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Abstract. This paper discusses the linear asymptotic consensus problem for a network of
dynamic agents whose communication network is modeled by a randomly switching graph. The
switching is determined by a finite state Markov process, each topology corresponding to a state of
the process. We address the cases where the dynamics of the agents is expressed both in continuous
time and in discrete time. We show that, if the consensus matrices are doubly stochastic, average
consensus is achieved in the mean square sense and the almost sure sense if and only if the graph
resulting from the union of graphs corresponding to the states of the Markov process is strongly
connected. The aim of this paper is to show how techniques from the theory of Markovian jump
linear systems, in conjunction with results inspired by matrix and graph theory, can be used to prove
convergence results for stochastic consensus problems.
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1. Introduction. A consensus problem consists of a group of dynamic agents
that seek to agree upon certain quantities of interest by exchanging information ac-
cording to a set of rules. This problem can model many phenomena involving infor-
mation exchange between agents such as cooperative control of vehicles, formation
control, flocking, synchronization, and parallel computing. Distributed computation
over networks has a long history in control theory starting with the work of Borkar
and Varaiya [1] and Tsitsiklis, Bertsekas, and Athans (see [22, 23]) on asynchronous
agreement problems and parallel computing. A theoretical framework for solving con-
sensus problems was introduced by Olfati-Saber and Murray [16, 17], while Jadbabaie,
Lin, and Morse studied alignment problems [7] for reaching an agreement. Relevant
extensions of the consensus problem were done by Ren and Beard [19], by Moreau
[11], and, more recently, by Nedic and Ozdaglar (see [12, 14]).

Typically agents are connected via a network that changes with time due to link
failures, packet drops, node failure, etc. Such variations in topology can happen ran-
domly, which motivates the investigation of consensus problems under a stochastic
framework. Hatano and Mesbahi consider in [6] an agreement problem over random
information networks, where the existence of an information channel between a pair
of elements at each time instance is probabilistic and independent of other channels.
In [18], Porfiri and Stilwell provide sufficient conditions for reaching consensus al-
most surely in the case of a discrete linear system, where the communication flow
is given by a directed graph derived from a random graph process, independent of
other time instances. Under a similar communication topology model, Tahbaz-Salehi
and Jadbabaie give necessary and sufficient conditions for almost sure convergence to
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consensus in [20], while in [21], they extend the applicability of their necessary and
sufficient conditions to strictly stationary ergodic random graphs. Another recent
result on the consensus problem under random topologies can be found in [8].

This paper deals with the linear consensus problem for a group of dynamic agents.
We assume that the communication flow between agents is modeled by a (possibly
directed) randomly switching graph. The switching is determined by a homogeneous,
finite-state Markov chain, each communication pattern corresponding to a state of the
Markov process. We address the cases where the dynamics of the agents is expressed
both in continuous and in discrete time, and, under certain assumptions on the con-
sensus matrices, we give necessary and sufficient conditions to guarantee convergence
to average consensus in the mean square sense and in the almost sure sense. The
Markovian switching model goes beyond the common independent and identically
distributed (i.i.d.) assumption on the random communication topology and appears
in cases where Rayleigh fading channels are considered.

The aim of this paper is to show how mathematical techniques used in the stability
analysis of Markovian jump linear systems, together with results inspired by matrix
and graph theory, can be used to prove (intuitively clear) convergence results for the
(linear) stochastic consensus problem. Another avenue of approach in proving (part
of the) convergence analysis of the consensus algorithm could be to use ergodic theory
of Markov chains [2].

1.1. Notation and definitions. We denote by 1 the column vector of all ones.
If the dimension of the vector needs to be emphasized, an index will be added for
clarity (for example, if 1 is an n dimensional vector, we will explicitly mark this by
using 1n ). Let x be a vector in R

n. By av(x) we denote the quantity av(x) = x′1/1′1.
The symbols ⊗ and ⊕ represent the Kronecker product and sum, respectively. Given
a matrix A, Null(A) designates the nullspace of the considered matrix. If X is some
finite dimensional space, dim(X ) gives us the dimension of X . We denote by col(A)
a vector containing the columns of matrix A.

Let M be a finite set of matrices, and let A be some matrix. By M′ we denote
the set of the transpose matrices of M, i.e., M′ = {M ′ | M ∈ M}. By M ⊗ A we
understand the following set of matrices: M⊗ A = {M ⊗ A | M ∈ M}. By writing
that AM = M we understand that the set M is invariant to left multiplication by

matrix A, i.e., given Mi ∈ M, AMi = M̃i and {Mi}|M|
i=1 = {M̃i}|M|

i=1 = M, where |M|
is the cardinality of set M.

Let P be a probability transition matrix corresponding to a discrete-time, homo-
geneous, finite state Markov chain. We denote by P∞ the limit set of the sequence
{P k}k≥0, i.e., all matrices L for which there exists a sequence {tk}k≥0 in N such that
limk→∞ P tk = L. Note that if the matrix P corresponds to an ergodic Markov chain,
the cardinality of P∞ is one, with the limit point 1π′, where π is the stationary dis-
tribution. If the Markov chain is periodic with period m, the cardinality of P∞ is
m. Let d(M,P∞) denote the distance from M to the set P∞, that is, the smallest
distance from M to any matrix in P∞:

d(M,P∞) = inf
L∈P∞

‖L−M‖,

where ‖ · ‖ is a matrix norm.
Definition 1.1. Let A be a matrix in R

n×n, and let G = (V,E) be a graph of
order n, with no self-loops. We say that matrix A corresponds to graph G or that
graph G corresponds to matrix A if an edge eij belongs to E if and only if the (i, j)
entry of A is nonzero. The graph corresponding to A will be denoted by GA.
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Definition 1.2. Let s be a positive integer, and let A = {Ai}si=1 be a set of
matrices with a corresponding set of graphs G = {GAi}si=1. We say that the graph GA
corresponds to the set A if it is given by the union of graphs in G, i.e.,

GA �
s⋃

i=1

GAi .

In this paper we will mainly use two type of matrices: probability transition
matrices (rows sum up to one) and generator matrices (rows sum up to zero). A
generator matrix whose rows and columns both sum up to zero will be called a doubly
stochastic generator matrix.

To simplify the exposition we will sometimes characterize a probability transi-
tion/generator matrix as being irreducible or strongly connected, and by this we un-
derstand that the correspondingMarkov chain (directed graph) is irreducible (strongly
connected).

Definition 1.3. Let A ∈ R
n×n be a probability transition/generator matrix.

We say that A is block diagonalizable if there exists a similarity transformation P ,
encapsulating a number of row permutations, such that PAP ′ is a block diagonal
matrix with irreducible blocks on the main diagonal.

For simplicity, the time index for both the continuous- and discrete-time cases is
denoted by t.

Paper organization. In section 2 we present the setup and formulation of the
problem, and we state our main convergence theorem. In section 3 we derive a number
of results which constitute the core of the proof of our main result, which is given in
section 4. Section 5 contains a discussion of our convergence result.

2. Problem formulation and statement of the convergence result. We
assume that a group of n agents, labeled 1 through n, is organized in a communication
network whose topology is given by a time varying graph G(t) = (V,E(t)) (with no
self-loops), where V is the set of n vertices and E(t) is the time varying set of edges.
The graph G(t) has an underlying random process governing its evolution, given by
a homogeneous, continuous- or discrete-time Markov chain θ(t), taking values in the
finite set {1, . . . , s}, for some positive integer s. In the case when θ(t) is a discrete-time
Markov chain, its probability transition matrix is P = (pij) (rows sum up to one),
while if θ(t) is a continuous-time Markov chain, its generator matrix is denoted by
Λ = (λij) (rows sum up to zero). The random graphG(t) takes values in a finite set of
graphs G = {Gi}si=1 with probability Pr(G(t) = Gi) = Pr(θ(t) = i) for i = 1, . . . , s.
We denote by q = (qi) the initial distribution of θ(t), i.e., P (θ(0) = i) = qi, i = 1, . . . , s.

Letting x(t) denote the state of the n agents, in the case when θ(t) is a discrete-
time Markov chain, we model the dynamics of the agents by the following linear
stochastic difference equation:

(1) x(t+ 1) = Dθ(t)x(t), x(0) = x0,

whereDθ(t) is a random matrix taking values in the finite set D = {Di}si=1, with prob-
ability distribution Pr(Dθ(t) = Di) = Pr(θ(t) = i). The matrices Di are stochastic
matrices (rows sum up to one) with positive diagonal entries and correspond to the
graphs Gi for i = 1, . . . , s.

In the case when θ(t) is a continuous-time Markov chain, we model the dynamics
of the agents by the following linear stochastic equation:

(2) dx(t) = Cθ(t)x(t)dt, x(0) = x0,
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whereCθ(t) is a random matrix taking values in the finite set C = {Ci}si=1, with proba-
bility distribution Pr(Cθ(t) = Ci) = Pr(θ(t) = i). The matrices Ci are generator-like
matrices (rows sum up to zero, off-diagonal entries are nonnegative) and correspond
to the graphs Gi for i = 1, . . . , s. The initial state x(0) = x0, for both continuous and
discrete models, is assumed to be deterministic. We will sometimes refer to the matri-
ces belonging to the sets D and C as consensus matrices. The underlying probability
space (for both models) is denoted by (Ω,F ,P), and the solution process x(t, x0, ω)
(or simply, x(t)) of (1) or (2) is a random process defined on (Ω,F ,P). We note that
the stochastic dynamics (1) and (2) represent Markovian jump linear systems for dis-
crete and continuous time, respectively. For a comprehensive study of the theory of
(discrete-time) Markovian jump linear systems, the reader can, for example, refer to
[3].

Assumption 2.1. Throughout this paper we assume that the matrices belonging
to the set D (C) are doubly stochastic, that is, both rows and columns sum up to one
(zero). Moreover, the elements of D have positive diagonal entries. We also assume
that the Markov chain θ(t) is irreducible.

Remark 2.1. Consensus matrices that satisfy Assumption 2.1 can be constructed,
for instance, by using a Laplacian-based scheme in the case where the communication
graph is undirected or balanced (for every node, the inner degree is equal to the outer
degree) and possibly weighted. If Li denotes the Laplacian of the graph Gi, we can
choose Di = I − εLi and Ci = −Li, where ε > 0 is chosen such that Di is stochastic,
with positive diagonal elements.

Definition 2.1. We say that x(t) converges to average consensus

(a) in the mean square sense if for any x0 ∈ R
n and initial distribution q =

(q1, . . . , qs) of θ(t),

lim
t→∞E[‖x(t)− av(x0)1‖2] = 0;

(b) in the almost sure sense if for any x0 ∈ R
n and initial distribution q =

(q1, . . . , qs) of θ(t),

Pr
(
lim
t→∞ ‖x(t)− av(x0)1‖2 = 0

)
= 1.

Remark 2.2. Under the homogeneous assumption on the Markov chain θ(t), in
both the discrete- and the continuous-time cases, it suffices to prove convergence in
the mean square sense since this implies stability in the almost sure sense as well (see,
for instance, Corollary 3.46 of [3] for the discrete-time case or Theorem 2.1 of [4] for
the continuous-time case).

Assumption 2.1 guarantees reaching average consensus, which is desirable in im-
portant distributed computing applications such as distributed estimation [15] or dis-
tributed optimization [13]. Any other scheme can be used as long as it produces
matrices with the properties stated above and reflects the communication structures
among agents.

Problem 2.1. Given the random processes D(t) and C(t), together with As-
sumption 2.1, we derive necessary and sufficient conditions such that the state vector
x(t), evolving according to (1) or (2), converges to average consensus in the sense of
Definition 2.1.

In the following we state the convergence result for the linear consensus problem
under Markovian random communication topology.
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1578 ION MATEI, JOHN S. BARAS, AND CHRISTOFOROS SOMARAKIS

Theorem 2.2. The state vector x(t), evolving according to the dynamics (1) (or
(2)), converges to average consensus in the sense of Definition 2.1(a) and (b) if and
only if GD (or GC) is strongly connected.

Theorem 2.2 formulates an intuitively obvious condition for reaching consensus
under linear scheme (1) or (2) and under the Markovian assumption on the commu-
nication patterns. Namely, it expresses the need for persistent communication paths
among all agents. We defer to section 4 the proof of this theorem and provide here
an intuitive and nonrigorous interpretation. Since θ(t) is irreducible, with probabil-
ity one all states are visited infinitely many times. But since the graph GD (GC)
is strongly connected, communication paths between all agents are formed infinitely
many times, which allows consensus to be achieved. Conversely, if the graph GD
(GC) is not strongly connected, then there exist at least two agents such that for
any sample path of θ(t), no communication path among them (direct or indirect) is
ever formed. Consequently, consensus cannot be reached. Our main contribution is
to prove Theorem 2.2 using an approach based on the stability theory of Markovian
jump linear systems, in conjunction with results on matrix and graph theory.

3. Preliminary results. This section starts with a set of general preliminary
results after which it continues with results characteristic to the cases where the dy-
namics of the agents is expressed in discrete and continuous time. The proof of Theo-
rem 2.2 is mainly based on four lemmas (Lemmas 3.10 and 3.11 for the discrete-time
case and Lemmas 3.12 and 3.13 for the continuous-time case) which state properties of
some matrices that appear in the dynamic equations of the first and second moment
of the state vector. The proofs of these lemmas are based on results introduced in the
next subsection.

3.1. General preliminary results. This subsection contains the statement of
a number of preliminary results that are needed in the proofs of the auxiliary results
corresponding to the discrete- and continuous-time cases and in the proof of the main
theorem.

The following theorem introduces a convergence result for an infinite product of
ergodic matrices, whose proof can be found in [24].

Theorem 3.1 (see [24]). Let s be a positive integer, and let {Ai}si=1 be a finite
set of n×n ergodic matrices, with the property that any finite product Ai1Ai2 . . . Aim is
ergodic. Then, for any map r : N → {1, . . . , s}, there exists a vector c with nonnegative
entries (summing up to one) such that

(3) lim
j→∞

j∏
i=1

Ar(i) = 1c′.

Corollary 3.2. Under the same assumptions as in Theorem 3.1, if in addition
the matrices in the set {Ai}si=1 are doubly stochastic, then

(4) lim
j→∞

j∏
i=1

Ar(i) =
1

n
11′.

Proof. By Theorem 3.1 we have that

lim
j→∞

j∏
i=1

Ar(i) = 1c′.
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Since the matrices considered are doubly stochastic and ergodic, their transposes are
ergodic as well. Hence, by again applying Theorem 3.1 on the transpose versions of
{Ai}si=1, we obtain that there exists a vector d such that

lim
j→∞

(
j∏

i=1

Ar(i)

)′

= 1d′.

But since the stochastic matrix 1c′ must be equal to d1′, the result follows.
Remark 3.1. The homogeneous finite-state Markov chain corresponding to a

doubly stochastic transition matrix P cannot have transient states. Indeed, since
P is doubly stochastic, the same is true for P t for all t ≥ 1. Assuming that there
exists a transient state i, then limt→∞(P t)ji = 0 for all j; i.e., all entries on column
i converge to zero. But this means that there exists some t∗ for which

∑
j(P

t∗)ji <

1, which contradicts the fact that P t∗ must be doubly stochastic. An important
implication is that we can relabel the vertices of the Markov chain such that P is
block diagonalizable.

Remark 3.2. Since the Markov chain corresponding to a doubly stochastic tran-
sition/generator matrix cannot have transient states, the Markov chain (seen as a
graph) has a spanning tree if and only if it is irreducible (strongly connected).

The next lemma gives an upper bound on a finite product of nonnegative matrices
in terms of the sum of matrices that appear in the product.

Lemma 3.3 (see [7]). Let m ≥ 2 be a positive integer, and let {Ai}mi=1 be a set of
nonnegative n× n matrices with positive diagonal elements; then

m∏
i=1

Ai ≥ γ

m∑
i=1

Ai,

where γ > 0 depends on the matrices Ai, i = 1, . . . ,m.
In the following proposition we study the convergence properties of a particular

sequence of matrices.
Proposition 3.4. Consider a matrix Q ∈ R

n×n such that ‖Q‖1 ≤ 1 and a set of
matrices S = {S1, . . . , Sm} for some positive integer m ≤ n. Assume that there exists
a subsequence {tk} ⊂ N such that S is a limit set of the sequence {Qtk}k≥0 and that,
for any S ∈ S, QS ∈ S as well. Then, S is a limit set of the sequence {Qk}k≥0, i.e.,

(5) lim
k→∞

d(Qk,S) = 0,

where d(Q,S) = minS∈S ‖Q− S‖ and ‖ · ‖ is some arbitrary matrix norm.
Proof. We will prove (5) for the particular case of matrix norm one, and the

general result will follow from the equivalence of norms. Pick a subsequence {t′k}k≥0

given by t′k = tk + δk, where δk ∈ N. It follows that

d(Qt′k ,S) = min
S∈S

‖QδkQtk −QδkS‖1 ≤ ‖Qδk‖1 min
S∈S

‖Qtk − S‖1 ≤ d(Qtk ,S).

Therefore, we get that S is a limit set for the sequence {Qt′k
k≥0}, and the result follows

since we can make {t′k}k≥0 arbitrary.
The next lemma states a property of the nullspace of the sum of two block diag-

onalizable generator matrices.
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Lemma 3.5. Let A ∈ R
n×n and B ∈ R

n×n be two block diagonalizable generator
matrices. Then

Null(A+B) = Null(A) ∩ Null(B).

Proof. Obviously, Null(A)∩Null(B) ⊂ Null(A+B). In the following we show the
opposite inclusion. Since A is block diagonalizable, there exists a permutation matrix
T such that Ā = TAT ′ is a block diagonal generator matrix (with irreducible blocks).
Let Āi ∈ R

ni×ni , i = 1, . . . ,m, denote the irreducible blocks on the main diagonal of
Ā, where m is the number of such blocks and

∑m
i=1 ni = n. Since each block on the

main diagonal is irreducible, the nullspace of Ā can be expressed as

Null(Ā) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ α11n1

...
αm1nm

⎞
⎟⎠ | αl ∈ R, l = 1, . . . ,m

⎫⎪⎬
⎪⎭ .

We assumed that B is block diagonalizable, which means that GB is a union of
isolated, strongly connected subgraphs, property which remains valid for the graph
corresponding to B̄ = TBT ′, since GB̄ is just a relabeled version of GB . By adding
B̄ to Ā one of two phenomena can happen: either we can leave the graph GĀ un-
changed or we can create new connections among the vertices of GĀ. In the first case,
GB̄ ⊂ GĀ, and therefore Null(Ā + B̄) = Null(Ā). In the second case we create new
connections among the blocks of Ā. But since all the subgraphs of B̄ are strongly con-
nected, this means that if Āi becomes connected to Āj , then necessarily Āj becomes
connected to Āi, and hence Āi and Āj form an irreducible (strongly connected) new
block, whose nullspace is spanned by the vectors of all ones. Assuming that these are
the only new connections that are added to GĀ, the nullspace of Ā+ B̄ will have an
expression similar to that of the nullspace of Ā with the main difference being that the
coefficients αi and αj will be equal. Therefore, in this particular case, the nullspace
of Ā+ B̄ can be expressed as

Null(Ā+ B̄) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ α11n1

...
αm1nm

⎞
⎟⎠ | αl ∈ R, αi = αj , l = 1, . . . ,m

⎫⎪⎬
⎪⎭ .

In general all blocks Āi which become interconnected after adding B̄ will have equal
coefficients in the expression of the nullspace of Ā+ B̄, compared to the nullspace of
Ā. Therefore, Null(Ā+ B̄) ⊂ Null(Ā), which also means that Null(A+B) ⊂ Null(A).
Therefore, if (A + B)v = 0, then Av = 0, which also implies that Bv = 0 or v ∈
Null(B). Hence if v ∈ Null(A+B), then v ∈ Null(A) ∩Null(B), which concludes the
proof.

In the following corollary we present a property of the eigenspaces corresponding
to the eigenvalue one of a set of probability transition matrices.

Corollary 3.6. Let s be a positive integer, and let A = {Ai}si=1 be a set of
doubly stochastic, probability transition matrices. Then,

Null

(
s∑

i=1

(Ai − I)

)
=

s⋂
i=1

Null(Ai − I),

and dim(Null(
∑s

i=1(Ai − I))) = 1 if and only if GA is strongly connected.
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Proof. Since Ai, i = 1, . . . , s, are doubly stochastic, Ai−I are block diagonalizable
doubly stochastic generator matrices. Therefore, by recursively applying Lemma 3.5
s−1 times, the first part of the corollary follows. For the second part of the corollary,
note that by Corollary 3.5 of [19], 1

N

∑s
i=1 Ai has the algebraic multiplicity of its

eigenvalue λ = 1 equal to one if and only if the graph associated with 1
N

∑s
i=1 Ai

has a spanning tree or, in our case, is strongly connected. This in turn implies that
dim(Null(

∑s
i=1(Ai − I))) = 1 if and only if GA is strongly connected.

The following corollary is an immediate consequence of Corollary 3.5 of [19].
Corollary 3.7. A generator matrix Λ has the algebraic multiplicity of its eigen-

value λ = 0 equal to one if and only if the graph associated with the matrix has a
spanning tree.

Proof. The proof follows immediately from Corollary 3.5 of [19] by forming the
probability transition matrix P = I + εΛ for some appropriate ε > 0 and noting that
Null(P − I) = Null(Λ).

The following corollary is the counterpart of Lemma 3.7 of [19], in the case of
generator matrices.

Corollary 3.8. Let Λ ∈ R
n×n be a generator matrix. If Λ has an eigenvalue

λ = 0 with algebraic multiplicity equal to one, then limt→∞ eΛt = 1v′, where v is a
nonnegative vector satisfying Λ′v = 0 and v′1 = 1.

Proof. Choose h1 > 0, and let {t1k}k≥0 be a sequence given by t1k = h1k for all
k ≥ 0. Then

lim
k→∞

eΛt1k = lim
k→∞

eh1kΛ = lim
k→∞

P k
h1
,

where we defined Ph1 � eh1G. From the theory of continuous-time Markov chains we
know that Ph1 is a stochastic matrix with positive diagonal entries and that, given
a vector x ∈ R

n, x′Ph1 = x′ if and only if x′Λ = 0. This means that the algebraic
multiplicity of the eigenvalue λ = 1 of Ph1 is one. By Lemma 3.7 of [19], we have that
limk→∞ P k

h1
= 1v′h1

, where vh1 is a nonnegative vector satisfying P ′
h1
vh1 = vh1 and

v′h1
1 = 1. Also, Λ′vh1 = 0. Choose another h2 > 0, and let Ph2 � eh2G. As above,

we have that

lim
k→∞

P k
h2

= 1v′h2
,

where vh2 satisfy properties similar to those satisfied by vh1 . But since both vectors
belong to the nullspace of Λ′ of dimension one, they must be equal. Indeed, if x is a
left eigenvector of Λ, then vh1 and vh2 can be written as vh1 = α1x and vh2 = α2x.
However, since 1′vh1 = 1 and 1′vh2 = 1, it follows that α1 = α2. We have shown that
for any choice of h > 0,

lim
k→∞

eΛtk = ehkΛ = 1v′,

where v is a nonnegative vector satisfying Λ′v = 0 and 1′v = 1, and, therefore, the
result follows.

3.2. Preliminary results for the case where the agents’ dynamics is
expressed in discrete time. In this subsection we state and prove a set of results
used to prove Theorem 2.2 in the case where the agents’ dynamics is expressed in
discrete time. Basically these results study the convergence properties of a sequence
of matrices {Qk}k≥0, whereQ has a particular structure which comes from the analysis
of the first and second moments of the state vector x(t).
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Lemma 3.9. Let s be a positive integer, and let {Aij}si,j=1 be a set of n × n
doubly stochastic, ergodic matrices which satisfy the assumptions of Theorem 3.1. Let
P = (pij) be an s× s stochastic matrix corresponding to an irreducible, homogeneous
Markov chain, and let P∞ be the limit set of the sequence {P k}k≥0. Consider the
ns × ns dimensional matrix Q whose (i, j)th block is defined by Qij � pjiAij. Then
P′

∞ ⊗ (
1
n11

′) is the limit set of the matrix sequence {Qk}k≥1, i.e.,

(6) lim
k→∞

d

(
Qk,P′

∞ ⊗
(
1

n
11′

))
= 0.

Proof. The proof of this lemma is based on Corollary 3.2. The (i, j)th block entry
of the matrix Qk can be expressed as

(7) (Qk)ij =
∑

1≤i1,...,ik−1≤s

pji1pi1i2 . . . pik−1iAii1Ai1i2 . . . Aik−1j .

Let p∞ji be the (j, i)th entry of an arbitrary matrix in P∞; i.e., there exists a
sequence {tk}k≥1 ⊂ N such that limk→∞(P tk)ji = p∞ji .

We have that∥∥∥∥(Qk)ij − p∞ji
1

n
11′

∥∥∥∥ ≤
∑

1≤it1 ,...,ik−1≤s

(pji1 . . . pik−1i)

∥∥∥∥Aii1 . . . Aik−1j −
1

n
11′

∥∥∥∥

+

∣∣∣∣ ∑
1≤i1,...,ik−1≤s

pji1 . . . pik−1i − p∞ji

∣∣∣∣
∥∥∥∥ 1n11′

∥∥∥∥

≤ max
i1,...,ik−1

{∥∥∥∥Aii1 . . . Aik−1j −
1

n
11′

∥∥∥∥
} ∑

1≤i1,...,ik−1≤s

pji1 . . . pik−1i

+

∥∥∥∥ 1n11′
∥∥∥∥
∣∣∣∣ ∑
1≤i1,...,ik−1≤s

pji1 . . . pik−1i − p∞ji

∣∣∣∣,
where ‖ · ‖ was used to denote some matrix norm. Consider the limit of the left-hand
side of the above inequality for the sequence {tk}k≥0. By Corollary 3.2 we know that

lim
k→∞

Aiit1
. . . Aitk−1

j =
1

n
11′

for all sequences it1 , . . . , itk−1
, and since, obviously,

lim
k→∞

∑
1≤it1 ,...,itk−1

≤s

pjit1 . . . pitk−1
i = p∞ji ,

it results that

lim
k→∞

(Qtk)ij = p∞ji
1

n
11′.

ThereforeP′
∞⊗(

1
n11

′) is the limit set for the sequence of matrices {Qk}k≥1.
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Lemma 3.10. Let s be a positive integer, and consider a set of doubly stochastic
matrices with positive diagonal entries, D = {Di}si=1, such that the corresponding
graph GD is strongly connected. Let P be the s× s dimensional probability transition
matrix of an irreducible, homogeneous Markov chain, and let P∞ be the limit set
of the sequence {P k}k≥0. Consider the ns × ns matrix Q whose blocks are given by
Qij � pjiDj. Then P′

∞⊗(
1
n11

′) is the limit set of the sequence of matrices {Qk}k≥1,
i.e.,

(8) lim
k→∞

d

(
Qk,P′

∞ ⊗
(
1

n
11′

))
= 0.

Proof. Our strategy consists in showing that there exists a k ∈ N such that each

(i, j)th block matrix of Qk becomes a weighted ergodic matrix, i.e., (Qk)ij = p
(k)
ji A

(k)
ij ,

where A
(k)
ij is ergodic and p

(k)
ji = (P k)ji. If this is the case, we can apply Lemma 3.9 to

obtain (8). The (i, j)th block matrix of Qk looks as it does in (7), with the difference
that in the current case Aij = Dj:

(9) (Qk)ij =
∑

1≤i1,...,ik−1≤s

pji1pi1i2 . . . pik−1iDjDi1 . . . Dik−1
= p

(k)
ji A

(k)
ij ,

where

A
(k)
ij �

∑
1≤i1,...,ik−1≤s

αi1,...,ik−1
DjDi1 . . . Dik−1

,

with

αi1,...,ik−1
�

{
pji1pi1i2 . . . pik−1i/p

(k)
ji , p

(k)
ji > 0,

0 otherwise.

Note that each matrix product DjDi1 . . . Dik−1
appearing in A

(k)
ij corresponds to

a path from node j to node i in k−1 steps. Therefore, by the irreducibility assumption
of P , there exists a k such that each matrix in the set D appears at least once in one
of the terms of the sum (9); i.e., {1, . . . , s} ⊆ {i1, . . . , ik−1}. Using an idea similar
to that in Lemma 1 of [7] or Lemma 3.9 of [19], by Lemma 3.3, a lower bound for
DjDi1 . . . Dik−1

is given by

(10) DjDi1 . . . Dik−1
≥ γ

s∑
l=1

Dl = γD̄,

where γ > 0 depends on the matrices in D and D̄ is a doubly stochastic matrix with
positive entries,

D̄ =

s∑
i

Di.

SinceGD is strongly connected, the same is true forGD̄. Therefore, D̄ corresponds
to an irreducible, aperiodic (D̄ has positive diagonal entries), and hence ergodic,
Markov chain. By inequality (10), it follows that the matrix product DjDi1 . . . Dik−1

is ergodic. This is enough to infer that A
(k)
ij is ergodic as well, since it is a result of a
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convex combination of (doubly) stochastic matrices with at least one ergodic matrix

in the combination. Choose a k∗ large enough such that for all nonzero p
(k∗)
ij , the

matrices A
(k∗)
ij are ergodic for all i, j. Such a k∗ always exists due to the irreducibility

assumption on P . In addition, by applying Lemma 3.3 again, any finite matrix

product of the form A
(k∗)
ii1

A
(k∗)
i1i2

. . . A
(k∗)
im−1im

is ergodic as well. Then according to

Lemma 3.9, we have that for the subsequence {tm}m≥0, with tm = mk∗,

(11) lim
m→∞ d

(
Qtm ,P′

∞ ⊗
(
1

n
11′

))
= 0.

The result follows by Proposition 3.4 since ‖Q‖1 ≤ 1 and sinceQ
(
P′

∞ ⊗ (
1
n11

′)) =
P′

∞ ⊗ (
1
n11

′).
Lemma 3.11. Under the same assumptions as in Lemma 3.10, if we define the

matrix blocks of Q as Qij � pjiDj ⊗ Dj, then P′
∞ ⊗ (

1
n211

′) is the limit set of the
sequence {Qk}k≥1, i.e.,

lim
k→∞

d

(
Qk,P′

∞ ⊗
(

1

n2
1n21′

n2

))
= 0.

Proof. In the current setup (9) becomes

(12) (Qk)ij =
∑

1≤i1,...,ik−1≤s

pji1pi1i2 . . . pik−1i(Dj⊗Dj)(Di1⊗Di1) . . . (Dik−1
⊗Dik−1

).

The result follows from the same arguments used in Lemma 3.10 together with the fact
that the matrix products in (12) can be written as (Dj ⊗Dj)(Di1 ⊗Di1) . . . (Dik−1

⊗
Dik−1

) = (DjDi1 . . .Dik−1
) ⊗ (DjDi1 . . .Dik−1

) and with the observation that the
Kronecker product of an ergodic matrix with itself produces an ergodic matrix as
well.

3.3. Preliminary results for the case where the agents’ dynamics is
expressed in continuous time. The following two lemmas emphasize geometric
properties of two matrices arising from the linear dynamics of the first and second
moments of the state vector, in the continuous-time case.

Lemma 3.12. Let s be a positive integer, and let C = {Ci}si=1 be a set of n×n dou-
bly stochastic matrices such that GC is strongly connected. Consider also an s×s gen-
erator matrix Λ = (λij) corresponding to an irreducible Markov chain with stationary

distribution π = (πi). Define the matrices A � diag(C′
i, i = 1, . . . , s) and B � Λ⊗ I.

Then A + B has an eigenvalue λ = 0 with algebraic multiplicity one and with corre-
sponding right and left eigenvectors given by 1ns and (π11

′
n, π21

′
n, . . . , πs1

′
n), respec-

tively.
Proof. We first note that A + B is a generator matrix and that both A and

B are block diagonalizable (indeed, A has doubly stochastic matrices on its main
diagonal, and B contains n copies of the irreducible Markov chain corresponding to
Λ). Therefore, A+B has an eigenvalue λ = 0 with algebraic multiplicity at least one.

Let v be a vector in the nullspace of A + B. By Lemma 3.5, we have that
v ∈ Null(A) and v ∈ Null(B). Given the structure of B, v must respect the following
pattern:

v′ = (u′, . . . , u′︸ ︷︷ ︸
s times

)′ for some u ∈ R
n.
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But since v ∈ Null(A), we have that C′
iu = 0, i = 1, . . . , s, or Cu = 0, where

C =
∑s

i=1 C
′
i. Since GC was assumed strongly connected, C corresponds to an

irreducible Markov chain, and it follows that u must be of the form u = α1 for some
α ∈ R. By backtracking, we get that v = α1 for some α ∈ R and consequently
Null(A + B) = span(1). Therefore, λ = 0 has algebraic multiplicity one, with right
eigenvector given by 1. By simple verification we note that (π11

′, π21
′, . . . , πs1

′) is a
left eigenvector corresponding to the eigenvalue λ = 0.

Lemma 3.13. Let s be a positive integer, and let C = {Ci}si=1 be a set of n × n
doubly stochastic matrices such that GC is strongly connected. Consider also an s× s
generator matrix Λ = (λij) corresponding to an irreducible Markov chain with sta-

tionary distribution π = (πi). Define the matrices A � diag(C′
i ⊕C′

i, i = 1, . . . , s) and
B � Λ⊗ I. Then A+B has an eigenvalue λ = 0 with algebraic multiplicity one, with
corresponding right and left eigenvectors given by 1n2s and (π11

′
n2 , π21

′
n2 , . . . , πs1

′
n2),

respectively.
Proof. It is not difficult to check that A + B is a generator matrix. Also, we

note that C′
i ⊕ C′

i = C′
i ⊗ I + I ⊗ C′

i is block diagonalizable since both C′
i ⊗ I and

I ⊗ C′
i are block diagonalizable. Indeed, since Ci is doubly stochastic, it is block

diagonalizable. The matrix C′
i ⊗ I contains n isolated copies of C′

i, and therefore it
is block diagonalizable. Also, I ⊗ C′

i has n blocks on its diagonal, each block being
given by C′

i, and it follows that it is block diagonalizable as well.
Let v be a vector in the nullspace of A + B. By Lemma 3.5, v ∈ Null(A) and

v ∈ Null(B). From the structure of B we note that v must be of the form

v′ = (u′, . . . , u′︸ ︷︷ ︸
s times

)′ for some u ∈ R
n2

.

Consequently we have that (C′
i ⊕ C′

i)u = 0, i = 1, . . . , s, or (C ⊕ C)u = 0, where
C =

∑s
i=1 C

′
i. Since GG is strongly connected, C is a generator matrix corresponding

to an irreducible Markov chain. By again applying Lemma 3.5 for the matrix C⊕C =
I ⊗C+C⊗ I, we get that u must have the form

u′ = (ū′, . . . , ū′︸ ︷︷ ︸
n times

)′,

where ū ∈ R
n and Cū = 0. But C is irreducible and therefore ū = α1n, or u = α1n2 ,

or finally v = α1n2s, where α ∈ R. Consequently, Null(A + B) = span(1), which
means the eigenvalue λ = 0 has algebraic multiplicity one. By simple verification,
we note that (π11

′
n2 , π21

′
n2 , . . . , πs1

′
n2) is a left eigenvector corresponding to the zero

eigenvalue.

4. Proof of the convergence theorem. The proof will focus on showing that
the state vector x(t) converges in the mean square sense to average consensus. Equiv-
alently, by making the change of variable z(t) = x(t)−av(x0)1, we will actually show
that z(t) is mean square stable for the initial condition z(0) = x0 − av(x0)1, where
z(t) respects the same dynamic equation as x(t).

Using results from the stability theory of Markovian jump linear systems, for
constant probability transition matrices (generator matrices), mean square stability
also implies stability in the almost sure sense (see, for instance, Corollary 3.46 of [3]
for the discrete-time case or Theorem 2.1 of [4] for the continuous-time case, bearing
in mind that we are interested in the stability property being satisfied for a specific
initial condition, rather than for any initial condition). For time varying probability
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transition matrices (generator matrices), without additional assumptions, the two
modes of convergence are not necessarily equivalent.

We first prove the discrete-time case after which we continue with the proof for
the continuous-time case.

4.1. Discrete-time case—sufficiency. Let V (t) denote the second moment of
the state vector:

V (t) � E[x(t)x(t)T ],

where we used E to denote the expectation operator. The matrix V (t) can be ex-
pressed as

(13) V (t) =

s∑
i=1

Vi(t),

where Vi(t) is given by

(14) Vi(t) � E[x(t)x(t)Tχ{θ(t)=i}], i = 1, . . . , s,

with χ{θ(t)=i} being the indicator function of the event {θ(t) = i}.
The set of discrete coupled Lyapunov equations governing the evolution of the

matrices Vi(t) is given by

(15) Vi(t+ 1) =

s∑
j=1

pjiDjVj(t)D
T
j , i = 1, . . . , s,

with initial conditions Vi(0) = qix0x
T
0 . By defining η(t) � col(Vi(t), i = 1, . . . , s), we

obtain a vectorized form of equations (15),

(16) η(t+ 1) = Γdη(t),

where Γd is an n2s× n2s matrix given by

(17) Γd =

⎛
⎜⎝ p11D1 ⊗D1 · · · ps1Ds ⊗Ds

...
. . .

...
p1sD1 ⊗D1 · · · pssDs ⊗Ds

⎞
⎟⎠ and η0 =

⎛
⎜⎝ q1col(x0x

′
0)

...
qscol(x0x

′
0)

⎞
⎟⎠ .

We note that Γd satisfies all the assumptions of Lemma 3.11, and hence we get

lim
k→∞

d

(
Γk
d,P

′
∞ ⊗

(
1

n2
11′

))
= 0,

where P∞ is the limit set of the matrix sequence {P k}k≥0. Using the observation
that

1

n2
11′col(x0x

′
0) = av(x0)

21,

the limit of the sequence {η(tk)}k≥0, where {tk}k≥0 is such that limk→∞(P tk)ij = p∞ij ,
is

lim
k→∞

η(tk)
′ = av(x0)

2

⎛
⎜⎝

∑s
j=1 p

∞
j1qj1

...∑s
j=1 p

∞
jsqj1

′

⎞
⎟⎠ .
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By collecting the entries of limk→∞ η(tk), we obtain

lim
k→∞

Vi(tk) = av(x0)
2

⎛
⎝ s∑

j=1

p∞ji qj

⎞
⎠11′,

and from (13) we get

(18) lim
k→∞

V (tk) = av(x0)
211′

since
∑s

i,j=1 p
∞
ji qj = 1. By repeating the previous steps for all subsequences generat-

ing limit points for {P k}k≥0, we obtain that (18) holds for any sequence in N.
Through a process similar to that in the case of the second moment (instead of

Lemma 3.11 we use Lemma 3.10), we show that

(19) lim
k→∞

E[x(t)] = av(x0)1.

From (18) and (19) we have that

lim t→∞E[‖x(t)− av(x0)1‖2] = lim
t→∞ tr(E[(x(t) − av(x0)1)(x(t) − av(x0)1)

′])

= lim t→∞tr(E[x(t)x(t)′]− av(x0)1E[x(t)′]− av(x0)E[x(t)]1′ + av(x0)
211′) = 0.

Therefore, x(t) converges to average consensus in the mean square sense and conse-
quently in the almost sure sense as well.

4.2. Discrete-time case—necessity. If GA is not strongly connected, then
by Corollary 3.6, dim(

⋂s
i=1 Null(Ai − I)) > 1. Consequently, there exists a vector

v ∈ ⋂s
i=1 Null(Ai − I) such that v /∈ span(1). If we choose v as initial condition, for

every realization of θ(t), we have that

x(t) = v ∀ t ≥ 0,

and therefore consensus cannot be reached in the sense of Definition 2.1.

4.3. Sufficiency—continuous time. Using the same notation as in the discrete-
time case, the dynamic equations describing the evolution of the second moment of
x(t) are given by

(20)
d

dt
Vi(t) = CiVi(t) + Vi(t)C

′
i +

s∑
j=1

λjiVj(t), i = 1, . . . , s,

equations whose derivation is treated in [5]. By defining the vector η(t) � col(Vi(t), i =
1, . . . , s), the vectorized equivalent of (20) is given by

(21)
d

dt
η(t) = Γcη(t),

where

Γc =

⎛
⎜⎜⎜⎝

C1 ⊕ C1 0 · · · 0
0 C2 ⊕ C2 · · · 0
... · · · . . .

...
0 0 · · · Cs ⊕ Cs

⎞
⎟⎟⎟⎠+ Λ′ ⊗ I and η0 =

⎛
⎜⎜⎜⎝

q1col(x0x
′
0)

q2col(x0x
′
0)

...
qscol(x0x

′
0)

⎞
⎟⎟⎟⎠ .D
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By Lemma 3.13, the eigenspace corresponding to the zero eigenvalue of Γc has
dimension one, with unique (up to the multiplication by a scalar) left and right eigen-
vectors given by 1n2s and 1

n2 (π11
′
n2 , π21

′
n2 , . . . , πs1

′
n2), respectively. Since Γ′

c is a
generator matrix with an eigenvalue zero of algebraic multiplicity one, by Corollary
3.8 we have that limt→∞ eΓ

′
ct = v1′, where v′ = 1

n2 (π11
′, π21

′, . . . , πs1
′). Therefore,

as t goes to infinity, we have that

lim
t→∞ η(t) =

⎛
⎜⎝ π1

11′
n2 · · · π1

11′
n2

...
. . .

...

πs
11′
n2 · · · πs

11′
n2

⎞
⎟⎠

⎛
⎜⎝ q1col(x0x

′
0)

...
qscol(x0x

′
0)

⎞
⎟⎠ .

By noting that

11′

n2
col(x0x

′
0) = av(x0)

21n2 ,

we further get

lim
t→∞ η(t) = av(x0)

2

⎛
⎜⎝ π11n2

...
πs1n2

⎞
⎟⎠ .

Rearranging the columns of limt→∞ η(t), we get

lim
t→∞Vi(t) = av(x0)

2πi11
′

or

lim
t→∞V (t) = av(x0)

211′.

Through a similar process (this time using Lemma 3.12), we can show that

lim
t→∞E[x(t)] = av(x0)1.

Therefore, x(t) converges to average consensus in the mean square sense and conse-
quently in the almost surely sense.

4.4. Necessity—continuous time. The proof follows the same lines as in the
discrete-time case.

5. Discussion. In the previous sections we proved a convergence result for the
stochastic, linear consensus problem for the cases where the dynamics of the agents
was expressed in both discrete and continuous time. Our main contributions consist of
considering a Markovian process, not necessarily ergodic, as underlying process for the
random communication graph, and using a Markovian jump system theory inspired
approach to prove this result. In what we have shown, we assumed that the Markov
process θ(t) was irreducible and that the matrices Di and Ci were doubly stochastic.
We can assume, for instance, that θ(t) is not irreducible (i.e., θ(k) may have transient
states). We treated this case in [9] (only for discrete-time dynamics), and we showed
that convergence in the sense of Definition 2.1 is achieved if and only if the union of
graphs corresponding to each of the irreducible closed sets of states of the Markov
chain produces a strongly connected graph. This should be intuitively clear since the
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probability of returning to a transient state converges to zero as time goes to infinity,
and therefore the influence of the matrices Di (or Ci), corresponding to the transient
states, is canceled. We can also assume that Di and Ci are not necessarily doubly
stochastic. We treated this case (again only for the discrete-time dynamics) in [10],
and we showed that the state converges in the mean square sense and in the almost
sure sense to consensus, and not necessarily to average consensus. From the technical
point of view, the difference consists of the fact that the n2 × n2 block matrices of
{Γt

d}t≥0 (or {etΓc}t≥0) no longer converge to πi
1
n211

′ but to πi1c
′, for some vector

c ∈ R
n2

with nonnegative entries summing up to one, a vector c which in general
cannot be a priori determined. In relevant distributed computation applications (such
as distributed state estimation or distributed optimization), however, convergence to
average consensus is desirable, and therefore the assumption that Di or Ci are doubly
stochastic makes sense.

The proof of Theorem 2.2 was based on the analysis of two matrix sequences
{eΓct}t≥0 and {Γt

d}t≥0 arising from the dynamic equations of the state’s second mo-
ment for continuous and discrete time, respectively. The reader may have noted that
we approached the analysis of the two sequences in different ways. In the case of
continuous-time dynamics, our approach was based on showing that the left and right
eigenspaces induced by the zero eigenvalue of Γc have dimension one, and we provided
the left and right eigenvectors (bases of the respective subspaces). The convergence
of {eΓct}t≥0 followed from Corollary 3.8. In the case of the discrete-time dynamics,
we analyzed the sequence {Γt

d}t≥0 by looking at how the matrix blocks of Γt
d evolve

as t goes to infinity. Although, similarly to the continuous-time case, we could have
proved properties of Γd related to the left and right eigenspaces induced by the eigen-
value one, this would not have been enough in the discrete-time case. This is because,
through θ(t), Γd can be periodic, in which case the sequence {Γt

d}t≥0 does not con-
verge (remember that in the discrete-time consensus problems, a common assumption
is that the consensus matrices have positive diagonal entries which prevent them from
being periodic).

Other approaches to the problem we considered can be found in [20, 21]. A first
difference between these works and ours is that there the various weights would vary
with time, while in our case, so long as there is a connection, the weight is fixed.
Moreover, in the case of i.i.d. random graphs [20], or, more generally, in the case of
strictly stationary, ergodic random graphs [21], a necessary and sufficient condition
for reaching consensus almost surely (in the discrete-time case) is |λ2(E[Dθ(t)])| < 1,
where λ2 denotes the eigenvalue with second largest modulus. In the case of Markovian
random topology, however, such a condition may not hold, neither for each time t,
nor in the limit. Take, for instance, two (symmetric) stochastic matrices D1 and D2

such that each of the graphs GD1 and GD2 , respectively, is not strongly connected,
but their union is. If the two-state Markov chain θ(t) is periodic, with transitions
given by p11 = p22 = 0 and p12 = p21 = 1, we note that λ2(E[Dθ(t)]) = 1 for all t ≥ 0,
although the sequence {E[Dθ(t)]}t≥0 does not have a limit. Yet, consensus is reached.
The assumption that allowed the aforementioned necessary and sufficient condition
to hold is that θ(t) is a stationary process (which in turn implies that E[Dθ(t)] is
constant for all t ≥ 0). However, this is not necessarily true if θ(t) is a (homogeneous)
irreducible Markov chain, unless the initial distribution is the stationary distribution.

For the discrete-time case we can formulate a result involving the second largest

eigenvalue of the time average expectation of Dθ(t), i.e., limN→∞
∑N

t=1 E[Dθ(t)]

N , which
reflects the proportion of time Dθ(t) spends in each state of the Markov chain.
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Proposition 5.1. Consider the stochastic system (1). Then, under Assumption
2.1, the state vector x(t) converges to average consensus in the sense of Definition 2.1
if and only if ∣∣∣∣∣λ2

(
lim

N→∞

∑N
t=0 E[Dθ(t)]

N

)∣∣∣∣∣ < 1.

Proof. The time average of E[Dθ(t)] can be explicitly written as

lim
N→∞

∑N
t=0 E[Dθ(t)]

N
=

s∑
i=1

πiDi = D̄,

where π = (πi) is the stationary distribution of θ(t). By Corollary 3.5 in [19],
|λ2(D̄)| < 1 if and only if the graph corresponding to D̄ has a spanning tree or,
in our case, is strongly connected. But the graph corresponding to D̄ is the same as
GD, and the result follows from Theorem 2.2.

Unlike in the discrete-time case, in the case of continuous-time dynamics, we know
that if there exists a stationary distribution π (under the irreducibility assumption),
the probability distribution of θ(t) converges to π; hence the time averaging is not
necessary. In the following we introduce (without proof since basically it is similar to
the proof of Proposition 5.1) a necessary and sufficient condition for reaching average
consensus, involving the expected value of the second largest eigenvalue of Cθ(t), for
the continuous-time dynamics.

Proposition 5.2. Consider the stochastic system (2). Then, under Assumption
2.1, the state vector x(t) converges to average consensus in the sense of Definition 2.1
if and only if

Re
(
λ2

(
lim
t→∞E[Cθ(t)]

))
< 0.

Our analysis also provides estimates on the rate of convergence to average con-
sensus in the mean square sense. From linear dynamic equations of the state’s second
moment we notice that the eigenvalues of Γd and Γc dictate how fast the second mo-
ment converges to average consensus. Since Γ′

d is a probability transition matrix and
since Γ′

c is a generator matrix, an estimate of the rate of convergence of the second
moment of x(t) to average consensus is given by the second largest eigenvalue (in
modulus) of Γd for the discrete-time case, and by the real part of the second largest
eigenvalue of Γc for the continuous-time case.

6. Conclusion. In this paper we analyzed the convergence properties of the lin-
ear consensus problem when the communication topology is modeled as a directed
random graph with an underlying Markovian process. We addressed the cases where
the dynamics of the agents is expressed both in continuous and in discrete time. Under
some assumptions on the communication topologies, we provided a rigorous mathe-
matical proof for the intuitive necessary and sufficient conditions for reaching average
consensus in the mean square sense and the almost sure sense. These conditions are
expressed in terms of connectivity properties of the union of graphs corresponding to
the states of the Markov process. The aim of this paper is to show how mathematical
techniques from the stability theory of the Markovian jump systems, in conjunction
with results from the matrix and graph theory, can be used to prove convergence
results for consensus problems under a stochastic framework.
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