduce the distributed filtering problem
and show why the filtering gains derived in the previous section,
corresponding to the optimal linear filter of a MJLS, can be used
as an approximate solution of the optimal distributed filtering
problem. Let ϵi(k) denote the estimation error of sensor i, i.e.,
ϵi(k) , x(k) − x̂i(k). The covariance matrix of the estimation error
of sensor i is denoted by

Σi(k) , E[ϵi(k)ϵi(k)′], Σi(0) = Σ0. (18)

From (5), the estimation errors evolve according to

ϵi(k + 1) =

N
j=1

pij

A − Lj(k)Cj


ϵj(k) + w(k) − Lj(k)vj(k)


. (19)

We introduce the following optimization problem

min
L(K)

JK (L(K)), (20)

where JK (L(K)) is the finite horizon filtering cost function

JK (L(K)) =

K
k=0

N
i=1

E[∥ϵi(k)∥2
] =

K
k=0

N
i=1

tr(Σi(k)), (21)

where by L(K) we understand the set of matrices L(K) , {Li(k),
k = 0 · · · K − 1}Ni=1.

The problem of obtaining the optimal filtering gains of the
above cost is intractable, very much in the same spirit of the
(still open) decentralized control problem. Inspired by the MJLS
filtering theory, in what follows we show how we can obtain an
approximate solution of (20). The advantage of this approximate
solution is that it can be computed in a distributed manner and
that guarantees a level of performance that can be quantified.

The approximate solution of (20) is based on the next result.

Lemma 6. Assume that the distributed filtering scheme and the MJLS
state estimation scheme use that same filtering gains. Then the
following inequality holds

Σi(k) ≼ Qi(k), ∀i, k, (22)

where Σi(k) was defined in (18) and Qi(k) satisfies (14).

Proof. Let Li(k) be the filtering gains. Using (19), thematrixΣi(k+

1) can be explicitly written as

Σi(k + 1)

= E


N
j=1

pij

A − Lj(k)Cj


ϵj(k) + w(k) −

N
j=1

pijLj(k)vj(k)


×

×


N
j=1

pij

A − Lj(k)Cj


ϵj(k) + w(k) −

N
j=1

pij(k)Lj(k)vj(k)

′
.

Using the fact that the noises w(k) and vi(k) have zero mean, and
they are independent with respect to themselves and x0, for every
time instant, we can further write

Σi(k + 1)

= E


N
j=1

pij

A−Lj(k)Cj


ϵj(k)


N
j=1

pij

A − Lj(k)Cj


ϵj(k)

′
+

+ E


N
j=1

pijLj(k)vj(k)


N
j=1

pijLj(k)vj(k)

′
+ Σw.

By Remark 1, it follows that

E


N
j=1

pij

A − Lj(k)Cj


ϵj(k)


N
j=1

pij

A − Lj(k)Cj


ϵj(k)

′

≼

N
j=1

pij

A − Lj(k)Cj


Σj(k)


A − Lj(k)Cj

′
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and

E


N
j=1

pijLj(k)vj(k)


N
j=1

pijLj(k)vj(k)

′

≼

N
j=1

pijLj(k)ΣvjLj(k)
′, i = 1 · · ·N.

From the previous two expressions, we obtain that

Σi(k + 1) ≼

N
j=1

pij

A − Lj(k)Cj


Σj(k)


A − Lj(k)Cj

′
+

N
j=1

pijLj(k)ΣvjLj(k) + Σw.

We prove (22) by induction. Assume that Σi(k) ≼ Qi(k) for all
i = 1 · · ·N . Then

(A − Li(k)Ci) Σi(k) (A − Li(k)Ci)
′

≼ (A − Li(k)Ci)Qi(k) (A − Li(k)Ci)
′ ,

and

Li(k)Σi(k)Li(k)′ ≼ Li(k)Qi(k)Li(k)′, i = 1 · · ·N

and therefore

Σi(k + 1) ≼ Qi(k + 1), i = 1 · · ·N. �

The next Corollary follows immediately from Lemma 6 and shows
that J̄K (L(K)) is an upper bound on the filtering cost of the
distributed filtering problem.

Corollary 7. The following inequality holds

JK (L(K)) ≤ J̄K (L(K)), (23)

for any set of matrices L(K) = {Li(k), k = 0 · · · K − 1}Ni=1.

Remark 8. Corollary 7 leads us to a rigorous approach to deriving
a sub-optimal scheme for the distributed filtering problem. More
precisely, instead of minimizing the cost JK (L(K)), we minimize
its upper bound, namely J̄K (L(K)). The minimizer of J̄K (L(K))

was introduced in Corollary 5 (Eqs. (16)–(17)). This sub-optimal
solution has the advantage that it can be implemented in a
distributedmanner (i.e., each agent requires information only from
neighbors) and guarantees a filtering cost no larger than

J̄K (L∗(K)) =

K
k=0

N
i=1

Q ∗

i (k),

where L∗

i (k) and Q ∗

i (k) satisfy (16) and (17), respectively.

We can also formulate an infinite horizon optimization cost for the
distributed filtering problem. The sub-optimal solution inspired by
the MJLS theory has the same expression as in formulas (16)–(17)
and the questionwe can ask is underwhat conditions the dynamics
of Q ∗

i (k) is stable. Sufficient conditions under which there exists a
unique set of matrices {Q∞

i }
N
i=1 such that limk→∞ Q ∗

i (k) = Q∞

i , for
i = 1 · · ·N , are introduced in Appendix A of Costa et al. (2005).
Fig. 1. Sensor network.

5. Numerical example

In this section we present a numerical example where a sensor
network (Fig. 1) estimates the state of a stochastic linear process.
We compare the estimation errors under three estimation strate-
gies: centralized filtering (i.e., a central entity receives information
from all sensors), collaborative filtering described in the previous
sections and non-collaborative filtering (i.e., each sensor computes
an estimate based only on its ownmeasurements). The parameters
of the stochastic process are given by

A =


0.9996 −0.03
0.03 0.9996


, Σw =


0.1 0
0 0.1


,

µ0 = 10, Σ0 = 02×2.

The parameters of the sensing models are as follows: Ci = [1 0],
σ 2

vi
= 0.01 for i ∈ {1, . . . , 8}, and Ci = [0 1], σ 2

vi
= 1 for

i ∈ {9, . . . , 16}. In other words we assume that the first half of
the sensors are very accurate compared to the second half of the
sensors. In the collaborative filtering scenario, the consensus ma-
trix P is chosen as P = I − 1

N L, where N = 16 and L is the Laplacian
of the (undirected) graph in Fig. 1.

Let x̂c(k), x̂i(k) and x̂nci (k) be the state estimates obtained
using the centralized filter, the collaborative filter and the non-
collaborative filter, respectively.

In the centralized case the filter dynamics is given by

x̂c(k + 1) = Ax̂c(k) + Lc(k)

y(k) − Cx̂c(k)


where C′

= [C ′

1, . . . , C
′

N ], Lc(k) is the filtering gain in the
centralized case, y(k) = Cx(k) + v(k), and v(k) = (vi(k)). In the
non-collaborative case, the dynamics of the filters corresponding
to each of the sensors are given by

x̂nci (k + 1) = Ax̂nci (k) + Lnci (k)

yi(k) − Cix̂nci (k)


,

where Lnci are the filtering gains and yi(k) satisfy (2).
The estimation errors in the three considered cases are denoted

by ϵc(k), ϵi(k) and ϵnc
i (k), respectively. In the case of the centralized

and non-collaborative cases, the optimal filters are computed by
minimizing a quadratic cost in terms of the estimation errors
similar to (21), and using standard optimal filtering techniques for
linear systems.

In the following numerical simulations, the quantities E
[∥ϵc(k)∥2

] and E[∥ϵnc
i (k)∥2

] are computed exactly, since we can
derive the update equations of the covariances matrices of the
estimation errors. The quantities E[∥ϵi(k)∥2

] (resulting from our
algorithm) are approximated by averaging over 2000 realizations,
since computing the covariance errors is intractable due to cross-
correlations.

In Fig. 2 we plot the variances of the estimation errors for
the three filtering cases enumerated above. We represent the
mean values of the norm of the estimation error in the case
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Fig. 2. Estimation errors in the centralized, collaborative and non-collaborative
filtering scenarios.

of the centralized filter (E[∥ϵ(k)c∥2
]). In addition, we represent

the mean values of the norm of the estimation errors for the
accurate sensor 2 and for the less accurate sensor 15, in the case
of our filtering algorithm and in the case of the non-collaborative
filtering algorithm (E[∥ϵ2(k)∥2

], E[∥ϵ15(k)∥2
], E[∥ϵnc

2 (k)∥2
] and
E[∥ϵnc
15(k)∥

2
]). In the case of our algorithm, we added a hat

symbol on the expectation operator to signify approximation. As
expected, the collaborative filter scores less than the centralized
filter but better than the localized, non-collaborative filter.We also
notice that the accurate sensor 2 computes a better estimate than
sensor 15.
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