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Abstract—An epidemic that spreads in a network calls for a
decision on the part of the network users. They have to decide
whether to protect themselves or not. Their decision depends on
the tradeoff between the perceived infection and the protection
cost. Aiming to help users reach an informed decision, security
advisories provide periodic information about the infection level
in the network. We study the best-response dynamic in a network
whose users repeatedly activate or de-activate security, depending
on what they learn about the infection level. Our main result is
the counterintuitive fact that the equilibrium level of infection
increases as the users’ learning rate increases. The same is true
when the users follow smooth best-response dynamics, or any
other continuous response function that implies higher probability
of protection when learning a higher level of infection. In both
cases, we characterize the stability and the domains of attraction of
the equilibrium points. Our finding also holds when the epidemic
propagation is simulated on human contact traces, both when all
users are of the same best-response behavior type and when they
are of two distinct behavior types.

Index Terms—Communication networks, differential inclusions,
nonlinear systems, security, switched systems.

I. INTRODUCTION

A COMPUTER worm is a program that self-propagates
across a network, exploiting security or policy flaws in

widely used services [1]. Worms have the potential to infect
a large number of computers, due to the high level of inter-
connection of the telecommunication infrastructure. Indeed,
a relatively recent outbreak (Conficker/Downadup worm) in-
fected more than 9 million computers [2]. Countermeasures to
an infection can be centrally enforced, or the decision for their
adoption can be left to individual agents such as individual
home computer users or companies.
Centralized enforcing is more likely to work in tightly con-

trolled environments, such as within a company network where
the users are obliged to abide by the company security policy. In
the wireless network setting, controlling the infection has been
studied [3] under the assumption that the network operator is
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able and willing to control the communication range of each de-
vice. Optimal control policies are found, which strike a balance
between slowing the spread of the infection and increasing the
end-to-end traffic delay in the network.
However, when it is up to individual agents to invest in

protection against infection [4]–[7], contradicting incentives
appear. Although agents want to be safe against viruses, they
would prefer to avoid paying the cost of security. Security
may not only cost money, it may also reduce the utility of the
network, for example, by isolating the agent from the rest of
the network. Moreover, it may reduce the utility of the device,
for example, by slowing it down [8].
The risk-seeking attitude of humans when faced with poten-

tial losses [9] might shed some light on user incentives. In psy-
chological experiments, Tversky and Kahneman [10] observe
that their subjects prefer risking a large loss (in our case, be-
coming infected) if they also have the chance of losing nothing,
rather than taking a sure but smaller loss (in our case, activating
security). Therefore, if the threat is not absolutely certain nor
imminent, users will resist spending any resources on security
(“One solution [for selling security] is to stoke fear.” [9]).
To complicate things further, user incentivesmay changewith

time, as the information available to them changes. There exist
security advisories that provide information about current and
newly emerging threats in popular technology products [11],
[12]. Such information influences user decisions and incentives
by changing their perception of the risks involved. On the one
hand, if users receive news of an ongoing epidemic, they are
much more willing to protect themselves. On the other hand,
when the infection has subsided and there is no clear danger,
complacency may set in with a consequent reduction in the time
and resources spent to ensure safety.
To the best of our knowledge, only static incentives of agents

have been studied [4], [5]. Users have only been modeled as
deciding once and for all whether or not to install a security
product. The once-and-for-all approach applies to installing a
patch, but other countermeasures exist that can be later revoked
by the user: doing background scanning with an antivirus
software, setting up traffic-blocking filters on firewalls, discon-
necting networks or computers, etc.
In this paper, we study myopic decision-makers who receive

dynamically updated information about the level of infection in
the network.Wemodel agents asmore likely to activate counter-
measures when the infection level is high and, when the infec-
tion level is low, as less likely to activate them, or more likely to
de-activate them. We combine the epidemic propagation of the
worm with a game-theoretic description of the user behavior
into a nonlinear dynamical system. Similar to other papers on
security investments [4], [5], we do not collect observations to
estimate the precise shape of real-user response functions. In
this sense, clearly, our conclusions are of a qualitative nature. If
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practitioners wish to derive quantitative results from our model,
in Section II-D-7, we provide guidance on how to find approx-
imate estimates of the parameter values.
Our main scenario comprises the following three elements: 1)

a homogeneous mixing network (random pairwise contacts); 2)
homogeneous and best-response (discontinuous) user behavior,
with a single threshold that determines whether they activate or
deactivate their protection; and 3) users learn what the infection
level is at a rate called the learning rate. We also test alterna-
tive scenarios for user behavior (smooth best-response; two user
classes instead of homogeneous user behavior) and for network
mixing (simulations on human mobility traces).
Our contributions are as follows.
• The network reaches an endemic equilibrium,1 that is, an
equilibrium where the infection persists. Our main conclu-
sion is the following counterintuitive result: the higher the
learning rate, the higher the infection level at the equi-
librium.

• We confirm our main conclusion in three cases: 1) in our
main scenario (Section III); 2) in a scenario with smooth
best-response user behavior (Section IV-A); and 3) in a sce-
nario with best-response behavior, with either one or two
classes of users simulated on real mobility traces (human
pairwise contacts) (Section IV-B).

• In the best-response and smooth best-response user
behavior scenarios, we identify the equilibrium points
(Sections III-C and IV-A-1), we show under which condi-
tions they are locally stable (Sections III-D and IV-A-2),
we rule out the possibility of closed trajectories, and we
characterize the domains of attraction for each equilibrium
point (Sections III-E and IV-A-3).

II. SIPS MODEL FOR EPIDEMIC PROPAGATION
AND USER BEHAVIOR

A. Epidemic Propagation

There are users in the network. Each user can be in one of
three states:
• Susceptible, denoted by . The user does not have any
countermeasures in place and is not infected.

• Infected, denoted by . The user is infected by the virus
and will spread it to any susceptible user he makes contact
with.

• Protected, denoted by . The user has countermeasures in
place. As long as the user is in this state, he is immune to
the virus.

The number and fraction of users in each state are denoted,
respectively, by , , , and . It follows that

and . The state of the network is
, and the set of possible states is

.
The evolution of the network state is described as a Con-

tinuous Time Markov Process, as follows. A Poisson process of
rate is associated with each user. At an epoch of the
Poisson process of user —say at time —one of three events
occurs as follows.

1The equilibrium notion that we use is in the long-term sense (i.e., as ).

TABLE I
TABLE OF IMPORTANT NOTATIONS

TABLE II
EVENTS THAT CAN HAPPEN IN THE NETWORK, THEIR RESULTS, AND HOW

EACH EVENT CHANGES THE NETWORK STATE

• With probability , user has a meeting with
another user, chosen uniformly at random. If the meeting is
between a susceptible and an infected user, the susceptible
user becomes infected. Otherwise, nothing happens.

• With probability , user receives an update
about the network state , and he has the opportunity to
revise his current strategy if his state is or . If ’s state
is , he switches to with probability . If ’s state
is , he switches to with probability . If is in-
fected, nothing happens.

• With probability , user has a disinfection op-
portunity. That is, if is infected, he becomes disinfected,
and we assume he becomes protected. If is not infected,
nothing happens.

Table II summarizes the possible events and how each event
changes the network state.

B. User Behavior—Best-Response Dynamics

As can be seen from the epidemic propagation model, the
only point at which the users can make a choice is at an update
event. There is a cost associated with becoming infected,
and a cost associated with becoming protected. It holds that

, because if there is no incentive for a
susceptible user to become protected. There is no cost for being
susceptible. Note that these costs need not be the actual costs;
user decisions are influenced by the costs as perceived by the
users.
The choice between susceptible and protected depends on

which state minimizes the user’s expected cost. The cost of pro-
tection is always . If the user chooses to remain susceptible
when the network state is , the user’s expected
cost is , as 1) the cost of infection is ; 2) there is a fraction
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of infected users; and 3) the homogeneous mixing assump-
tion implies that the meeting between any given pair of users is
equiprobable to any other pair. That is, the probability that the
next meeting of the user is with an infected user is equal to .
See also the last paragraph of this section, the discussion in Sec-
tion II-D and, in particular, II-D-6 and II-D-4.
Therefore, the user’s decision would be if , and
if . If , then both choices are optimal,

and any randomization between them is also optimal. So, when
, the functions and are multivalued.

Note that the user’s decision depends only on the value of ,
rather than the whole state of the network, so we will slightly
abuse the notation and use and in what follows.
We denote by the value of that equalizes the (perceived
expected) cost of infection with the cost of protection

The two functions become

Note that it is possible to generalize the users’ perceived ex-
pected cost of infection at infection level . Instead of , the
perceived expected cost can be any increasing function of
the infection level . The only difference in this case is that
is such that . The rest of the analysis proceeds with
no change.

C. Putting Everything Together

We consider the large population scenario (i.e., the limit as
). Gast and Gaujal [13] show that when , the

trajectory of the stochastic system converges in probability to a
solution of a differential inclusion. If the solution is unique, the
stochastic system converges to it. If there are multiple solutions
for the same initial conditions, then the stochastic system can
converge to any of them.
In our case, the Continuous Time Markov Process described

previously converges to a solution of the following system of
differential inclusions (for brevity, the dependence of on
is not explicitly shown)

Since , we can eliminate one of the three state
variables. We eliminate , and the system becomes

(1a)

(1b)

together with . The state space
is bounded. This system2 is 2-D

and autonomous.3

We denote the right-hand side of system (1) by , and we
slightly abuse the notation for to be , . So
system (1) becomes

D. Discussion of Model Assumptions

1) Worm Lifecycle : The is a
normal lifecycle of a worm. Susceptible users become infected
when compromised by the worm. Infected users stop being in-
fected after some time; they then become protected as a result
of the action that they take to fight the infection.
Many other potential life cycles are conceivable [1].

is another model that has been considered [15]. It
applies, for instance, when the users reboot their machines to
delete the worm. Not all worms are deleted in this way (e.g.,
they might be in the Master Boot Record of the computer, and
so they might reload themselves upon reboot). But if the worm
is deleted, then the machine simply re-enters the susceptible
state upon reboot. The SEIR model [14] can be used for mod-
eling worms with a dormant phase (E for Exposed) before
becoming actively infectious.
2) Adoption/Removal of Countermeasures and Their Timing:

In our model, the countermeasures that users can activate or
deactivate include the following:
• Using antivirus software or special programs to clean in-
fected computers.

• Setting up firewall filters to block the virus or worm traffic.
• Disconnecting networks or computers when no effective
methods are available.

Other countermeasures exist. A popular one, which has re-
ceived a lot of attention in the research community [16], is to
patch or to upgrade susceptible devices in order to make them
immune to the virus or worm. Of course, note that if all devices
are eventually patched, then there can be no long-term infection.
Adoption and removal of measures is a binary (ON/OFF)

choice in our case; users can choose between being either
completely susceptible or completely protected. The antivirus
software is either active or not; the firewall filter either exists
and blocks the worm packets or not. An alternative would be to
model a gradual adoption of a security measure. For instance,
we could introduce a parameter for the scanning rate of a
firewall and allow for the gradual increase of this rate. This
would gradually increase the cost of protection and gradually
decrease the probability of infection.
We only allow users to adopt/remove the countermeasure at

the update epochs. In principle, users are free to do both at any
time they want. But in between update epochs, they do not have

2Note that for , the model is identical to the standard SIR epidemic
model (R stands for Recovered). For , and ,
it is identical to the SIRS model [14]. Therefore, our SIPS model generalizes
SIR and SIRS.
3An autonomous system is a system of ordinary differential equations whose

parameters do not explicitly depend on the independent variable (time in our
case).
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any new information. So we assume that if they want to act, they
will act immediately when they receive the latest update.
3) Homogeneous Mixing and Network Topology: Our

homogeneous mixing assumption is suitable for worms that
perform random uniform scans of the IP address space to
find new victims (Code Red (version 2) [17], Slammer [18]).
It does not apply to worms whose propagation is topology
dependent [19] (e.g., by e-mails to the address-book contacts
of the infected user) or mobile phone worms that propagate
by proximity (Bluetooth worms). In Section IV-B, we perform
simulations on human contact traces, to study different propa-
gation dynamics. We find that our main conclusion persists.
4) Best-Response Dynamics and User Rationality: The con-

cept of best-response is a fundamental one in game theory, and
it is also one of the most popular dynamics in evolutionary game
theory. Hence, it is our main scenario in this paper. Best-re-
sponse dynamics lead to differential inclusions, which unfor-
tunately increase the complexity of the analysis [20]–[23].
Differential inclusions appear because of the multiplicity of

optimal responses. In this paper, the multiplicity appears when
. At that value of , both protection and no protection

are optimal as well as all randomizations among them. It turns
out that under certain conditions (3), the equilibrium point of
the system is exactly on the line ; second, on a more
technical note, the system trajectories that pass from the point

, cannot be uniquely continued. So if we want
to study best-response dynamics, we cannot afford to ignore dif-
ferential inclusions, as the properties of the system under study
are intricately affected.
Of course, users might not be perfectly rational. Even in the

case of best-response dynamics, we consider the users to be my-
opic: they do not take into account the long-term effects of their
actions, but they rather behave greedily. But the lack of user ra-
tionality may go even further. Their perception of the cost may
not be clearcut (e.g., they are not sure about the exact values of
and ). Alternatively, they may take the network state report

to be not completely accurate. To account for such cases, we
study smooth best-response dynamics (Section IV-A). Briefly,
we assume that and can be arbitrary functions of
, as long as is nondecreasing with and is non-
increasing with .
5) Uniform User Behavior: In the model as described,

all users behave the same way. To account for users with
different response functions, in Section IV-B, we simulate two
user classes, each with a different best-response function. An
extension to more than two classes is straightforward.
6) Costs of Infection and Protection: The cost of infection

and protection have been assumed to be constant, but this need
not be so. For example, it is reasonable to make the infection
cost depend on . A larger means a shorter infection dura-
tion, so the infection cost should presumably decrease with .
The influence of the contact rate is less clear. A higher
increases the probability of getting infected within the next
time units: this probability is . On the one hand, the objec-
tive cost of infection itself does not change (removing the virus
from the computer, lost hours of productivity, lost/compromised
data, psychological effect on user, etc.). On the other hand, as
we already said, what matters is the cost as perceived by the

users. Perhaps a user feels more threatened due to the high con-
tact rate .
A further issue is the immediacy of the protection cost versus

the vagueness of the infection cost. The infection cost is a
potential cost that will be paid in the future, if the user becomes
infected. The protection cost is an immediate loss. Humans
heavily discount future losses and rewards.
We argue that none of the aforementioned considerations

change our conclusions, unless some cost depends on the update
rate . Making the infection cost (and even the protection cost)
a function of and merely turns into ; as and
are constants, also remains constant with respect to

time, so our conclusions do not change. If, for some reason,
depends on , and it also happens that the equilibrium infection
is equal to (which happens in the case of the equilibrium
point , Section III), then our conclusions on the dependency
of the equilibrium infection level on would be different.
The qualitatively different nature of the infection and protec-

tion costs (future versus immediate) can be incorporated in our
model by appropriately discounting the value of . The dis-
counting can even depend on , as influences the immediacy
of the infection.
7) Parameter Identification: There are five parameters in our

mode, and two smooth best-response behavior
functions and . Our main conclusion is qualitative,
so it is not influenced by the exact values of these parameters.
Any incidental quantitative results of our work, such as the in-
fection level at the equilibrium, are indeed sensitive to the pa-
rameter values. Even though it is not directly relevant to our
main contributions, we provide some insight on how an inter-
ested reader might go about measuring these parameters.
To measure , we have to estimate the contact rate per in-

fected user for a real worm, that is, the number of infection
attempts that the worm initiates each time unit. This can be
done by observing the behavior of the worm in the wild, or in a
controlled environment, or by analyzing the source code of the
worm if it is available. All three methods are used by security
researchers.
To measure , we have to estimate the time that a device

remains infected. The duration of the infection may be due to
any number of factors, such as the user not noticing the worm,
the user being indifferent, or the worm being inherently diffi-
cult to clean because its removal might cause data loss, for ex-
ample. Measurements for the infection duration can typically be
collected by system administrators, or any other person who is
called upon to clean the infected device. Although it is easy to
establish the end time of the infection at a device, finding the
start time might require computer forensics techniques.
The value of is likely easier to determine, because is the

update rate and updates are sent to all of the users in the network.
An approximate estimate for the infection and protection

costs can be obtained, for instance, through psychological/so-
ciological tests and interviews, as well as purely technical and
economic evaluations. It is sufficient for our best-response
model that there be a threshold for , above which the
users switch from to and below which they switch from
to . Similar considerations apply for the derivation of

the smooth best-response functions and . Our
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conclusions depend only on increasing with and
on decreasing with . We believe that is a very mild
assumption on user behavior, but practitioners who wish to use
our conclusions should verify it.
The non-necessity of exact estimation of the various param-

eters/functions adds to the importance of our results, as a prac-
titioner does not need to estimate the exact values of these pa-
rameters in order to ascertain whether our conclusions apply.
All that is necessary is that our qualitative assumptions be valid
(e.g., assumptions on worm state evolution , ability
of users/devices to activate and deactivate protection).

III. RESULTS FOR BEST-RESPONSE DYNAMICS

In this section, we study the behavior of differential inclusion
(1) for various values of parameters , , , and . The main
finding is that the equilibrium value of the infection increases
with , but it cannot increase above . The technical results
are summarized as follows (see also Fig. 1).
• Solutions exist.
• All solutions can be uniquely continued, except those that
start at . These latter solutions all start at
the same point and then diverge, but none of them can ever
approach that point again. So if we ignore the initial point
of those solutions, all solutions can be uniquely continued.

• Point is always an equilibrium point. If
, one more equilibrium point exists: if

, or otherwise (
and ).

• If , is asymptotically stable.4 If ,
is a saddle point. If exists, it is asymptotically stable.
Finally, if exists, it is asymptotically stable.

• There are no solutions that are closed trajectories. All
system trajectories converge to one of the equilibrium
points. When there is more than one equilibrium point
( and one of or ), a trajectory converges to

if and only if it starts on line ; all other
trajectories converge to the other point.

A. Existence of Solutions

We show that the differential inclusion

(2)

has solutions.
We define a partition of the state space into three domains

, , and
. Domain will also be referred to

as the discontinuity line.
A solution for this differential inclusion is an absolutely con-

tinuous vector function defined on an interval for which
almost everywhere on [24].

Theorem 1: Solutions of (2) exist.
Proof: See [25].

4A point is asymptotically stable, if for every there exists a
such that if , then for every , and

.

B. Uniqueness of Solutions

In general, because the right-hand side of (2) is multivalued,
even though two solutions at time are both at the point ,
they may not coincide on an interval for any

. If any two solutions that coincide at also coincide
until some , then we say that right uniqueness holds at

. Left uniqueness at is defined similarly (with
), and (right and left) uniqueness in a domain holds if it

holds at each point of the domain.
Theorem 2: All solutions of (2) can be uniquely continued,

except possibly those that start at . The latter
ones will stay at that point if (i.e., if
is an equilibrium point); otherwise, they can be continued in
multiple ways.

Proof: See the Appendix.

C. Equilibrium Points

The equilibrium points are found by solving the inclusion
for . If , point is the only equilibrium

point. If , one more equilibrium point exists: if
, or , otherwise (

and ).
1) Equilibrium Points Above the Discontinuity Line: There

can be no equilibrium points in the domain . The system
becomes

From the first equation, has to be zero. But then, the second
equation implies that also has to be zero, which is not an ad-
missible value for as 0 cannot be above the discontinuity
line.
2) Equilibrium Points Below the Discontinuity Line: There

is either one or two equilibrium points in the domain . The
system becomes

This system has the solutions

The second solution is admissible if and only if ,
i.e.,

The third condition is always satisfied. Note also that if
, then and coincide.
3) Equilibrium Points on the Discontinuity Line: There is, at

most, one equilibrium point on the discontinuity line . To
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Fig. 1. Vector field of the system and the equilibrium points for all regions of the parameter space. At each point , an arrow parallel to is
plotted. In Fig. 1(b) and (d), point is also an equilibrium point but it is unstable. All trajectories converge to or , respectively, except those
that start on the axis , which converge to . The indicative parameter values used are 3.0, 4.0, 1.0, 1.0, 1.2, , 0.8, 0.2. (a) The
case . The only equilibrium point is . It is stable and all trajectories converge to it. 3.0, 4.0, 1.2, 0.3. (b) The case
and . The point is a stable equilibrium point. 3.0, 1.0, 1.2, 0.8.
(c) Detail of 1(b) around point . The continuation of a trajectory starting at is not unique. Three sample trajectories are plotted, corresponding
to different elements of set . (d) The case and . The point is a stable equilibrium point.
3.0, 1.0, 1.2, 0.2.

find it, we solve the inclusion for . The system
becomes

Since , is zero only when . We then have
to check if it is possible to make equal to zero, that is, if

. We find that it is possible when is such that

(3)

In that case, the equilibrium point is

The conditions for admissibility are and
. The latter is true if (3) holds.

In general, there are many combinations of and
that make equal to zero, but there is al-

ways one with . In that case,
.

D. Local Asymptotic Stability

1) Stability of and :
Theorem 3: is asymptotically stable if and only if ;
is asymptotically stable whenever it exists and the

trajectories spiral toward (at least locally). If , and
coincide, and the resulting point is asymptotically stable.
Proof: We evaluate the Jacobian of the system at and
. See [25].
Stability of :
Theorem 4: is asymptotically stable whenever it exists.
Proof: To show that the equilibrium point on the disconti-

nuity line is asymptotically stable, we will use Theorem 5 below
[24, §19, Theorem 3]. To use this theorem, we transform the
system so that the line of discontinuity is the horizontal axis,
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the equilibrium point is (0,0), and the trajectories have a clock-
wise direction for increasing .
We set and . Domains

become
, , and

. Then, the system can be written as

for , and

for .
The partial derivatives of , that is, of and of , are

denoted by etc., and similarly for . We de-
fine two quantities in terms of functions , and their
derivatives at (0,0)

Theorem 5: Let the conditions

be fulfilled at (0,0). Then, implies that the zero
solution is asymptotically stable, whereas implies
that the zero solution is unstable.
All of the conditions of Theorem 5 are satisfied in our case,

together with . The condition is equiva-
lent to (3) (i.e., the condition on that causes the equilibrium
point to be on the line of discontinuity). All of the other condi-
tions are straightforward to verify. For example, to prove that

, we can quickly establish that and
, again using (3).

E. Domains of Attraction

Consider an autonomous system on the plane, as ours is. If a
half trajectory of such a system is bounded, then its -limit
set5 contains either an equilibrium point or a closed tra-
jectory [24, §13, Theor. 6].
The main result for our system is:

5The -limit set of a half trajectory is the set
of all points for which there exists a sequence tending to such
that as .

Theorem 6: For any half trajectory , its -limit set
can only contain equilibrium points, that is, ,

, or .
Proof: If , then only exists. There are no closed

trajectories as , so all trajectories converge to . For
the remainder of the proof, we assume , so either or

exists and is stable.
The following two functions are useful:6

It holds that is constant on trajectories in the area ,
and is decreasing along trajectories in the area .
Indeed, with some calculations, it can be shown that

Under the assumption , we prove:
Lemma 1: A trajectory converges to if and only

if it starts on line 0.
Proof: See [25].

From now on, we limit our attention to trajectories that have
no common points with the line .
Assume that there exists a half trajectory whose limit

set contains a closed trajectory . By successively elimi-
nating properties of , we prove that cannot exist.
Lemma 2: Point cannot be on a closed trajectory.
Proof: See [25].

As cannot be on , there holds right
uniqueness on . Hence, .
We now prove that cannot have more than two or fewer

than two intersection points with .
Lemma 3: A closed trajectory that does not pass through

the point cannot have either more than two or fewer
than two intersection points with the discontinuity line . If it
has two intersection points, they cannot be on the same side of

.
Proof: See [25].

Lemma 4: A closed trajectory cannot intersect the discon-
tinuity line on exactly two points that are on opposite sides of

.
Proof: See the Appendix.

From the previous lemmata, we conclude that there can be no
closed trajectory . Therefore, all trajectories have to converge
to equilibrium points.

6Functions of this form are Lyapunov functions for the SIRS epidemic model
[26]. Although they are not Lyapunov functions in our case, we found them
using the technique described in [26]: looking for functions of the form

whose time derivatives do not change sign.
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Fig. 2. Total fraction of infected as a function of .

F. Discussion of Results

Fig. 2 shows that the total fraction of in-
fected at the system equilibrium increases with the update rate
, until becomes equal to the threshold
. This increase is due to the combination of two factors. First,

when , the trajectories will even-
tually be completely contained in domain (below ). In
this domain, each time a protected is informed about the frac-
tion of infected, he will choose to become susceptible, thus fu-
eling the infection. Second, no susceptible will choose to be-
come protected. The larger the value of , the shorter time a
user will spend being protected; thus, the smaller the fraction
of protected. However, a smaller fraction of protected implies a
larger fraction of infected, as the fraction of susceptible at equi-
librium is necessarily (i.e., it is independent of ).
When , the equilibrium fraction of

infected is limited to : further increases of have no effect.
The explanation is that as soon as the instantaneous value of
exceeds , susceptible users switch to protected, and protected
users stay protected, thus bringing the infection level below ,
into the domain . However, there is no equilibrium point for
the system in , so the only possible equilibrium value of
is . For , there are, in general, many combinations of

and that lead to an equilibrium, including one
with 0 and 0. That combination means
that no susceptible users become protected, but some protected
become susceptible. Other combinations with and

would be harder to justify, as they imply that at
the same value of , users would switch from susceptible to
protected and back.

IV. ROBUSTNESS OF RESULTS WITH RESPECT
TO MODEL ASSUMPTIONS

In our main scenario (Section II), all users follow best-re-
sponse (multivalued and discontinuous) dynamics, they contact
each other uniformly at random, and they all have the same be-
havior function.

Fig. 3. User response function used in the simulations: the probability
that a susceptible user switches to being protected, upon learning the fraction
of infected users in the network.

In the current section, we show that our conclusions do not
change if we vary these assumptions. In all cases, we show that
the equilibrium infection level increases with the update rate .
In particular, we prove that this holds even if users follow any ar-
bitrary continuous and single-valued response function, as long
as increases with and decreases with ; we
call this the smooth best-response case. We also show that there
are no periodic solutions, so all trajectories converge to equi-
librium points. Further, we perform simulations on human con-
tact traces, as opposed to assuming uniform contact patterns.We
confirm again that the equilibrium infection increases with the
update rate, whether the users have a common behavior function
or they are split into two types (each with a different best-re-
sponse threshold).
The more technical results in the smooth best-response case

(equilibrium points, conditions for asymptotic stability, absence
of closed trajectories) parallel the ones in the best-response case.

A. Smooth Best-Response

The user behavior functions and are con-
tinuously differentiable, and we require that and

. Other than that, the two functions are arbi-
trary. The stochastic system converges to a system of ordinary
differential equations [27], [28].
As mentioned before, it is still the case that the equilibrium

infection level increases with the update rate . Further tech-
nical results follow.
• Two equilibrium points may exist and . exists al-
ways, when [Con-
dition (5)].

• is asymptotically stable when does not exist. is
asymptotically stable whenever it exists.

• The trajectories of (4) must converge either to or to .
When (5) does not hold, all trajectories converge to .
When (5) holds, trajectories starting at points with 0
approach along line 0, whereas all other trajecto-
ries converge to .
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1) Equilibrium Points: The equilibrium points of the system
are found by solving the equation 0 for :

(4a)

(4b)

From (4b), either 0 or .
• Equilibrium point .
Substituting into (4a), we find

. These values of
are always admissible as they are always non-negative and,
at most, equal to 1.
Recalling the meaning of and , we can rea-
sonably expect that 1 and 0. Protected
users have no reason to remain protected, and susceptible
users have no reason to become protected, when there is
no infection in the network. In this case, is (1,0).

• Equilibrium point
Substituting into (4a), it follows that has to
satisfy , where

To solve for , we need to know the two response
functions and . But even without knowing
them, we can still prove that has a unique solution
for under the condition

(5)

The proof proceeds in three straightforward steps; we omit
the details. The first step is to show that , so

strictly and monotonically decreases in the interval
. The second step is to show that ,

which leads to (5), and then to show that .
The final step is to use the Intermediate Value Theorem to
conclude that there is exactly one solution of in

.
Denoting by the solution of 0, we conclude
that is uniquely determined
under (5). The values are admissible as they are both
between 0 and 1, and their sum is, at most, equal to 1.
Note that if (5) does not hold, then both and

, so the monotonicity of in
implies that does not exist. Consequently, (5) is both
necessary and sufficient for the existence of .

2) Asymptotic Stability:
Theorem 7: is asymptotically stable when does not

exist. is asymptotically stable whenever it exists.
Proof: We evaluate the Jacobian of the system at and
. See [25].
3) Domains of Attraction:
Theorem 8: The trajectories of (4) must converge either to
or to . When (5) does not hold, all trajectories converge to

. When (5) holds, trajectories starting on line 0 approach
along 0, whereas all other trajectories converge to .
Proof: Since the system is 2-D and is continuously dif-

ferentiable, we can use Dulac’s criterion [29] to show that the
system can have no periodic trajectory.
Theorem 9 (Dulac’s Criterion): Let be a simply connected

domain. If there exists a continuously differentiable function
such that is continuous and non-zero

on , then no periodic trajectory can lie entirely in .
In our case, domain is the state space excluding line 0.

Note that there can be no periodic trajectory that passes from a
point with 0.We select as function , the function
. We compute to be

which is continuous and non-zero in . Then, from Dulac’s
criterion, no periodic trajectory lies entirely in and, conse-
quently, the system has no periodic trajectory at all. From the
Poincaré–Bendixson theorem, the system can only converge to a
periodic trajectory or an equilibrium point; so, we can conclude
that every trajectory must converge to an equilibrium point, that
is, either to or to .
More precisely, when (5) does not hold, only exists so

all trajectories converge to . When (5) holds, both and
exist, and is a saddle point. Trajectories starting on line
0 approach along 0, whereas all other trajectories

converge to . Indeed, if , then the corresponding tra-
jectory will have . The reason is that if
0 for some finite 0, then the uniqueness of solutions would
be violated at , because would be
a common point with the trajectories that approach along
the line 0. If (i.e., the trajectory with
converges asymptotically to while remains strictly pos-
itive), then we reach a contradiction as will become pos-
itive at points close enough to . (See (5) and (4b).)
4) Equilibrium Infection Increases With : The no-infection

equilibrium point is unaffected by . We show now
that at , the equilibrium level of the infected
increases with .
Theorem 10: The infection at increases

with .
Proof: The derivative is always positive: satis-

fies , i.e.,

(6)

Differentiating (6) with respect to , we have

where
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Fig. 4. Single-user behavior class. The trajectory of the system (average of 30 simulations) on the SI plane, when and takes the values ,
, and . The thresholds are 0.1, 0.5, 0.9. The network experiences higher numbers of infected devices for higher values of . limits the

infection when 0.1, 0.5.

and

But and for all values of . Therefore,
is positive.

The negativity of is deduced from
and . The negativity of is deduced
from (6), as (6) implies that

.
Dividing (6) by and taking the limit , the limiting

value of is the solution to

This limiting value is admissible, as it is also a solution of
0; hence, it lies in the interval .

B. Propagation on Human Contact Traces

In this section, we use human contact traces to simulate the
propagation, instead of assuming uniform contact patterns; the
objective is to test the robustness of our conclusions with re-
spect to the contact pattern. Moreover, instead of only having
a common response function for all users, we now include the
case where users are split into two classes, each with a different
best-response behavior function. Note that we choose to have
two classes to keep the presentation simple, but we believe that
our results carry over to multiple user classes. Using enough
user classes, it is possible to approximate any arbitrary contin-
uous distribution of user behaviors.
The traces used are Bluetooth contacts among 41 devices

given to participants in a conference [30]. These traces were
collected over a period of approximately 72 h.
For the single-user class case, a piecewise-continuous re-

sponse function is used (Fig. 3)

and .
For the two user-class case, we use separate piecewise-con-

tinuous response functions for each class. Users in the first class
have a low threshold 0.1. Because of their low threshold,

these users become protected easily, and they do not easily
switch from protected to susceptible. We call them responsible
because of the way they behave helps reduce the infection. The
second class of users, who we call selfish, have a high threshold

0.9. This means that they hardly ever decide to switch
from susceptible to protected, whereas they almost always
decide to leave the protected state. For both classes, 0.001.
We now establish that the fraction of infected indeed

increases for larger values of the update rate . For the simula-
tions that follow, we set7 , and we plot the system
trajectories on the plane (average of 30 simulations) for
three different values of , , , and .
The initial conditions for all simulations were 1 infected and
40 susceptible. In the case of two user classes, the initially
infected user is of class 2 (selfish). Each simulation runs until
either there are no infected, or the end of the traces is reached.
In Fig. 4, we plot simulation results for the single-user class

case for 0.1, 0.5, 0.9, and 0.001, omitting an initial
transient phase. The system state oscillates between two equi-
librium points (nighttime, when the contact rate is low) and
either or , depending on whether is low enough to
limit the infection or not. In all cases, the system trajectories go
through higher values of for increasing values of , thus con-
firming our main conclusion that the infection level increases
with the update rate. The effect of lowering is that it limits
the maximum infection at the equilibrium, so the trajectories are
capped at values of not far above .
In Fig. 5, we plot the system trajectories for the two user-class

case. We again omit the initial transient phase, and we show
the susceptible and infected of: 1) the total population (first
column); 2) the responsible subpopulation (second column);
and 3) the selfish subpopulation (third column). Each row
corresponds to a different split of the total population into
responsible and selfish subpopulations. In the first row, the
responsible selfish split is 20%–80%; in the second row, it is
50%–50%; and in the third row, it is 80%–20%.
We again confirm the conclusion that the fraction of infected

in the total population increases for larger values of . Two
secondary conclusions relate to the situation within each

7These are indicative values. Our purpose is not to model any specific worm,
but to show that our conclusions (dependence of the infection level on ) hold
for worms with a range of characteristics.
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Fig. 5. Trajectory of the system (average of 30 simulations) on the SI plane, when and take the values , , and . Users are
split into two classes: the responsible, with 0.1, and the selfish, with 0.9. The columns correspond to the total population, the responsible subpopulation,
and the selfish subpopulation. The rows correspond to a total population split of 20%–80%, 50%–50%, and 80%–20% into responsible and selfish. As in the case
of a single-user class, the network experiences higher numbers of infected devices for higher values of . In the current case of multiple user classes, the higher
number of infected is mostly due to the selfish users.

subpopulation: the selfish user trajectories seem as if the selfish
were isolated. That is, their trajectories are very similar to those
they would follow if they were alone in the network (compare
with the case 0.9 in Fig. 4). The responsible users, on the
contrary, stay mostly in the bottom left region, which means that
many of them stay protected. Compared with the case 0.9
in Fig. 4, they now stay a bit closer to the bottom left corner. This
means that the selfish-caused infection keeps more of them pro-
tected than if they were alone in the network. The observations
on the selfish and on the responsible are mutually compatible, as
the users that are protected (here, the responsible) do not interact
with the rest of the network, so the trajectories of the remaining
users (here, the selfish) seem as if they were isolated.

V. POLICY IMPLICATIONS AND POTENTIAL SOLUTIONS

We have confirmed our main conclusion across various sce-
narios: the higher the learning rate, the higher the infection level
at the equilibrium. In order to avoid such an increased infec-
tion level, various potential solutions suggest themselves. First,
because increasing increases the infection, it makes sense to
reduce , that is, to stop informing users about the current infec-
tion level. However, this solution seems a bit radical, throwing
out the baby with the bath water. A more moderate solution

would be to inform users only if the infection level exceeds .
As long as the infection level is below , the users would not
be informed at all, or they would be informed only about the ex-
istence (but not the level) of the infection. This solution would
indeed decrease the infection, assuming that the users do not
start interpreting the absence of information as an indirect noti-
fication that the infection level is low.
Another solution is to decrease , as limits the maximum

infection level. Decreasing means decreasing
or increasing . On the one hand, increasing (or user per-

ception of ) could be achieved by holding users liable8 if their
devices become infected, or by increasing user awareness for
the consequences of an infection. Decreasing , on the other
hand, could be done by moving the cost of protection to the mo-
bile operator (or ISP). The operator would have an incentive to
shoulder the cost (at least part of it), if it is liable in case of user
infection.
Increasing user awareness could also help change the be-

havior of users. In particular, users should be informed about
the long-term consequences of staying unprotected. This might
change their myopic behavior.

8Penalizing users or software publishers has already been proposed, in the
law community, as a potential reform for regulating worms in cyberspace [31].
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A synthetic solution that would guarantee a zero-infection
level at the equilibrium, is the following: Activate security at the
first sign of infection (equivalent to 0) and keep it activated
until the infection drops back to zero. That is, the only updates
would be at the beginning and at the end of the infection, rather
than at a constant rate. However, that would require modifying
the behavior of the users, as not all users can be expected to
behave voluntarily in such a responsible manner (as 0
implies they would).

VI. CONCLUSIONS AND FUTURE WORK

We have studied the interaction of two factors—myopic
decision-makers and dynamic information updates—in the
context of security activation decisions in a network with a
propagating worm. Our main scenario is the best-response
user dynamic in a homogeneous mixing network. We conclude
that an increased update rate counterintuitively leads to an
increased equilibrium infection level. Our conclusion does not
change when the users follow smooth best-response dynamics
(arbitrary continuous single-valued function). Our conclusion
remains valid in the case of best-response behavior, with one
or two classes of users (low and high threshold) simulated on
real mobility traces.
In the best-response and smooth best-response dynamics,

we identify the equilibrium points, show when they are locally
stable, and rule out the possibility of closed trajectories. We
also characterize the domains of attraction for each equilibrium
point.
In future work, we aim to study the transient behavior of

the system. The transient behavior becomes important when the
convergence to equilibrium is slow: the time average of the in-
fection cost over some initial finite interval might be quite dif-
ferent from the equilibrium cost.
It may also be worth examining alternative wormmodels, and

testing whether our main conclusion holds for them too. For
example, the SEIR model is more suitable for a worm with a
dormant phase after infecting a user but before starting to infect
others. Alternative countermeasures, such as patching, require
different models, such as adding a new state for the (patched)
users that have permanently recovered from the infection.
Worms have multiple spreading patterns (called “target dis-

covery methods” [1]). Depending on the pattern, the epidemic
propagation can be faster or slower; it can even be topology de-
pendent (worms that spread to the local network of an infected
user, or worms that spread to a user’s e-mail contacts for ex-
ample). Our conclusions might then need to be modified.

APPENDIX

Proof of Theorem 2: The solution is unique in and in
because has continuous partial derivatives there.

A solution of (2) may intersect with the line of discon-
tinuity , say at time . We now study when such a solu-
tion can be uniquely continued for (i.e., we study when
right-uniqueness holds).

Formally, let and be the limiting values of
at a point as approaches from and from ,
respectively. Let , and , , be
the projections of the vectors , , onto , the
normal to directed from to at .
The values of these vectors and projections are

On , at the points where , (or ,
), the solutions pass from into (correspond-

ingly, from into ) and uniqueness is not violated [24,
§10, Corollary 1]. So, at no point of is uniqueness violated,
except possibly at .
For a solution that starts at , there are two possi-

bilities. First, if (i.e., if is an equi-
librium point), then the solution will stay at . But if

, the continuation is not unique: There is one
continuation for each element of set , and all of them
are tangent to because when [See
Fig. 1(c)]. In the proof of Lemma 2, we show that none of them
can ever approach again in the positive direction of
time.

Proof of Lemma 4, part of Theorem 6: Call
the point in with , and call
the one with . Let be parameterized by

; also . Function is a so-
lution of the differential inclusion, that is,

. Let be such that
and . Let be such that

and .
Define and as

follows:

We compute in two ways.
For the first computation, we use the parametrization

of , so and . The result is zero

(7)
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For the second computation, we split into two func-
tions, one continuous and one discontinuous ,
so that

So now, the original integral can be split into two
.

We use Green’s theorem to compute the first integral

(8)

To compute the second integral , we define function

and curves and . Curve is restricted to , with
direction from to . Curve is the line segment of joining
and , with direction from to .
Observe that

where the first equality follows from on and
on , whereas the last equality follows from Green’s

theorem, because is continuously differentiable.
The result of (7) contradicts the results of (8) and (9). So the

trajectory with the assumed properties cannot exist.
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