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ABSTRACT

We propose a statistical model complexity framework for
topology preserving adaptive vector quantization. In this
setting, adaptation of the neighborhood function during
training of the codebooks, which is essential for produc-
ing global organization, may be regarded as increasing the
statistical model complexity as more data become available.
Therefore, the training is equivalent to on the fly optimiza-
tion of the bias/variance trade-off.

1. INTRODUCTION

We are interested in statistical models which adapt their
complexity for bias/variance trade-off on-line.  Such
schemes are useful in applications where estimation and us-
age of the model for inference must be carried out simul-
taneously on the fly. Rather than selecting a fixed model
size k for a given data set of size n, we would like to have
a model with adaptive complexity which starts from a very
simple model when very few data are available, then in-
creases its complexity as more data arrive thereby optimiz-
ing the bias/variance trade-off on the fly.

The neighborhood adaptation in topology preserving
adaptive vector quantization, which is essential for produc-
ing global organization, may, in a suitable framework, be
regarded as a model with adaptive complexity. Incremental
and sparse variations of generalized EM algorithms, when
viewed in a free energy minimization context, provide a set-
ting where this kind of adaptive complexity may be justified
in terms of maximum likelihood.

2. TOPOLOGICALLY CONSTRAINED
ADAPTIVE VQ

Data from a feature space F is compressed by a VQ code-
book, X» = {x} € F,k=1,..., K} where each codevector
x} in the feature space F represents a class of feature vec-
tors. Expressed in terms of distortion, the topologically
constrained VQ is the minimization of the modified distor-
tion [1]

D' = Bld(x,x})] + Y _ nuiB[d(x,x})] (1)
sFw

where the “winner” w is w = arg min; |x(t) — x;‘ @®)%
The topology of a reference environment, i.e. the local
neighborhood relations, is captured with the neighborhood
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Figure 1. VQ codebooks of two environments (1
and 2) with the topology preserved.

function

|X?_-ef 2o xv_'rzf|2
ni; =exp | ————2— | Vi,j=1,..., K (2)

202

where the VQ codebook for the reference environment,
X/ = {x}*/ € F,k = 1,...,K} is designed using the
Generalized Lloyd algorithm [2]. The design criterion is the
minimization of the distortion

D = E[d(x,x;7)] 3)
where the “winner”, w, is given by

w = argmin |x — x]'.‘fl2 4)
j

Practically, only N-closest neighbors (N=>5-10) are kept
and the rest of the n;;’s are set to zero leading to the rep-
resentation of the topology as an elastic mesh as in Figure
1.

The idea of topology preservation is detailed in [1]. It is
one of the mathematical frameworks for the Self Organizing
Map (SOM), a topology preserving adaptive VQ algorithm.
The topology of SOM is on a non-linear projection of the



signal space onto a 1D or 2D “map”, and is arbitrarily de-
cided a priori. The topology may also directly be on the
feature space and be simply determined by the distortion
measure in the reference environment as explained above.

The minimization of D’ is accomplished by the Robbins-
Monro stochastic approximation technique, which in the
case of squared error distortion reduces to the incremental
adaptation

xp(t + 1) = xR(t) + nwk () [x(2) — x}(2)) (5)

where x(t), t = 0,...,T are the data from the adaptation
environment whose codebook is initialized with the code-
book of the reference environment

xp(0) =xi, k=1,..,K (6)
or simply set to random vectors in the feature space as
in SOM. Notice that in the adaptation, the neighborhood
function is also dynamic in the following form

ref ref2
=X |

n;;(t) = aft)exp (——X'T‘z(t-)——

)WJ:L“”K(H
The codebook adaptation amounts to stretching of the mesh
to better fit the new environment while keeping the neigh-
borhood relations intact.

The functions a(t) and o?(t) are monotonically decreas-
ing. For initial large values of o%(t), all codevectors are up-
dated similarly, thus the algorithm in the beginning may be
regarded as an incremental version of simple mean normal-
ization. The scale of adaptation is made finer by decreasing
o%(t) as increasingly more data are used.

3. ELASTICITY AND COMPLEXITY

Consider the following analogy for the role of the neighbor-
hood function: For o%(t) — oo, we have a rigid mesh in
which every codevector gets updated in the same manner.
In the case o(t) = 0, we really have no mesh, only the win-
ner gets updated (unconstrained VQ). For the case where
0 < o%(t) < oo, we have an equivalent of an elastic mesh
where, depending on the winner, every codevector gets up-
dated differently. Neighborhood function is also effectively
the probability distribution of the winner, P, with complex-
ity measured by its entropy as in Table 1. Therefore, the

[ Neighborhood | K.ss | Complexity Entropy ‘
uniform 1 least log(K)
finite o K2~ 1 0 < H < log(K)
delta K most 0

more elastic a mesh associated with a codebook is, the more
complex is the model (i.e. has a larger effective number of
parameters). The neighborhood function’s radius, o*(t),
determines the instantaneous complexity which starts from
a single location parameter and increases up to the size of
the codebook.

Model selection criteria such as [4]

MDL(K) = - log(P(If)) + glogn

and R
AIC(k) = —2log(P(z|6)) + 2k

yield a fixed optimal complexity for the given data batch.
Rather than selecting a model size for a given data set of
size n, we would like to have a complexity adaptation which
starts from a very simple model when very few data are
available, then increases its complexity as more data arrive
thereby optimizing on the run the bias/variance trade-off.
The elasticity discussion suggests that the entropy of the
neighborhood function, i.e. the distribution of the winner
might be a good indication of instantaneous complexity.

4. INCREMENTAL AND SPARSE EM
ALGORITHMS

This idea may be justified in an EM framework via maxi-

mization of negative “free energy”: [3]

F(P,8) = Ep [log P(y, 218)] + H(P)

where random variables Y, Z are the observed and the un-
observed variables respectively. The problem is to find the
maximum likelihood estimate for the parameters of a model
for Y and Z. The main result is: If F has a local maximum
at (P*,0%), then the likelihood also has a local maximum
at §°. Both E and M steps can be regarded as maximizing
a single joint function of the model variables and the distri-
bution of the unobserved variables. Therefore, any suitable
optimization scheme that will maximize F will produce a
MLE for the incomplete observation problem. This frame-
work allows for incremental and sparse variations of gener-
alized EM algorithms with provable convergence properties.

Generalized Lloyd algorithm, (LBG, k-means) may be re-
garded as an winner-take-all (i.e. P®*)(y) is 1 for a single
value of ¥ and 0 for others) version of the EM algorithm as
applied to the Gaussian mixture problem with mixing pro-
portions and variances fixed. In a similar manner, topology
preserving adaptive VQ can be regarded as an incremen-
tal and sparse version of the EM algorithm as applied to
the Gaussian mixture problem with mixing proportions and
variances fixed. The increase in F at each incremental itera-
tion, therefore, justifies the adaptation of the neighborhood
function as on-line complexity optimization. This frame-
work may also be used to find good annealing schedules
when the underlying distribution is known to belong to a
given class of distributions.
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