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The dynamics of the map

axr
1+y2

x + by

are discussed for various values of its parameters. Despite the simple algebraic structure, this
map, recently introduced in the literature, is very rich in nonlinear phenomena. Multiple strange
attractors, transitions to chaos via period-doubling bifurcations, qu eriodicity as well as inter-
mittency, interior crisis, hyperchaos are only a few. In this work, strange attractors, bifurcation
diagrams, periodic windows, invariant characteristics are investigated both analytically and

numerically.
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1.1. Related literature and

contribution

1. Introduction

Over the past few decades, scientists have come to
understand that a large variety of systems exhibit
complicated evolution both in space and time.

The model we discuss in this paper, is

ar
Chaos is such a dynamic behavior that is, surpris- F T —W
ingly enough, encountered in algebraically simple y -
dynamical systems. In the case of discrete map- T+ by

pings, several examples of simple polynomial maps
are thoroughly studied in the literature [Ott, 2002].
This is not the case though, with rational maps
which, to our best knowledge, are thoroughly yet
to be studied.

where a,b € R are the control parameters.

This map was first reported and studied in
[Zeraoulia & Sprott, 201la] in some detail. The
study of (F) has also been proposed as an open
problem in [Zeraoulia & Sprott, 2011b].
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In this paper, we answer this call and study the
problem, contributing some new analytical results
as well as observations based on advanced numeri-
cal measurements. Despite, its simplicity, this map
is rich in various nonlinear phenomena many of
which are mathematically tractable. These types of
rational models occur in the area of biological and
evolutionary algorithms. A first example of a one-

dimensional rational map g,(x) — ar is

= o1
presented and discussed in [Lu et al., 2004], as a
result of the study of evolutionary algorithms. Fur-
thermore, in [Chang, 2005], the authors proposed
a two-dimensional version of g.(z): hep(z.y) =
(nllw — ay, w + bx). We expect the study of
(F) to pave the way for a unified theoretical frame-
work suitable for these types of dynamical systems.
This work is an outgrowth of [Somarakis & DBaras,
2011a] from which some main simulation results are
drawn.

1.2,

The paper is organized as follows. In Sec. 2, we
introduce notations and review the main definitions
and theoretical framework to be used. In Sec. 3, we
present simulations of the phase space for typical
values of parameters a and b. These figures illus-
trate the state dynamics of (F) and shall be dis-
cussed throughout the paper. In Sec. 4, the ana-
Iytical properties of the map are established. We
emphasize the existence and stability of periodic
solutions. Moreover, we state few useful proposi-
tions that outline the steady state dynamical behav-
ior of the system for the parameter region |b < 1.
In Sec. 5, we make a thorough simulation analysis.
QOur goal will be to discuss the transition to chaos,
to report and characterize bifurcations that take
place as a increases through critical values (some
of them already known from the analytical study).
‘We also argue that a rather unusual quasiperiod-
icity involved scenario takes place as (F) becomes
chaotic. In Sec. 5.2, we report and characterize some
other nonlinearities such as coexistence of attrac-
tors, interior crises and hyperchaos. In Sec. 5.3, we
estimate the Lyapunov spectrum and the correla-
tion sums of the attractors of Sec. 2 whereas in
Sec. 5.4, we briefly discuss the question whether (F)
can have multiscroll chaotic attractors. We summa-
rize and discuss our results in Sec. 6. In our effort
to make this paper as self-contained as possible, we
included two Appendices: one with related results
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from Center Manifold Theory and one discussing
the Neimark-Sacker bifurcation (Hopf bifurcation
for discrete time systems). Furthermore, we have
omitted few but only technical steps in the proofs
of our results. For complete proofs and detailed
discussion of this work, see the technical report
[Somarakis & Baras, 2011b].

2. Notations and Definitions

In this section, we will define the setting of (F) and
we will review definitions from dynamical systems
theory. The space we use is the standard planar
Euclidean space RB? so that z,y € R, always. The
parameters a,b are taken to be real, as well. By
g(w) = O(e(w)) we understand that there exist pos-
itive 8, M such that |g(w)| < M|e(w)| for |w| < 4.

Attractors and invariant manifolds

A commonly accepted definition of an attractor
with respect to a dynamical system D is that of
a D-invariant set .4 and an open neighborhood of
this set, such that any solution starting in the open
neighborhood will asymptotically converge to A.
Given a dynamical system D and a fixed point T
such that DT = T, the stable and unstable mani-
folds of T are defined as follows

W::.‘U(f) ={z € N(Z): D'z — T as t — +oc},

the global analogues of WiﬁU are defined by let-
ting points in W3, (W¥Y,) flow backward (forward)
in time. For simplicity we will drop N, the symbol
of locality. In many degenerate cases caused by crit-
ical parameter values, the emergence of a third type
of invariant manifold, emerges, known as the center
manifold, the notion of which is of great importance
in the discussion of bifurcations (Appendix A).

2.1. Nonlinear phenomena

Let us now briefly review some nonlinear phenom-
ena which we will encounter in our discussion of the
dynamic behavior of (F). Most of these definitions
are drawn from [Ott, 2002].

Coexistence of attractors

The coexistence of attractors is the phenomenon of
multiple invariant sets (and consequently multiple
open neighborhoods) for D. Extending the defini-
tion of A to include the point at infinity, similar
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phenomena are observed in the behavior of (F)
with |b| > L.

Intermittent behavior

This behavior is associated with the irregularity of
solutions of a system as its parameters are varied
through a critical value. Below this value the behav-
ior may be, for example, periodic while for values
above, it is chaotic. The phenomenon is observed in
the neighborhood of this critical value, where one
observes stretches of time where the solution lies
in one phase (periodic) and also where solution lies
in the other phase (aperiodic). System (F) indeed
exhibits such behavior which we outline and classify

in Sec. 5.1.

Crises

Sudden changes in chaotic attractors with parame-
ter variation are seen very commonly in the study of
chaotic systems. They are usually caused by some
collision of the chaotic attracting invariant set with
an unstable invariant periodic orbit. The types of
crises depend on the nature of the discontinuous
change: in the boundary crisis the chaotic attrac-
tor is suddenly destroyed, in the interior crisis
where the size of the attractor in phase space sud-
denly increases and in the interior merging crisis
chaotic attractors simultaneously collide with a
periodic orbit to form one chaotic attractor. In this
work, an interior crisis is observed and numerically
analyzed.

Hyperchaos

This phenomenon is associated with the existence of
more than one positive Lyapunov exponents along
a chaotic solution of a dynamical system. In our
work, time-series analysis of (F) with |b| > 1 indeed
reveals such solutions which are very interesting
especially because the system is a very simple ratio-
nal planar map. Such solutions were also reported
in [Zeraoulia & Sprott, 2011a].

3. Orbit Simulations

In this section, we illustrate typical attractors
of (F) for different values of (a,b). The results are
presented in Fig. 10. The variety of the strange
attractors motivates a further investigation of this
dynamical system.
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4. Analytical Approach

In this section, we will present rigorous results on
the most important properties of (F), in the form
of lemmas and propositions.

4.1. First remarks

The fact that the denominator of (F) is always
greater than 1, makes the system C*(R?). More-
over, while (F) is an odd function of (z,y) (ie.

F(—x,—y) = —F(x,y)), the Jacobian matrix, at
(z,y) € B2
—a 2ary
DF(zy) = | 1147 (1+72 (n)
1 b

is an even function of (z,y).
Given (xq, yo) the nth iterate of (F) is

T4l —F Ln
Yn+1 Yn
— F(n+1) Zo
Yo

(_UrH»lanJrl
g

I
1
o
—
=

T

hn+1y0 +on Z b iz
i=0

where x,1 = Fu)(mn,\ Yn)s Ynt1 = Fm)(mn,\ Yn)-

It trivially follows from (2) that for a > 0,
solutions oscillate between {(x,y) : x > 0} and
{(z.y) : @ < 0}, while for a < 0 @, preserves the
sign of xg. The next result responds to the bound-
edness of solutions.

Proposition 1. For alla € R and |b| < 1. all solu-
tions of (F) are bounded. If |b| > 1 there are always
unbounded solutions.

Proof. For the second part of the statement, take
(0,79 # 0) and use (2) to obtain z,, =0 and |y,| =
(b7l — o

The first part of the proof occurs by contradic-
tion. Assume that there exist (&, yp) that gener-
ates a solution {zy,yi} with a subsequence |xy, | +
|yw,| — oo for some strictly increasing sequence of
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Fig. 1. Phase plots of (F) for various parameters. The title of each subplot carries the parameter values that generate the
limit set. In the following, the notation Fig. L, will be used to enumerate the corresponding subplot.

naturals k; — oo as i — oo. We consider cases: From (2)(b) and since |b| < 1, we have that
(1) |lyp] £ M < oc: Then x; must admit an X k >
unbounded subsequence. However from (F)(b) b Z b~ ey < oo <
it follows that |z;| < M (1 + |b]). =0
(2) |zx] < M < oc: Then from (2)(b) we have for infinitely many k. Then limsup, >, b lay

x| < [b[*lyo| + 727

o] < 00, either converges or it diverges as b *. Both

(3) |z, lyx;| — oc: It follows that limsup |z,| > these cases contradict the unboundedness
|zy,| = co and of course 3, |ay| = Z_-,"Ik,| = of [yx,|. W
oo. From the ration test we have that
[#per| ol @) 4.2. Fized points
|k 1+yf. - ’ The first result is summarized in the following
proposition:

must hold for infinitely many k’s. Equiva-
lently |yx| < /la] — 1 for infinitely many k's. Proposition 2. The fized points of (F) are

1330021-4
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1)y b # 1, a < —1: (0,0), (£(1 — b)v-1—a,
+/—1—a).

(2) b#1,a > —1: (0,0) unique.

(3) b= 1: y-axis is a continuum of fived points.

Moreover,

(1) (0,0) is asymptotically stable if |a| < 1 and
bl <1,
(2) (£(1 = b)v—=1—a,£v/—1—a) are asymploti-

cally stable if =2 < a < —1 and —7““7"'8 <b< 1

Proof. The fixed points of (F) are the solution
of the algebraic equation F(z.y) = (x,y). Then,
evaluating (1) around the solutions and calculat-
ing the eigenvalues we obtain the local stability
bounds. Specifically if (zp,yo) is the origin and

(1l g2} = (I(1 = &)/ =1 —al, [v/=T —al)

a 0
DF(J-‘cny()): 1 b *

| _p(1=b)(1+a)
a

1 b

DF(fl-yl) =

The eigenvalues of DF(,, ) are a,b and those of

DF (., 4, are %i % A where A = a(b—1)(ba +
Ta+8). Sufficient conditions for the local asymptotic

stability of x1,y; is the condition

VA

1+b4+ —
a

< 2. (5

The stability bounds are established by taking
cases for the sign of A and combining the result-
ing conditions with (5). This is a tedious algebraic
exercise and can be found in [Somarakis & Baras,
2011b]. W

This linearization analysis provides only suffi-
cient conditions for local asymptotic stability. In
case of |a|, |b| < 1, we have a much stronger result:

Proposition 3. If |a|,|b] < 1 then the origin (0,0)
is globally asymptotically stable.

Proof. TFor these parameters, Proposition 2 asserts
that there are no other fixed points other than
the origin. Also, for |a| < 1 there are no periodic

WSPC/50218-1274
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solutions. Indeed if (. y) solves FP)(z,y) = (., y)
for some p > 0, then one can derive from (2)

(—1fa” = (L+ ) (L +u]) - (L+yp)  (6)

which makes no sense for |a| < 1 as the left-hand
side is less than one and the right-hand side is
strictly larger than one. Finally, consider the Lya-
punov candidate

V(. y) = miz® + koy®

for some k12 > 0. Then throughout any solution
(25, yr):

AV =V (zpe1, Ypp1) — V(zg. vr)

= (H 7a2 + K K )3”2
Tz )

+ 2razy + r2 (b — V)yp
< (H,l(a2 — 1) + K2 + fJQ):r:%.
+ra((B® = 1) + r2)yi <0

b2 4o u

whenever 0 < #2 < 1 — b? and &1 > T—a?

As a increases through 1 the origin loses its stability.
‘We will see that new attracting sets appear while
(0.0) becomes a saddle point as long as |b| < 1.
Moreover, it can be easily verified that the y-axis
is the global stable manifold W¥(0,0) which the
attracting sets approach as a increases but they
never overrun it.

4.3. Periodic solutions

In Sec. 2, we argued that for |a| < 1 there are no
periodic solutions. In view of (6) we establish the
following proposition.

Fiz |b| < 1. Then the following

Proposition 4.
statements hold:

(1) if [(xr, ), ..., (@p,up)] is a p-periodic solution,
then so is [(—z1.—y1)s. ... (—%p. —Up)],
(2) if |la| < 1 there are no periodic solulions of

period p = 2,

(3) if a = 1 there are ne periodic solutions of odd
period.

Proof. (1) Follows readily from the observation

that F® is an odd function for any p > 0 while
parts (2) and (3) follow from Eq. (6). H
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The following two propositions describe the dynam-
ics of (F) for fixed |b] < 1 when a increases
through 1, its behavior in (|b|,2) and finally as a
increases through 2.

Proposition 5. For any |b| < 1, (F) exhibis a
period-doubling bifurcation as a increases through 1.

Proof. The proof follows the discussion in [Wig-
gins, 2003; Carr, 1981] for the bifurcations of fixed
points of maps. For any fixed number |b| < 1 and
a € (1 — ¢,1) the origin is a hyperbolic asymp-
totically stable fixed point which loses its hyper-
bolic nature as a reaches 1. A center manifold then
emerges, the behavior of (F) characterizes the over-
all (F) (see [Carr, 1981, Theorem § 1.5]). For a more
rigorous consideration, the Jordan canonical decom-
position of (F) around (0,0) is

Tny1)  [—a 0 e n ag(Tn; Yn)
Yn+1 1 b Hn 0

with g(z,y) == 3 (—1) T tay?!. Since b +a # 0
for a close enough to 1, we consider the transforma-

tion wu, = %, Up 1= % + 4y, and the system is
written as

U1} @ 0 Un ta Q(Un:'”n)
Upg1 0 b Vp g(tn,vn) )’

Note that x,y close to (0,0) is equivalent to w,v
close to (0,0). The center manifold of the origin is

W[%ﬂ) = {(u,v) e RY x R¥ : v = h(w), |u| < 4,
(D) = DR(0) = 0}.

From the above definition, h is assumed to be of
order O('u?) near the origin. It can then be calcu-
lated that g(u, h(u)) = —u* 4+ O(u?) and the stabil-
ity function of (F) on WY is

Upt1 = —Qly — au‘?L + CJ(uﬁ) =: flup,a). (7)

(I+20)(1—a)+1

WSPC/50218-1274
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The bifurcation of (7) at @ = 1 is then equivalent to
the bifurcation of (F) [Wiggins, 2003, § 21]. Finally,
the sufficient conditions for a period-doubling bifur-
cation [Wiggins, 2003, § 21.2B] are:

=0, fu=-1, f®=n,

=0, f3=-2

wl we

8
FEREPE

all evaluated at (0,1), @ = 1. Finally 7f’i(12{j)/f'512u)u >
0 implies that a period 2 bifurcation occurs for fixed
|b| < 1 and a increasing through 1. H

Lemma 1. For any 1 < a < 2,|b] < 1, (F) has a
unique period 2 orbit (F(b+1)v/—1+ a, £v—1 +a)

which is locally asymptotically stable.

Proof. Locality directly emerges from the existence
of other invariant solutions such as the zero one.
The period two solutions satisfy F(2)(z,y) = (z,y)
so that

1+ 31+ (z + by)?) = o

—ar (9)
79 +h(z+by)=y

where solving the second for x and substituting in
the first, the equations yield

thteat® + et et + g =0

where t = y2, ¢g = b+ a?(1 — b?) — a* — 2ba + 2a%b,
cp = 3b% + 2% + a®(1 — b?) — Gab + 1, ¢ =
3b% — Gab + 3, c3 = b2 — 2ba + 3. Using MAPLE,
the solutions are t1» = —1+a, f34 = 2’:‘“%’:‘2’1 +
%\/(1 —b2)(1 — (2a — b)?). For a > 1,|b] < 1 only
t1 yields a positive, thus acceptable solution. Finally
y = £+/f; and use any of (9) to obtain z’s. The
local stability of the periodic solution occurs again
by linearization and inspection of the eigenvalues

of the matrix

2(1 — 6*)(a—1)

a

DFﬂl‘l-yl)DFﬂl‘z-yz) =

—14+b

which are

2 3—4b-1?

a

2(b+1)(a —1)
e

-+ I

a 2

e i\/a(l +8)(b—1)%(ba + 8 — Ta).

1330021-6
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It is shown in [Somarakis & Baras, 2011b] that for
the given parameter values, these eigenvalues lie
inside the unit circle. W

The next proposition discusses perhaps the most
interesting nonlinear phenomenon of (F).

Proposition 6. For any |b| < 1,b# 0, (F) ezhibits
a supercritical Neimark-Sacker bifurcation as a
increases through 2.

Proof. The periodic solution of F'is the fixed point
of F? which by the above lemma has proved to
be locally asymptotically stable for |b] < 1 and
a € (1,2). We will consider only one of the fixed
points of F®@ as the dynamics are identical. Let
this be (T.7) = E—(]-&-b)\/a — 1,4/a — 1). Tt suffices
to prove that F?) bifurcates at @ = 2 in the sense
of Neimark—Sacker (or discrete Hopf). This bifurca-
tion is verified by applying Theorem 3.5.2 of [Guck-
enheimer & Holmes, 2002] also cited in Appendix B.
In order to apply this theorem, however, certain
transformations and calculations need to be done

in (F).
Fix b € (—1,0) U (0,1). Consider the transfor-
mations T = bil(x -+ (y—5). 7= H(Ef_“_l) X

(y — y) where K := /a(b+ 1)|ba + 8 — 7al.

The normal form of F) around (Z,7) creates
the form that can be used to apply the Theorem
in Appendix B. Calculations done in [Somarakis &
Baras, 2011b] yield

7 B (A9
(y) P (y) ’ (fz(ﬁ"?.-i')) o

where D is the diagonal matrix with elements,
the eigenvalues of the linearized around (T, 7) map
H(x — 2,y —7) = F”)(z—f y—§) — (z.7). The

eigenvalues are A = M — 2b+ ”2 + MK
and |DH([] | = M. Flna,lly, filz,g) =
b+1H1( - 1+bj,3:') + Hz( — 1+bJ 3) and
f(2.9) = gy Ha (553 — ﬁj,m.

At first note that for 74} < a < 2 the eigenval-
ues are complex conjugate and at a = 2, the first
eigenvalue of D is
Lo 1

b — —b

Ma=2)= 0"~

+ %\/(1 +b)(B3—b)(b—1)2 (11)

WSPC/50218-1274
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where |Aa = 2)| = /|DH(0)| = \/ b“+2“ — 202 _

1. Also all powers of A (a = 2) are dlﬁerent than 1
for b # 0 (it holds that A*(a = 2)|4,—0 = 1). Also

|=— (1+86)(b2 — 20+ Z+1)

2Z

LiNa=2) (12)

where Z =: /(1 +b)(3 — b)(b— 1)2. Calculations
are tedious and they were carried out in MAPLE
(see [Somarakis & Baras, 2011b]). The results yield
&a0 = b—z‘;’;““ o v &1 = 0, &z = —625% +

. 8VIEh 7

b(3—b)%2 (5+b)v3—b | -3(1-b)

VLD 3 16ViTE +i=357. So S reads
S = —|€oz|* + Re{ &1}

Bb-32 1 (G+bv3—0b
65+65b 16 1+ b

+ 3—2\/(1 +b(b —1)(3 — b))2

(1—b). (13)

The two plots in Fig. 2 indicate that S is not
zero for |b| < 1. Moreover, the signs of S(b) and
d)\(d+:2)_ in this interval imply that the bifurcation
as a increases through 2 is supercritical and thus
the emerging invariant set is attracting, which is in
agreement with the numerical findings. This con-
cludes our proof. W

4.3.1. Stability of periodic solutions and
coexistence of attractors

Periodic solutions are all the (wx,y) that satisfy
F@%) (2 y) = (z.y) for some integer p > 1. The fol-
lowing result establishes the interesting nonlinear
phenomenon of the coexistence of attractors.

Proposition 7. Consider (F) with a > 0 and |b| <
1. If a p-periodic solution is locally asymptotically
stable (unstable) then so is its oppesile one.

Proof. From Proposition 3.1, we proved that
if there exists a period-p @nlutmn {(x1, 1), ...,
(p,yp)}  then {(—z1,—y1).....(—zp,—yp)} s
another one. The result follows trivially from the
fact that (1) is an even function of (z,y) and will
be any p-product, so that the local dynamics of the
two periodic solutions are identical. W

Note that for the case p = 2 there is only one peri-
odic solution because the two solutions coincide.

1330021-7



Int. 1. Bifurcation Chaos 2013.23. Downloaded from www.worldscientific.com
by COLUMBIA UNIVERSITY on 07/15/13. For personal use only.

June 29, 2013 10:35

C. Soemarakis & J. S. Baras

d(lambda(a=2))/da
b
-1 -0.5 L 0.5 1

-0.1 -

-0.2

-0.3 A

0.4

=05

-0.6 -

=07 4

e

0.9 -

d
da

Fig. 2. The plots of
However, this is not typical. In Fig. 6(a), we numeri-
cally verify the existence and stability of other peri-
odic solutions.

4.3.2. The case a >0,-1 <b<0

Although this range of values for b is not of main
interest; we devote this section to few interest-
ing results when b takes negative values. The next
lemma tells us that the subset

1z
U= {(aﬂ:y) CRZ: oy < 0,1+ E% > n} (14)

is F' invariant and positively attracting.

Lemma 2. Assume (F) with a > 0,—-1 < b < 0.
Then V¥V (xg,yo) € B : 29 # 0 AN = N(xg, yo, a,b) :
(Zn.yn) € U ¥n = N. Moreover, xgyg € U implies
Tpyp €U ¥ = 0.

Proof. Consider the set € = {(z,y) € R? : zy < 0}.
‘We have

n+1

Tnp1ilnt1 = :]”nJrl"J Yo+ Tpp12n + :rrH»l:rn—lh

Ty 1Tn—ab? e gy Tob™
(15)

Inspecting (F)(a) we observe that all, but first,
terms on the right-hand side of (8) are negative.
Since from Proposition 1, solutions are bounded,
choosing N large enough (e.g. N > 1 such that

WSPC/50218-1274
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0.4

-08 -06 -04 -02 0 0.2 0.4 0.6 08 1
b

Ala = 2) and S as functions of b.

Nty Hlal(l +32) < (—=1)NaNzp), the first part
follows. For the second part of the lemma, consider
the case zg > 0,y9 < 0 then =, < 0,y > 0 such
that z,y; < 0. Assume that this holds for n. Then

2
—ax, — abryy,

< 0. 16)
(1+y2) (

Tn+l1l¥n+l =

Proving the statement by induction, similarly, for
xg < 0,99 > 0, we showed that ) is invariant and
positively attracting. Now, consider U/ which is a
subset of Q. If z,y, < 0 for some m € N then
(Tp,Yn) € U ¥n > m + 1 since

14 117m+1 — 14 £ — QT 1
@ Yt al+y2 zom + bym
T
1 Ym
=1-—— 7" .
Tys Tmoyy
Ym

Finally we show that U is attracting. Write

n+1
lan >1- || |yl
a Ynt1 a |yn+1‘
— m i |b\_”' |
a 4 Y41

Since, by Proposition 1, all solutions are bounded,
the terms |b|" dominate for n large enough, so that
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the right-hand side becomes positive. Since U is a
subset of €2 the result follows., W

Next we show that (F) restricted in U is a local
diffeomorphism.

Proposition 8. (F) s invertible along any solution
such that (xg,yq) € U and consequently bijective in
the forward limit set of (xg, yo).

Proof. By the previous lemma, any solution will
enter and remain in U. Given (2,41, %n+1) € U such
that (Zn41,Ynt1) = F(xn,yn) one can determine
Tn,Yn solving (F) to obtain

ab = \/‘(:‘2152 — 4(:5n+1 + aynJrl)anrl
22541

Yn =

(17)

If 2,41 > 0, then y,,, < 0 by assumption
—A(xp iy + aypy1)Tpeq > 0, so that y, attains one
positive and one negative root. By invariance of [J
throughout the solution, we must choose the posi-
tive one. Similarly, if x, 1 < 0, we must accept the
negative y,. In any case z, = yn41 — by,. So (F) is
invertible along a solution. Since the forward limit
set must lie in U, as both positive and negative
invariants, (F) restricted to it, is a bijection which
is differentiable in any compact subset of /. W

5. Simulation Study

In this section, we study the rational map from a
basically simulation point of view. This allows us to
be more flexible in our observations and to discuss
different transitions from period to chaos as well as
various interesting nonlinear phenomena. We will
mainly focus on the range of b which guarantees
bounded solutions.

5.1.

Here, we present and discuss some numerical results
of the types of chaotic transitions of (F) and try to
interpret the findings that are theoretically consis-
tent. Numerical evidence suggests that one route to
chaos is via the typical period-doubling cascade (see
Fig. 2). Tt is also claimed that chaos may occur via a
quasiperiodic torus break down [Zeraoulia & Sprott,
2011al. Tt is true that the quasiperiodic behavior of
the system is ubiquitous on the (a,b) plane and it
is reasonable to investigate the possibility that (F)
follows the Ruelle-Takens—Newhouse route to chaos
[Newhouse et al., 1978]. Another chaotic transition
that is reported is via intermittency. The chapter is

Transition to chaos for |b| < 1

WSPC/50218-1274
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almost exclusively devoted to the case |b| < 1. The
routes to chaos for |b] > 1 are yet to be studied.

5.1.1.

A bifurcation diagram for the fixed value of b = 0.5
and a € (1.8,4.2) is presented in Fig. 3. From the
discussion so far, we suspect that for |b| < 1, any
bifurcation diagram is qualitatively similar for a sig-
nificant part of the range of parameter a. Indeed,
for a € (—1,1) the origin is asymptotically stable
while for a € (1,2) a period 2 orbit becomes sta-
ble. As a increases through zero, a Neimark—Sacker
bifurcation leads to quasiperiodicity. If one imag-
ines the phase space of (F) as a Poincaré section,
on a plane manifold embedded in the 3-D space,
the period 2 and the Neimark—Sacker bifurcations
correspond to two subsequent Hopf bifurcations of
the abstract continuous system. Note also that as
a increases so does the magnitude of the attractor.
As long as |b| < 1 the solutions remain bounded.
Due to the coexistence of attractors we expect that
different initial conditions will yield different bifur-
cation diagrams.

Bifurcation diagram

5.1.2.  Quasiperiodic destruction — period

doubling — chaos

According to the Ruelle-Takens—Newhouse quasi-
periodic route to chaos [Newhouse et al., 1978], if a
continuous system undergoes three subsequent Hopf
bifurcations, then it is “likely” that the system pos-
sesses a strange attractor right after the third bifur-
cation. When the third frequency is about to occur,
some broad band noise will simultaneously appear,
if there is a strange attractor. Practically, the three
tori can decay into a strange attractor immediately
after the critical parameter value for its existence
has been reached such that one observes in the
power spectrum only two independent frequencies,
that is, two Hopf bifurcations and then chaos. This
is not exactly what we observe for (F) when |b| < 1.
A typical chaotic transition of (F) is presented in
Fig. 4. As a increases, the quasiperiodic attrac-
tor [Fig. 4(a)] folds and degenerates continuously
|[Fig. 4(c)] to a periodic attractor [Fig. 4(d)]. Then
as we continue to increase a, a period-doubling cas-
cade process leads to chaos [Figs. 4(e) and 4(f)].
This is not what we should expect according to the-
ory [Newhouse et al., 1978]. Quasiperiodic attrac-
tors occur for an abundance of values (a,b), however
for |b| < 1 they appear to degenerate according to

1330021-9
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Bifurcation Diagram
b=0.5

Fig. 3. Bifurcation diagram for b = 0.5 and a € (1.8,4.2) and (zo, yo) = (0.1,0.1). At a = 2, a Neimark—Sacker bifurcation
occurs bringing the system to quasiperiodic behavior.

a=2.5 b=05 a=2.7 b=0.5
3 3 —
2 1 2 ]
1 1 1 J
> 0 1 > 0 1

09 -0.1 \
o — 1 104z ]

-0.3 -0.14

2 T 2| -0.18 1
04

086 0.8 1 05 08 0.7

(a) (b)

Fig. 4. Chaotic transition via destruction of quasiperiodicity. All simulations suggest that a period-doubling cascade intervenes
between quasiperiodic and chaotic dynamics.
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6 -4 -2 0 2 4 6
X

(e)

Fig. 4.

the description of Fig. 4. Strange attractors occur
and in many cases they take the place and shape of
a previous quasiperiodic attractor. We claim though
that the transition follows a classical cascade.

5.1.3. Transition to chaos through

itermitlency

Intermittency is a regime with long-lived nearly
periodic phases interrupted by nonperiodic bursts.
This regime results from collision of stable and

unstable periodic cycles. In  the intermittent
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a=3 b=05
4
3 - 4
2 L 4
1 ) 1
> 0 )
-1 - ]
-2 ]
-3 .
-4
5 0 5
X
(d)
a=3.239 b=0.5
5
= 0 i
-5
-6 -4 -2 0 2 4 6
X
()
(Continued)

transition, one has a simple periodic orbit which
is replaced by chaos as a parameter of the system
passing through some critical value. This necessar-
ily implies that the stable attracting periodic orbit
either becomes unstable or it is destroyed. When
this happens, the orbit is not replaced by another
nearby stable periodic orbit, as occurs, for exam-
ple, in the forward period-doubling bifurcation; this
is implied by the fact that during the bursts, the
orbit goes far from the vicinity of the original
periodic orbit. The types of generic bifurcations
which meet these requirements are the saddle-node

1330021-11
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8=3.9799 b=0.5

x(n)

a=3.98 b=05

x(n)
s

Fig. 5. The time-series plots (xn.n) reveal chaotic transition via intermittency. Here b = 0.5 and a. = 3.9799.

bifurcation, the inverse period-doubling bifurcation
and the suberitical Neimark—Sacker bifurcation.

5.1.4. Intermittent behavior at b= 0.5,
a, == 3.9979908

In Fig. 5, we report such a transition for fixed
b = 0.5 and a decreasing through 3.98 (period 26)
to 3.9795 (chaotic). The plots are the time series
(xy,.n) depicting the intermittency. Following [Ott,
2002; Pomeau & Manneville, 1980] and assuming
that a, =~ 3.9979908 is the critical value above
which (F) behaves periodically and below which it
enters a periodic-chaotic phase transition, the mean

time between bursts T'(a) as a approaches a, from
below diverges,

lim T'(a) = +oc.

a—a;

In [Pomeau & Manneville, 1980], three types of
intermittency transitions were classified each of
which corresponds to a type of generic bifurca-
tion:

(1) Type I: saddle-node, in which case T'(a) ~ (a.
a) Y% asa — a;
(2) Type IT: Hopf, in which case T(a) ~ (a. — a)?

as a — a,

1330021-12
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(3) Type 11L: inverse period doubling, in which case
T(a) ~ (a. —a) ' asa — a;

A first step towards identifying the type of inter-
mittency in Fig. 5 is to measure T(a) in the vicin-
ity of a.. This is depicted in Fig. 6 where plots
of 10000 000 steady-state iterations (after 1000 000
transient iterations) were generated for fixed b =
0.5 and parameter values of a = 3.97990740285,

3.9799074029,

WSPC/50218-1274
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3.979907402904, 3.979907402905,
3.979907402906, 3.979907402907, 3.979907402908,
3.979907402909, 3.97990740291. From Fig. 6 we
observe that the scaling gives a slope that is cal-
culated to be around 0.54. This indicates a Type 1
intermittency as a result of a saddle-node bifur-
cation. A more rigorous analysis of the nature
of the transitions to chaos would require elab-
orate mathematical tools from Renormalization

3.979907402903,

3.979907402901, 3.979907402902, theory.
Log-Log plot of the mean burst time as paramster
a approaches a, from below 5 a=4.2185 b=08
1

iog ELT])

9.4} 1

892

¥(n)

18 2 22 24 26 2.8 3
log, ,(a)

(a)

Fig. 6.
As a approache:
intermittent bel

Chaotic transition via intermittency.

(a) The log—log plot of the mean burst time and the rescaled parameter a.
ac from below there is clear scaling behavior. The slope of the line is caleulated around 0.54. (b) Complex
wior. The orbit oscillates between chaotic and periodic behavior of two anti-symmetric periodie solutions,

showing the phenomenon of coexistence of periodic attractors, already discussed in Proposition 5. (¢} Coexistence of attractors

for |b] = 1. The plot outlines the basin of attraction of the h;
region is the basin of attraction for the point at infinity, whi

srehaotic attractor Fig. 1y g1 2) also presented here. The shaded
» the white region is the basin of the strange attractor.

1330021-13
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5.2.

In this section we discuss secondary nonlinear phe-
nomena observed during the numerical speculation
of the dynamics of (F) as well as some semi-rigorous
discussion on the size of its attractors.

Other nonlinear phenomena

5.2.1. Coexistence of attractors and

hyperchaos

From the discussion, the attractors coexist for both
|b] < 1 and |b| > 1. In the first case, Proposition 6
reveals the existence of multiple periodic attractors;
a result numerically verified in Fig. 6(b).

We know that for [b| < 1, the unique fixed
point at the origin admits a global stable man-
ifold W5(0,0) = {(z,y) € R? : = 0}. For
[b] = 1, W5(0,0) vanishes to (0,0) becoming actu-
ally a “stable manifold” of the point at infinity.
Solutions then may become unbounded although
there are attractors both nonchaotic and chaotic,
depending on the value a. This is phenomenon of
the coexistence of attractors. The strange attractors
in Figs. l(25 and lpg1.2) are in the area of |b] >
1. Note that Fig. lip61.2) is in fact hyperchaotic

(i.e. both Lyapunov exponents are positive — see
Table 1).
5.2.2. Interior crisis at a, = 3.5657,

b =105

Among the ubiquitous nonlinear behavior are the
crises. Here we report an interior type of erisis that
occurs for b = 0.5 at the vicinity of a, := 3.5657.
As a increases through a,. the orbit on the attractor
spends long stretches of time in the region to which
the attractor was confined before the crisis. At the
end of one of these stretches, the orbit bursts out
of the old region and bounces around chaotically in
the new enlarged region made available to it, by the
crisis.

5.2.3.

In this final subsection we take the opportunity for a
heuristic discussion on the size of the attractors for
large values of a. A visual inspection of the bifur-
cation diagram in Fig. 2 reveals that the attrac-
tors’ increase in size as they approach (0,0) for
large values of a. The latter is easy to study ana-
Iytically. Take for simplicity b = 0 and initial data

On the size of the attractors

WSPC/50218-1274

1330021

(zg = 0,y9 = 0). Then

—axg 1 1
r3=——m—————xa ., a
(1 +25) (1 + o)
as y2 = 71 o a’. Working with (2), one obtains

Yz = Tp X a? and finally

T4 X a’z, Y4 = T3 X a L.

In this section, we derive some bounds on this size,
i.e. extreme values of x and y, as functions of the
parameters a and b. We wish to find (zg, yo) so as to
maximize |x3]. Since the dynamics of (F) favor an
expansion of |x| by a factor of at most a, we suspect
that it would be a good idea to exploit its maximum
value. So we would choose yy = 0 and optimize
xg. The first iteration gives @1 = —awxg, y1 = g
and the second gy = azz%/(l + T%), yo = a1 + brg.
Now |z3| is maximized at x5 = 1 and in such case
T3 = _1"'(:7‘*'5)2% which yields |z3| < |z2| for @ > 1
so that indeed the maximum value is attained in
3 = % and the extreme pair is (%, b — a).

A drawback of this argument is that (1, 0) need
not be a point of the attractor, not even close to
it. Indeed, for small values of @ this bound is not
correct. However as a > 1 and b small enough (e.g.
x a~# — 0) for some g > 1, the point (1,0) gets
closer to the attractor. This can be deduced from
the fact that as |b| < 1 and in fact very close to zero,
the global stable manifold W“"([],[]) attracts orbits
to the origin for a fairly long time, linearization
around the origin yields eigenvectors &, = ([],_1)T
(stable), & = (b +a, —1)* (unstable). So as a gets
larger the unstable eigendirection will get closer to
the z-axis, approaching (1,0).

Then, by a continuity argument of (F), such
bound is valid. By symmetry (—%,a — b) is also
an extremal bound. Note that the above points are
essentially bounds of the range of . One more iter-
ation yields bounds for |y|. Since yn41 = @ + byn,
one may deduce that the main contribution of
the maximization of |y| should come from a large
enough |z|, especially for small b and large a. So
starting from (1,0) we get z3 = —m,yﬁ =

“; + b(b — a). All in all, we have argued that

2
a .
18
s
is the smallest positively invariant rectangle as
a 3 1 and b small enough. This heuristic approach

X = {w) s bal ol <

1330021-14
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is validated numerically and it holds for strange
attractors obtained for @ > 1500 and b < ﬁ
Figure T illustrates the claims above.

5.3. FExponents, dimensions,
entropies

In this section, we will discuss the characteristic
invariants of the chaotic behavior of (F).

5.3.1.

In this section, we present numerical results of

Time series analysis

the main invariant characteristics of the attractors
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a=3.5656

a=3.5657

0 0.5 1 15 2 25
n x10*

Interior crisis. A sudden and significant increase in size and shape of the attractor as a passes through a..

illustrated in Fig. 1, mainly for consistency. The
three measures we approximate are the Lyapunov
spectrum, the correlation dimension and the cor-
relation entropy as these are the easiest and
most appropriate for strange attractors to com-
pute. Assuming that a natural F-invariant measure
exists, the correlation sums were first introduced by
Grassberger and Procaccia [1983]

C(m,z,N)

9 N N

(19)
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Fig. 8. The size of attractors. Orbit of Fagop,o.0002- (a) The limits of the strange attractor are pointed out with data tips
verifying the heuristic discussion. (b) A refined picture of the origin as well as a data tip of the point of the simulated orbit
which presumably belongs to the attractor, that is also close to (1,0).

where © is the Heavyside step function, m the
embedding dimension [Kantz & Schreiber, 1999].
So €'(m,e, N) counts the pairs (x;,x;) of points on
the attractor, embedded in mth dimensional phase
space, whose distance is smaller than . The ansatz
is then that C'(m,=, N) behaves like a power law
as N — oo,e — 0. The correlation dimension and
entropy are then defined as

dlog C'(m,=z, N)
Adlog = ’

. . C(m,e, N)
he = 2151}1] m-kfn—lm ln C(m+1,e,N)’

D, =1lim lm
g—0m,N—oa

(20)

Numerical results are given in Fig. 9 and Table 1.
The approximations of the correlation sums were

Table 1. Numerical estimates of the invariant characteris-

ties of the attractors of Fig. 10.

Fig‘l[u b) Lyapynov Spectrum D, he
(2.1, 0.5) (—0.035, 0.000) 1.000 0.000
(3.23, 0.5) (—0.207, 0.057) 1.162 0.153
(3.4, 0.5) (—0.043, 0.060) 1.304 0.150
(3.96, 0.5) (—0.248, 0.099) 1.178 0.220
(2.78, 0.8) (—0.051, 0.032) 1.326 0.110
(2.8, 0.8) (—0.011, 0.015) 1.500 0.080
(2.9, 0.8) (—0.045, 0.038) 1.480 0.012
(6.5, 0.8) (—0.132, 0.116) 1.470 0.350
(2.5, 1.2) (—0.025, 0.028) 1.458 0.149
(2.6, 1.2) (0.004, 0.052) 1.686 0.213

done for the use of the TL.SE.AN. package [Heg-
ger et al., 1999; Kantz & Schreiber, 1999] while the
algorithm of the Lyapunov exponent spectrum is
based on the Oseledets multiplicative ergodic theo-
rem and is an implementation of a robust algorithm
from [Choe, 2005]. In Fig. 9(a), we present the Lya-
punov exponent spectrum of (F) for b = 0.5 and
a € (1.8,4.2) (compare with Fig. 3). The calcula-
tions were done in MAPLE using the algorithms
from [Choe, 2005]. In Figs. 9(b) and 9(c) we have
outlined with a bold line the range of ¢ where scal-
ing occurs and is the same for increasing embedding
dimensions. A comprehensive analysis of these plots
is discussed in [Kantz & Schreiber, 1999].

5.4. Multiscroll attractors

‘We conclude this section discussing an interesting
concern, posed by one of the reviewers. In view
of Fig. 1(50.5 we were kindly asked whether (F)
could generate multitori attractors either by con-
trolling one of its parameters or adding some
suitable controller. The problem of generating mul-
tiscroll chaotic attractors using a chaotic oscillator
is most interesting among the nonlinear dynam-
ics and circuit systems community and is mainly
focused on continuous time systems (see for exam-
ple [Yu et al., 2012; Lu et al., 2004] or a thorough
tutorial on this problem, the theory and the meth-
ods [Lu & Chen, 2006]). We do not know of a study
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Fig. 9. (a) The Lyapunov exponent spectrum for b = 0.5. Compare it with the bifurcation diagram in Fig. 2. (b) The I

estimator. (¢) The he estimation.

of this problem exclusively for discrete time systems
[Lu & Chen, 2006] that includes a section for digital
but discretized systems.

Although a clear multiscroll attractor genera-
tion was not identified for (F) by a simple tuning of
its parameters, we believe that there are feedback
control laws which can generate multiscroll attrac-
tors in the broad sense. The key to this problem
is for the researcher to come up with a law which
will add fixed (or periodic) points which will remain
unstable for fixed parameter values. This require-
ment has a quick response and that is to make the
control law, more like a perturbation to (F).

So we respond to the question by the follow-
ing illustrating example. Consider the controlled

system
"  6.5u(z,y)
F 1+y?
Y

x + 0.8y

6.5z 3
— 1+ y2 +£(”). (21)
x + 0.8y

For ¢ = 0, we get the unperturbed system
Fo505 (see Fig. 1). For £ > 0 the additional fixed

1330021-17
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verified that they are saddle points (for example, for

£ = 0.001 the eigenvalues of the Jacobian evaluated

at &,y are 1.5019 and 0.7997).

The multiscroll behavior is outlined in the
phase plots of Fig. 10. Although the proposed
nonlinear feedback control law is rather trivial, it
illustrates the fact that (F) is capable of generating
multiscroll chaos. We conjecture that any law of the
form ex?¥ 1, N € Z could form an interesting fam-
ily of multiscroll chaos controls. A systematic study
and classification of such laws would be an interest-

and it can be

i=+y/

ing issue.

6. Discussion and Concluding
Remarks

In this work, we have presented and studied the
system (F); one of the simplest examples of ratio-
nal planar maps with very rich nonlinear behavior.
For a > 0, the system exhibits mainly symmetric
attractors which do not merge, as long as |b| < 1.
For a > 1, the origin is a saddle fixed point with
y-axis as the global stable manifold to which the
attractors approach as a gets larger, yet they never
overrun it. A typical orbit will oscillate between the
second and third quadrants getting attracted by an
anti-symmetric attractor. For |b| < 1 all solutions
are bounded although it can be verified that as a
gets larger and larger the magnitude of the limit set
increases.

For a specific range of parameter wvalues,
(F) exhibits transition to chaos through either
intermittency or period-doubling bifurcations. The
quasiperiodic behavior is ubiquitous for numer-
ous values of the parameters, however there is no
convineing evidence that (F) goes to chaos via
the standard Ruelle Takens Newhouse quasiperi-
odic scenario. There are more to be done however.
It should be noted that for the special case b = 0,
exhaustive numerical inspection has revealed no
strange attractors for a > 0.

Moreover, the case b < 0 reveals more inter-
esting phenomena. In this work, we have argued
that (F) is invertible and in a subset of R? where a
closed form of its inverse was proved.

Furthermore, in [Somarakis & Baras, 2011b]
we have discussed the existence of the strange
attractors using more rigorous methods. There we
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applied the method of fixed point index, a com-
puter assisted topological method, introduced in
[Zgliczynski, 1997], where we showed that a strange

attractor exists for the map F(Q?;)').IQ'

There are also other issues that require further
numerical investigation such as the type of inter-
mittencies or the phenomenon of hyperchaoticity.
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2nd  edition

Appendix A
Center Manifold Theory

Consider the system

g1 = Crag + f1(zg, yr) (A1)
Yrr1 = Coyr + falzg, yr)

where z € R", y € R™ and C;,Cy are constant
matrices of appropriate dimensions such that all the
eigenvalues of €'y are on the unit circle and all those
of C'y within the unit circle. The functions f; and fy
are C? with f1(0,0) = £2(0,0) = 0 and Df,(0,0) =
Df5(0,0) = 0. An invariant manifold for (A.1) y =

h(x) where h is smooth, is called center manifold if

h(0) = 0, Dh(0) = 0. If f, g are identically nonzero,
then the following theorem holds.

Theorem 1 [Carr, 1981]. There exisis 6 > 0 and
h e C? such that y = h(z) defines a center manifold
for (A.1).

The form of h(x) is of vital importance but it can
only be approximated. If we substitute yp = h(xg)
into the second equation of (A.l) then

Yea1 = Mapg1) = M(Crzw + fi(ze, yr)
= Cah(zy) + falzy, h(zy)).

The identity in the right part of (A.2) defines
the center manifold equation and can be utilized
assuming that A has a particular polynomial form

(A.2)
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for solutions close to the equilibrium, say h(z) =
ay + ayx + asx? + asx® + O(zt). The flow on the
center manifold is governed by the n-dimensional
system

g1 = Aug + flug, h(ug)). (A.3)

It can be shown that (A.2) contains all the nec-
essary information needed to determine the asymp-
totic behavior of small solutions of (A.3) using (A.2)
and (A.1). In our case, the type and behavior of the
bifurcations of the initial system are equivalent to
the ones of the reduced (A.3) by Theorem 2, p. 4 of
[Carr, 1981].

Appendix B
Neimark—Sacker Bifurcations

‘We state the theorem used to prove the existence
of a Neimark—Sacker bifurcation. Consider a map in
the following Normal Form [Wiggins, 2003; Guck-
enheimer & Holmes, 2002]

()0 Ge)
y ] g(z,y)

where by D, we denote a linearized matrix con-
trolled by the critical parameter a. Consider the
expressions

(B.1)

£20 = :_,;[(fzz — fyy + 20xy) + (g — Gyy — way)]
£y = i[(fm. + fuy) + i(Gex + gyy)]

1
‘502 = g[(fzz - fyngxy) + i(gm- = Yuy + Qfxy)]

1
£o1 = E[(fa.m - fa:yy + Grry + gyyy)

+ i(Guwa — Gryy — fozy — fyyy)]-
(B.2)

Theorem 2 [Guckenheimer & Holmes, 2002]. Let
(B.1) be a one-parameter family of mappings which
has a smeooth family of fived points x(a) at which the
eigenvalues are compler conjugates. Assume that
the following expression evaluated at the critical
value ag and the fized point x(ap) hold

(SH1) Re[A(ag)] = 0 = A(ap) = €, |Alag)| = 1,

Mi(ag) # 1 fork =1,2,3,4
(SH2) L|Nag)| =d#0
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(SH3) S = —RE[%&EH{QO] — $lénl? — sl +
Re[A&] # 0.

Then there is o smooth change of ecoordinates
of (B.1) which in polar form yields

(r,0) — (r(1 +d(a — ag) + ar?),0 + ¢ + br?)
+ h.o.t.
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Moreover, there is a fwo-dimensional surface ¥ in
R2 x R having quadratic tangency with the plane at
R? x {ag} which is invariant for (B.1). If TNR? x
{a} is larger than a point, i is a curve.

The discussion in [Wiggins, 2003, § 21.3] catego-

rizes the stability and type of the Neimark—Sacker
bifurcation according to the signs of S, a and d.
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