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Convergence Results for Ant Routing Algorithms via
Stochastic Approximation
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In this article, we provide convergence results for an Ant-based Routing Algorithm (ARA) for wireline,
packet-switched communication networks, that are acyclic. Such algorithms are inspired by the foraging
behavior of ants in nature. We consider an ARA algorithm proposed earlier by Bean and Costa [2005]. The
algorithm has the virtues of being adaptive and distributed, and can provide a multipath routing solution.
We consider a scenario where there are multiple incoming data traffic streams that are to be routed to their
respective destinations via the network. Ant packets, which are nothing but probe packets, are introduced
to estimate the path delays in the network. The node routing tables, which consist of routing probabilities
for the outgoing links, are updated based on these delay estimates. In contrast to the available analytical
studies in the literature, the link delays in our model are stochastic, time-varying, and dependent on the
link traffic. The evolution of the delay estimates and the routing probabilities are described by a set of
stochastic iterative equations. In doing so, we take into account the distributed and asynchronous nature
of the algorithm operation. Using methods from the theory of stochastic approximations, we show that
the evolution of the delay estimates can be closely tracked by a deterministic ODE (Ordinary Differential
Equation) system, when the step size of the delay estimation scheme is small. We study the equilibrium
behavior of the ODE system in order to obtain the equilibrium behavior of the routing algorithm. We also
explore properties of the equilibrium routing probabilities, and provide illustrative simulation results.
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1. INTRODUCTION

In this article we study the convergence and properties of a routing algorithm proposed
for communication networks that belongs to the class of Ant Routing Algorithms (ARA).
It was observed in an experiment conducted by biologists Deneubourg et al. [1990],
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called the double bridge experiment, that under certain conditions, a group of ants
when presented with two paths to a source of food is able to collectively converge to
the shorter path. It was found that every ant lays a trail of a chemical substance
called pheromone as it walks along a path. Subsequent ants follow paths with stronger
pheromone trails, and in their turn reinforce the trails. Because ants take lesser time to
traverse the shorter path, pheromone concentration increases more rapidly along this
path. These “positive reinforcement” effects culminate in all ants following, and thus
discovering, the shorter path. Various mathematical models have been proposed to
describe the evolution in time of pheromone levels on trails; for a discussion see Dorigo
and Stützle [2004].

Most of the ARA algorithms proposed in the literature are variations on the basic
idea of creation and reinforcement of a pheromone trail on a path that serves as a
measure of the quality of the path. These algorithms employ probe packets called ant
packets (analogs of ants) that help create analogs of pheromone trails on paths. In the
context of routing, these trails are based on measurements of path delays made by the
ant packets. Routing tables at the nodes are updated based on the path pheromone
trails. The update algorithms help direct data packets along outgoing links that lie on
paths with lower delays.

In this article we provide convergence results for an ARA algorithm proposed by
Bean and Costa [2005]. We consider wireline, packet-switched, general acyclic net-
works1. The Bean-Costa algorithm retains some of the most attractive features of ARA
algorithms. It is distributed, and the routing tables (for every node, this consists of
routing probabilities for the outgoing links) are updated based on delay information
collected by ant packets. This enables the algorithm to be adaptive. Furthermore, the
scheme can provide a multipath routing solution; that is, the incoming traffic at a
source is split between the multiple paths available to the destination. This enables
efficient utilization of network resources. We now briefly dwell on the literature on
ARA algorithms.

Literature. ARA algorithms have been proposed for all kinds of networks—circuit-
switched and packet-switched wireline, as well as packet-switched wireless networks.
For a comprehensive survey that discusses the latest developments, and also provides
an introduction to the general problem and issues involved in the design of routing
algorithms, see Ducatelle et al. [2010]. Dorigo and Stützle [2004] and Bonabeau et al.
[1999] also provide surveys on the topic. For a comprehensive survey on algorithms for
wireless sensor networks, where a different set of constraints and requirements—for
example, energy efficiency, low computational and memory capabilities of nodes—are
involved, see Saleem et al. [2011].

We restrict ourselves here to a brief discussion on algorithms for packet-switched net-
works, because they are more relevant for us. A large number of algorithms proposed
and studied for packet-switched networks—for example, Gabber and Smith [2004],
DiCaro and Dorigo [1998], Subramanian et al. [1997] (all the preceding are for wire-
line networks), and Baras and Mehta [2003] (for wireless networks)—are variants of
the Linear Reinforcement (LR) scheme considered in studies of stochastic learning
automata; see Kaelbling et al. [1996] and Thathachar and Sastry [2004]2. In these
works, variants of the LR scheme are used to adjust routing probabilities at the nodes
based on path pheromone trails. Yoo et al. [2004] consider the scheme proposed by
Subramanian et al. [1997] for a network consisting of two nodes connected by L paral-
lel links. The link delays are deterministic. Ant packets are either routed uniformly at

1For a definition of acyclic networks see Section 3.
2The LR scheme has been proposed for various adaptive learning and control applications.
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the nodes—called “uniform routing”—or are routed based on the node routing tables—
called “regular routing”. A rigorous analysis then shows that the routing probabilities
converge in distribution for the uniform routing case, and almost surely to a shortest
path solution for the regular routing case. The LR scheme, however, is not designed for
applications where the delays are stochastic, time-varying, which is the case of main
interest to us.

In another set of algorithms prevalent in the literature, the routing probability for an
outgoing link is proportional to a power β ≥ 0 of the pheromone trail on that link. The
pheromone trail serves as a measure of the quality of paths containing that link, and its
precise definition depends on the problem context. For example, in AntHocNet, an ARA
algorithm for a mobile ad hoc network proposed by Di Caro et al. [2005], the pheromone
on a link is inversely proportional to an average of the queuing delay and hop count
estimates to a destination. Performance evaluation of the algorithm has been carried
out using simulations, and though it has somewhat larger overhead, it outperforms the
standard AODV algorithm when the network is large and dynamically changing. Other
examples include Bean and Costa [2005], Torres et al. [2010] for wireline networks,
Hernández and Blum [2009] for wireless ad hoc networks, and Saleem et al. [2011] for
wireless sensor networks.

Though a large number of ARA algorithms have been proposed, fewer analytical stud-
ies are available in the literature. Algorithms similar to those that aim to explain the
observations in the double bridge experiment have been rigorously studied in Makowski
[2008] and Borkar and Das [2009]. Makowski considers the case where there are two
paths of equal length to a food source, and a model where each ant chooses a path
with a probability proportional to a power ν ≥ 0 of the number of ants that have previ-
ously traversed the path. Using stochastic approximation and martingale techniques
the paper provides convergence results, and shows that the asymptotic behavior can
be quite complex. In particular, only for ν > 1, is it true that all ants eventually choose
one path. Borkar and Das [2009] consider a scenario where there are multiple disjoint
paths between a source and a destination. There are three algorithms: a pheromone
update algorithm that builds a pheromone trail based on the number of ants that have
previously traversed the path and path length, a utility estimate algorithm based on
the path pheromone trail, and a routing probability update algorithm that uses the
utility estimates. Using stochastic approximation methods, they show convergence to
a shortest path solution if there is an “initial bias” towards the shortest path.

The two papers of Gutjahr [2003; 2006] use ARA algorithms to solve combinatorial
optimization problems on graphs. The link costs are deterministic. Gutjahr [2003] con-
siders the problem of finding an optimal cycle on a graph, with no nodes being repeated
except for the start node. Ant agents sample walks based on routing probabilities,
and reinforce pheromone trail levels on links, which in turn influences the routing
probabilities. The paper shows that asymptotically, with probability arbitrarily close to
one, an optimal cycle can be found. Gutjahr [2006] considers subset selection problems
on graphs. Examples of such problems are max-clique and knapsack problems. The
pheromone level on a link is updated by ant agents based on a convex combination
of the previous pheromone level and a reward f (x) associated with the sampled path
x that contains the link. The routing probability of ants is proportional to the link
pheromone level. This is the first article which shows that the ant algorithm dynamics
can be approximated by a deterministic ODE (Ordinary Differential Equation), and
uses it to study the convergence behavior for a few simple instances of subset selection
problems.

We now discuss a couple of analytical studies where the routing probability for ant
agents is proportional to a power β ≥ 0 of the link pheromone level. Roth [2007] consid-
ers a model where the pheromone level is proportional to an estimate of a path utility. A
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correlation factor decreases the effect of the path utility estimator over a period of time
when paths are not actively sampled by ant agents. Given a set of constant link costs, a
Markov chain analysis yields steady state expected path utility estimates and routing
probabilities to the destination. The model also shows that network performance can be
improved if paths are sampled often enough. Torres et al. [2010] consider an algorithm
where the pheromone level on a link is inversely proportional to the number of hops in
a sampled path containing the link. The paper shows that evolution of the pheromone
level can be approximated by an ODE, computes the steady state pheromone levels,
and studies the stability of the ODE equilibrium points. Based on numerical computa-
tions and simulations, the paper proposes the heuristic that β should be smaller than
one in order to provide stable, multipath steady state routing solutions.

Contributions and Related Work. The previous set of analytical studies have con-
centrated on networks with deterministic link delays or costs. In contrast, we provide
convergence results when the link delays are stochastic, time-varying, and are depen-
dent on the link traffic. This is a more relevant and interesting case. We initiated study
in this direction in Purkayastha and Baras [2007] by considering the Bean-Costa algo-
rithm for a simple N parallel links network, and extended our approach to a general
acyclic network case in Purkayastha and Baras [2010].

Bean and Costa [2005] study their scheme using a combination of simulation and
analysis. They employ a “time-scale separation approximation” whereby average net-
work delays are computed “before” the routing probabilities are updated. Numerical
iterations of an analytical model based on this approximation and simulations are
shown to agree well. However, the time-scale separation is not justified3, nor is any
formal study of convergence provided.

We consider a stochastic model for the arrival processes and packet lengths of both
the ant and the incoming data packet streams. The ARA scheme consists of a delay
estimation algorithm and a routing probability update algorithm that utilizes the delay
estimates. These algorithms run at every node of the network. The delay estimates are
formed based on measurements of path delays (these delays are caused by queuing
delays on the links) obtained by the ant packets. We describe the evolution of these
algorithms by a set of discrete stochastic iterations. Our formulation considers the dis-
tributed and asynchronous nature of the algorithm operation. We show, using methods
from the theory of stochastic approximations, that the evolution of the delay estimates
can be closely tracked by a deterministic ODE system when the step size of the delay
estimation scheme is small. We study the equilibrium behavior of the ODE system in
order to obtain the equilibrium behavior of the routing algorithm. We explore properties
of the equilibrium routing solution, and provide illustrative simulation results.

In this article, we bring together our earlier results for the N parallel links and for
the general acyclic network cases. We have also provided additional important results,
which makes this article a comprehensive investigation of convergence and equilibrium
properties of the algorithm. In particular, we provide a proof of the convergence of
the algorithm (in the Appendix). Furthermore, we analytically explore properties of
the algorithm at equilibrium. In particular, we study how the equilibrium routing
probabilities change as the relevant system parameters (for example, link capacities
on paths to a destination) and algorithm parameters (β) change. We also provide an
ODE stability result showing that starting from almost any initial conditions, the ODE
system shall converge to the equilibrium points for the N parallel links network case
with uniform ant routing.

3We shall see (Section 4) that it holds only for small step sizes (ε) in the delay estimation algorithm (ε ↓ 0).
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Our approach is most closely related to Borkar and Kumar [2003], which studies an
adaptive algorithm that converges to a form of routing equilibrium known as a Wardrop
equilibrium. Our framework is similar to theirs; there is a delay estimation algorithm
and a routing probability update algorithm that utilizes the delay estimates. Their
routing probability update algorithm moves on a slower “time scale” than the delay
estimation algorithm. In our case, however, the routing probability update algorithm is
on the same “time scale” as the delay estimation algorithm, and our method of analysis
is consequently different. This could also be desirable in practice because the algorithm
convergence will be much faster.

The article is organized as follows. In this work we separately consider the two
cases where ant packets are routed according to uniform and regular routing. There
is a parallel development of the discussion related to these two forms of routing. In
Section 2 we outline in detail the mechanism of operation of ARA algorithms, and
discuss the Bean-Costa [2005] algorithm. Section 3 provides a formal discussion of our
acyclic network model and assumptions, and a formulation of the routing problem. We
analyze the routing algorithm in Section 4, and discuss our ODE approximation results
and related computations. We also discuss the equilibrium behavior of the algorithm.
In the next couple of sections, Sections 5 and 6, we study in some detail two illustrative
examples: an N parallel links network and an acyclic network. We provide and discuss
related simulation results. Section 7 provides concluding remarks and discusses a few
directions for future research. In the Appendix, we provide a proof of convergence of
the algorithm.

2. ANT ROUTING ALGORITHMS: MECHANISM OF OPERATION

We provide in this section a brief description of the mechanism of operation of ant
routing algorithms for a wireline communication network. Such a network can be
represented by a directed graph G = (N ,L), with a set of nodes N , and a set of directed
links L. Our formal description follows the general framework of DiCaro and Dorigo
[1998] and Dorigo and Stützle [2004]. Alongside, we describe the Bean-Costa scheme
that we analyze in this article.

Every node i in the network maintains two key data structures: a matrix of routing
probabilities, the routing table R(i), and a matrix of various kinds of statistics used
by the routing algorithm, called the network information table I(i). For a particular
node i, let N(i, k) denote the set of neighbors of i (corresponding to the outgoing links
(i, j) from i) through which node i routes packets towards destination node k. For the
communication network consisting of |N | nodes, the matrix R(i) has |N | − 1 columns,
corresponding to the |N |−1 destinations towards which node i could route data packets,
and |N | − 1 rows, corresponding to the maximum number of neighbor nodes of node i.
The entries of R(i) are the probabilities φk

ij . φk
ij denotes the probability of routing an

incoming data packet at i and bound for destination k, via the neighbor j ∈ N(i, k). The
matrix I(i) has the same dimensions as R(i), and its ( j, k)-th entry contains various
statistics pertaining to the route from i to k that goes via j, denoted henceforth by
i → j → · · · → k. Examples of such statistics could be mean delay and delay variance
estimates of the route i → j → · · · → k. These statistics are updated based on the
information the ant packets collect about the route. The matrix I(i) thus represents the
characteristics of the network that are learned by the nodes through the ant packets.
Based on the information collected in I(i), “local decision-making”, that is, the update
of the routing table R(i), is done. The iterative algorithms that are used to update I(i)
and R(i) will be referred to as the learning algorithms.

We now describe the mechanism of operation of ARA algorithms. For ease of ex-
position, we restrict attention to a particular fixed destination node, and consider
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Fig. 1. Forward ant and backward ant packets.

the problem of routing from every other node to this node, which we label as D (see
Figure 1). The network information tables I(i) at the nodes contain only estimates of
mean delays.

Forward ant generation and routing. At certain intervals, Forward Ant (FA) packets
are launched from a node i towards destination D to discover low delay paths to it.
The FA packets sample walks on the graph G based either on the current routing
probabilities at the nodes as in regular ant routing (regular ARA), or uniformly4 as
in uniform ant routing (uniform ARA). Uniform ant routing might be preferred in
certain cases; for instance, when we want ant packets to explore the network in a
completely “unbiased” manner. FA packets share the same queues as data packets and
so experience similar delay characteristics as data packets. Every FA packet maintains
a stack of data structures containing the IDs of nodes in its path and the per-hop delays
encountered. The per-hop delay measurements can be obtained through time stamping
of the FA packets as they pass through the various nodes.

Backward ant generation and routing. Upon arrival of an FA at the destination D, a
Backward Ant (BA) packet is generated. The FA packet transfers its stack to the BA.
The BA packet then retraces back to the source i the path traversed by the FA packet.
BA packets travel back in high-priority queues, so as to quickly get back to the nodes
and minimize the effects of outdated or stale measurements. At each node that the BA
packet traverses through, it transfers the delay information that was gathered by the
FA packet. This information is used to update matrices I and R at the respective nodes.
Thus the arrivals of BA packets at the nodes trigger the iterative learning algorithms.

We now describe the Bean-Costa [2005] learning algorithm. Suppose that an FA
packet measures the delay �D

ij associated with a walk from i to D via the outgoing link
(i, j). This delay is more precisely the following. Let J̃D

j denote a sample sum of the
delays in the queues associated with the links, experienced by an FA packet moving
from node j to node D (it is thus a sample of the expected “cost-to-go” from j to D).
Let w̃i j denote a sample of the delay experienced by an FA packet traversing the link
(i, j). Then �D

ij = w̃i j + J̃D
j . When the corresponding BA packet comes back at node i

the delay information is used to update the estimate XD
ij of the mean delay using the

simple exponential estimator

XD
ij := XD

ij + ε
(
�D

ij − XD
ij

)
, (1)

4Routed with equal probability on each outgoing link.
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where ε ∈ (0, 1) is a small constant. We refer to XD
ij as the mean delay estimate for the route

i → j → · · · → D. Estimates XD
ik, corresponding to the other neighbors k ∈ N(i, D), are

left unchanged.
Simultaneously, the routing probabilities at i are updated using the relation

φD
ij =

(
XD

ij

)−β∑
k∈N(i,D)

(
XD

ik

)−β
, ∀ j ∈ N(i, D), (2)

where β is a constant positive integer. φD
ij is thus inversely proportional to XD

ij . β

influences the extent to which outgoing links with lower delay estimates are favored
compared to the ones with higher delay estimates.

We can interpret the quantity (XD
ij )

−1 as analogous to a “pheromone trail or deposit” on
outgoing link (i, j). This trail gets dynamically updated by the ant packets. It influences
the routing tables through relation (2). Eq. (2) shows that outgoing link (i, j) is more
desirable when XD

ij , the delay through j, is smaller, in other words, when the pheromone
trail is stronger relative to the other routes.

3. FORMULATION OF THE PROBLEM. THE ACYCLIC NETWORK MODEL

We consider the problem of routing from the various nodes i of the network to a single
destination node D. At every node i there exist queues (buffers) Qij associated with the
outgoing links (i, j); we assume these queues to be of infinite size. The service discipline
in these queues is FIFO. The network can be thought of equivalently as a system of
interconnected queues, that is, a queuing network. Every link (i, j) has capacity Cij .
We assume that the queuing delays dominate the packet processing and propagation
delays in the links.

We consider acyclic networks and define them following Bertsekas and Gallager
[1992]. A queue Qij is said to be downstream with respect to a queue Qkl if some
portion of the traffic through the latter queue flows through the former. An acyclic
network is one for which it is not possible that simultaneously Qij is downstream of Qkl
and Qkl is downstream of Qij , for all (i, j), (k, l). The set N(i) = { j : (i, j) ∈ L} denotes the
set of downstream neighbors of i. An example of an acyclic network is given in Figure 5.
We shall denote the routing probability entries of R(i) by φi j ; that is, without explicitly
mentioning the destination. The mean delay estimate entries of I(i) are denoted by Xij .

The general algorithm, as described in Section 2, is asynchronous (and distributed).
This is because the nodes launch the FA packets towards the destination in an unco-
ordinated way, and there is a random delay as each FA-BA pair travels through the
network. The learning algorithms at the nodes for updating R and I are thus triggered
at random points of time (when BA packets come back). We consider a more simplified
view of the algorithm operation, which is still asynchronous and distributed, retains
the main characteristics and the essence of the algorithm, but is easier to analyze.

We assume that FA packets are generated according to a Poisson process of rate
λa

i > 0 at node i (λa
D = 0). We consider a model with the following assumptions on the

algorithm operation.
(M1). We assume that the BA packets take negligible time to travel back to the source

nodes (from where the corresponding FA packets were launched) from destination D.
Because BA packets are expected to travel back through high-priority queues, the de-
lays might not be very significant, except for very large-sized networks with significant
propagation delays. On the other hand, incorporating the effects of such delays into
our model introduces additional complications related to asynchrony.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 1, Article 3, Publication date: April 2013.



3:8 P. Purkayastha and J. S. Baras

(M2). Furthermore, we note that in the general algorithm operation, a BA packet
updates the delay estimates at every node that it traverses on its way back to the
source, besides the source itself. In what follows, we shall consider the more simplified
algorithm operation, whereby only at the source node the delay estimates and the
routing probabilities are updated.

We assume that data packets are generated according to a Poisson process of rate
λd

i ≥ 0 at node i; for some nodes it is possible that no data packets are generated, that
is, the rate is zero. For the destination, λd

D = 0.
Let {α(m)}∞m=1 denote the sequence of times at which FA packets are launched from

the various nodes of the network. Let {δ(n)}∞n=1 denote the sequence of times at which
FA packets arrive at the destination D (we set α(0) = 0, δ(0) = 0). Because we have
assumed that BA packets take negligible time to travel back to the source nodes, these
are also the sequence of times at which BA packets come back to the source nodes.
Consequently, these are the sequence of times at which algorithm updates are triggered
at the various nodes. At time δ(n), let X(n) and φ(n) denote, respectively, the vector of
mean delay estimates and the vector of outgoing routing probabilities at the network
nodes. The components of X(n) and φ(n) are Xij(n), (i, j) ∈ L, and φi j(n), (i, j) ∈ L,
respectively.

Thus, by time δ(n), overall nBA packets will have come back to the network nodes. (At
this point, it is useful to recall Assumption (M2)). Let T (n) be the N -valued random
variable that indicates which node the n-th BA packet comes back to. Then ξi(n) =∑n

k=1 I{T (k)=i} gives the number of BA packets that have come back at node i by time
δ(n)5. Let Ri(.) denote the routing decision variable for FA packets originating from
node i. We say that the event {Ri(k) = j} has occurred if the k-th FA packet that arrives
at D and that has been launched from i has been routed via the outgoing link (i, j).
Let ψi j(n) = ∑ξi (n)

k=1 I{Ri (k)= j}; ψi j(n) gives the number of FA packets that arrive at node
D by time δ(n), having been launched from i and routed via (i, j). By the zero delay
assumption on the travel time of the BA packets and Assumption (M2) on algorithm
operation, ψi j(n) is also the number of BA packets that come back to i via j, by time
δ(n). At destination D, consider the sequence of FA packets whose source is node i and
which have been routed via the outgoing link (i, j). Let {�i j(m)} denote the sequence
of delay measurements made by this sequence of FA packets. This is also, because of
Assumption (M1), the sequence of delay measurements used by i in Eq. (1) for updating
delay estimates for routes from i to D that go via (i, j).

Let’s suppose that at time δ(n) a BA packet comes back to node i. Furthermore,
suppose that the corresponding FA packet was routed via the outgoing link (i, j). When
this BA packet comes back to node i, the delay estimate Xij is updated using an
exponential estimator

Xij(n) = Xij(n − 1) + ε
(
�i j(ψi j(n)) − Xij(n − 1)

)
, (3)

with ε ∈ (0, 1) being a small positive constant. Estimates Xik for the other routes
i → k → · · · → D (k ∈ N(i), k �= j) are left unchanged

Xik(n) = Xik(n − 1). (4)

Also, the delay estimates at the other network nodes do not change

Xlp(n) = Xlp(n − 1), ∀p ∈ N(l),∀l �= i. (5)

5 IA denotes the indicator random variable for the event A.
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Also, as soon as the delay estimates are updated at node i, the outgoing routing
probabilities are also updated

φi j(n) = (Xij(n))−β∑
k∈N(i) (Xik(n))−β

, ∀ j ∈ N(i). (6)

The routing probabilities at the other nodes do not change.
In general thus the evolution of the delay estimates at the various nodes of the

network can be described by the following set of stochastic iterative equations

Xε
i j(n) = Xε

i j(n − 1) + ε I{T ε (n)=i,Rε
i (ξε

i (n))= j}
(
�ε

i j

(
ψε

i j(n)
)− Xε

i j(n − 1)
)
,

∀(i, j) ∈ L, n ≥ 1, (7)

starting with the initial conditions Xε
i j(0) = xij,∀(i, j) ∈ L.

The routing probabilities are updated in the usual way

φε
i j(n) =

(
Xε

i j(n)
)−β∑

k∈N(i)

(
Xε

ik(n)
)−β

, ∀(i, j) ∈ L, n ≥ 1, (8)

starting with initial conditions φε
i j(0) = (xij )

−β∑
k∈N(i) (xik)−β , ∀(i, j) ∈ L. Though not explicitly

mentioned, it is understood that there are no algorithm updates being made at D.
The ε’s in the superscript in the algorithm update Eqs. (7) and (8) given before

recognize the dependence of the evolution of the quantities involved (for example, the
delay estimates Xij) on ε. However, for most of the article6, we shall not use this
notation; this enables the discussion to be less cumbersome. Also, we note that Eqs. (7)
and (8) describe the evolution of the delay estimates and the routing probabilities for
the regular ARA as well as for the uniform ARA case.

We also introduce the following continuous time processes, {x(t), t ≥ 0} and { f (t), t ≥
0}, defined by the equations

x(t) = X(n), for δ(n) ≤ t < δ(n + 1), n = 0, 1, 2, . . . ,

f (t) = φ(n), for δ(n) ≤ t < δ(n + 1), n = 0, 1, 2, . . . .

The components of x(t) and f (t) are denoted by xij(t) and fij(t), respectively.
In the case of regular ant routing, an ant (FA) packet as well as a data packet

are routed at an intermediate node based on the current routing probabilities at the
node. Thus, in view of the discussion in this section, a packet that arrives at node i
at time t is routed according to the routing probabilities fij(t), j ∈ N(i), and joins the
corresponding queues. In the case of uniform ant routing, a data packet arriving at i
at time t is routed according to the probabilities fij(t), j ∈ N(i); an ant packet arriving
at t is routed uniformly (see Figure 2).

4. ANALYSIS OF THE ROUTING ALGORITHM

We view the routing algorithm, consisting of Eqs. (7) and (8), as a set of discrete stochas-
tic iterations of the type usually considered in the literature on stochastic approxima-
tion methods [Kushner and Yin 1997]. We provide shortly the main convergence result
which states that, when ε is small enough, the evolution of the vector of delay estimates
is closely tracked by a system of ODEs.

6Except when we are required to be more clear and precise.
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time
δ δ δ δ(n)(n−1) (n+1) (n+2)

X(n)
φ (n)

t

Regular: Ant/data packet arriving
at node i is routed based on current
routing probabilities φ

is routed based on φ
Uniform: Data packet arriving at i

uniformly
Ant packet arriving at i routed 

ij
(n)

ij (n)

Fig. 2. Routing of packet arrivals at a node at time t. Sequence {δ(n)} are the times at which algorithm
updates are taking place.

4.1. The ODE Approximation

The key observation, which simplifies the analysis of the algorithm, is that there is
a time-scale decomposition when ε > 0 is small enough; the delay estimates Xij then
evolve much more slowly compared to the delay processes �i j . The probabilities φi j
also evolve at the same “time scale” as the delay estimates, the probabilities φi j be-
ing continuous functions of the delay estimates Xij . Consequently, when ε is small
enough, with the vector of delay estimates X considered fixed at z (equivalently the
vector of routing probabilities fixed at φ, the components of φ being φi j = (zij )

−β∑
k∈N(i) (zik)−β ),

the delay processes {�i j(.)} converge to a stationary distribution that is dependent on
z. The routing probabilities φi j, (i, j) ∈ L, combined with the knowledge of the rates
of the incoming ant and data packet streams into the network, enable us to determine
the total arrival rate into each of the queues Qij, (i, j) ∈ L. This can be done by simply
solving the flow balance equations; see Bertsekas and Gallager [1992] and Mitrani
[1998]. We assume that the total arrival rate into each queue (assumed earlier to be
of infinite size) is smaller than the service rate of packets in the queue. This assump-
tion (a queue stability assumption) then ensures that, with the delay estimate vector
X considered fixed at z, the delay processes {�i j(.)} converge to a stationary distribu-
tion which depends on z. We denote the means under stationarity, for each (i, j) ∈ L,
by Dij(z) (DU

ij (z) for the uniform ant case), which is a finite quantity. We also make the
following short note. {�i j(m)} was defined to be the sequence of delay measurements
made by successive FA packets arriving at D, that have been launched from i and routed via
(i, j). When the delay estimate vector is considered fixed at z, its average under sta-
tionarity is denoted by Dij(z). Also, with the delay estimate vector considered fixed at
z, the sequence, denoted by (say) {�′

i j(m)}, of delay measurements made by successive
FA packets launched from i and routed via (i, j), has the same stationary average Dij(z).
This is because the latter sequence is just a rearrangement of the former and hence
the average is the same.

Also, when X is considered fixed at z, let ζi(z), i ∈ N , (ζU
i (z) for the uniform ants case)

denote, under stationarity, the long-term fraction of FA packets arriving at D that
have been launched from i. ζi(z) (ζU

i (z)) belongs to the set (0, 1) (ζD(z) = 0, ζU
D (z) = 0).

Furthermore, when ε is small, the evolution of the vector of delay estimates can be
tracked by an ODE system, that is, an ODE approximation result. This result is shown
in the Appendix, Section A.1. We now introduce some additional notation and state the
assumptions under which this result holds. For any fixed ε ∈ (0, 1), and for each (i, j),
consider the piecewise constant interpolation of Xε

i j(n) given by

zε
i j(t) = Xε

i j(n), nε ≤ t < (n + 1)ε, n = 0, 1, 2, . . . , (9)
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with the initial value zε
i j(0) = Xε

i j(0). Consider also the vector-valued piecewise constant
process zε(t), for all t ≥ 0, with components zε

i j(t), (i, j) ∈ L. Let us now consider the
increasing sequence of σ -fields {F ε(n)}, where F ε(n) encapsulates the entire history of
the algorithm for the time t ≤ δ(n). It contains the σ -field generated by the random
variables Xε(0), Xε(1), . . . , Xε(n). It also contains information regarding the arrival and
packet service times, as well as information regarding the actual routing of packets.
The ODE approximation result will be shown to hold under the following assumptions.

Assumptions:
(A1). For every (i, j) ∈ L, and for every ε ∈ (0, 1), the sequence {�ε

i j(m)} is uniformly
integrable; that is, supm≥1 E[�ε

i j(m)I{�ε
i j (m)≥K}] → 0, as K → ∞.

Regular ant case.
(A2). If X(n) is held fixed at z (φ(n) is then fixed at φ; φ has components φi j =
(zij )

−β∑
k∈N(i) (zik)−β ) then, for every l ≥ 0, and for every (i, j) ∈ L, we have

lim
r→∞

∑l+r

m=l+1
E[I{T (m)=i,Ri (ξi (m))= j}�i j(ψi j(m)) | F(m− 1)]

r
= ζi(z)φi j Dij(z) almost surely,

(10)

lim
r→∞

∑l+r

m=l+1
E[I{T (m)=i,Ri (ξi (m))= j} | F(m− 1)]

r
= ζi(z)φi j almost surely. (11)

The quantities T (n), Ri(n),�i j(n), as well as the sequence {F (n)} that appear in the
preceding equations are defined in a similar way as for the case when the delay estimate
vector X is time-varying.

(A3). We assume that the quantities ζi(z)φi j Dij(z) and ζi(z)φi j are continuous functions
of z.

Uniform ant case.
(A2′). If X(n) is held fixed at z then, for every l ≥ 0, (i, j) ∈ L, we have

lim
r→∞

∑l+r

m=l+1
E[I{T (m)=i,Ri (ξi (m))= j}�i j(ψi j(m)) | F(m− 1)]

r
= ζU

i (z)DU
ij (z)

|N(i)| almost surely,

(12)

lim
r→∞

∑l+r

m=l+1
E[I{T (m)=i,Ri (ξi (m))= j} | F(m− 1)]

r
= ζU

i (z)
|N(i)| almost surely. (13)

(A3′). We assume that the quantities ζU
i (z)DU

ij (z) and ζU
i (z) are continuous functions

of z.
Under the preceding assumptions, in Section A.1 it is shown that the process

{zε(t), t ≥ 0} converges weakly to a (deterministic) process {z(t), t ≥ 0} as ε ↓ 0. For
the regular ARA case, z(t), whose components are zij(t), (i, j) ∈ L, is a solution of the
ODE system

dzij(t)
dt

= ζi(z(t))(zij(t))
−β
(
Dij(z(t)) − zij(t)

)∑
k∈N(i) (zik(t))−β

, ∀(i, j) ∈ L, t > 0, (14)
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with initial conditions given by zij(0) = xij , ∀(i, j) ∈ L. We denote the right-hand side

of ODE (14) by the function Fij ; Fij(z(t)) = ζi (z(t))(zij (t))
−β(Dij (z(t))−zij (t))∑

k∈N(i) (zik(t))−β .

For the uniform ant case, z(t), with components zij(t), (i, j) ∈ L, is a solution of the
ODE system

dzij(t)
dt

= ζU
i (z(t))

(
DU

ij (z(t)) − zij(t)
)

|N(i)| , ∀(i, j) ∈ L, t > 0, (15)

with initial conditions given by zij(0) = xij , ∀(i, j) ∈ L.
We now briefly discuss the assumptions. A sufficient condition under which (A1)

holds is supn≥1 E[(�ε
i j(n))γ+1] < ∞, for some γ > 0. That is, some moment of the delay

higher than the first moment is finite, which we assume. Assumptions (A2) and (A3) can
be expected to hold, because they are forms of the strong law of large numbers (they
are somewhat weaker because the terms involve conditional expectations). Similar
remarks apply for Assumptions (A2′) and (A3′).

The dynamic behavior of the routing algorithm can be studied via the ODE approxi-
mation. Numerical solution of the ODE, starting from given initial conditions, requires
computation of the means Dij(z) and the fractions ζi(z) (respectively, DU

ij (z) and ζU
i (z)

for the uniform ants case), for given z. These computations depend upon the particular
network under consideration, and are described next.

4.2. Computations Related to the ODE Approximation

We assume that, in every queue Qij the successive service times of the combined
stream of ant (FA) and data packets are identically and independently distributed
exponentially distributed with the same mean 1

Cij

7. Furthermore, the service times at
each queue are also independent of the service times at all other queues, and also
independent of the arrival processes at the nodes. We assumed earlier that the arrival
processes to the network are all Poisson. These assumptions are the usual assumptions
made for open Jackson networks, and enable us to remain within the domain of solvable
models; see, for example, Bertsekas and Gallager [1992] and Mitrani [1998].

Regular ant case. In this case, because ant and data packets are being routed in
an identical fashion, we have a single-class open Jackson network. Given z, we can
compute the routing probabilities φi j, (i, j) ∈ L. The routing probabilities combined
with a knowledge of the rates of the incoming ant and data streams into the network
enable us to determine the total arrival rate Aij(z) into each queue Qij . This can be
done by simply solving the flow balance equations in the network [Bertsekas and
Gallager 1992; Mitrani 1998]. For each (i, j) ∈ L, we assume that Aij(z) < Cij , the
arrival rate is smaller than the service rate. Then, under our assumptions, there is a
unique joint stationary distribution of the random variables denoting the total number
of packets in the queues Qij, (i, j) ∈ L. Moreover, this stationary distribution is of a
product form. Also, we can compute various quantities of interest to us, like average
stationary delays in the queues [Bertsekas and Gallager 1992; Mitrani 1998]. Let wi j(z)
denote the average stationary delay (sojourn time) in queue Qij , and let Jj(z) denote
the average stationary delay (expected “cost-to-go”) from node j to the destination D,
both experienced by an ant packet. wi j(z) is given by the formula wi j(z) = 1

Cij−Aij (z) . The

7This amounts to assuming that the average length of a packet (ant or data) is one unit. This is not a
restriction, and we can consider the general case by simply multiplying by the average length. However,
both ant and data packets must have the same average length.
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quantities Ji(z), i ∈ N , satisfy the following equations

Ji(z) =
∑

j∈N(i)

φi j
(
wi j(z) + Jj(z)

)
, ∀i ∈ N , i �= D,

JD(z) = 0. (16)

Once these equations are solved for Ji(z), i ∈ N , we can compute the quantities
Dij(z), (i, j) ∈ L, using the relation

Dij(z) = wi j(z) + Jj(z). (17)

Because ants are generated as a Poisson process with rates λa
i at each node i, and

because of Assumption (M2), the fraction ζi(z) = λa
i∑

j∈N λa
j
; see Section A.2 for a detailed

argument.

Uniform ant case. In this case, the FA packets and the data packets are routed
differently. We thus have an open Jackson network with two classes of traffic, the first
class consisting of the ant traffic and the second class of data traffic. Separate flow
balance equations are set up for the two classes of traffic. These flow balance equations
enable us to solve for the arrival rates Aa

ij(z) and Ad
ij(z) of ant and data packets into each

queue Qij . The total arrival rate Aij(z) into Qij is simply given by the sum Aa
ij(z)+ Ad

ij(z).
The average stationary delay wU

ij (z) experienced by an ant packet in Qij is then given
by wU

ij (z) = 1
Cij−Aij (z) . The rest of the computations, which lead to the determination of

the quantities DU
ij (z), (i, j) ∈ L, can be done in a similar manner, with modifications

that are straightforward, as for the regular ants case. Again, because ant packets are
generated as a Poisson process at all nodes, and because of Assumption (M2), the
fraction ζU

i (z) = λa
i∑

j∈N λa
j
.

With the knowledge of the quantities Dij(z), (i, j) ∈ L, and ζi(z), i ∈ N (respectively,
DU

ij (z) and ζU
i (z) for the uniform ant case), we can numerically solve ODE (14) (respec-

tively, (15) for the uniform ant case), starting from an initial condition: zij(0), (i, j) ∈ L.

4.3. Equilibrium Behavior of the Routing Algorithm

We now study the equilibrium behavior of the routing algorithm. We denote the equi-
librium values of the various quantities by attaching a ∗ to the superscript.

Regular ant case. Consider the equilibrium points z∗ of the ODE system (14). Because
the ζi(z∗) are all positive, the points z∗ with components z∗

i j satisfy the equations(
z∗

i j

)−β∑
k∈N(i)

(
z∗

ik

)−β

(
Dij(z∗) − z∗

i j

) = 0, ∀(i, j) ∈ L. (18)

The interpolated delay estimate vector zε(t) approaches the set of equilibrium points z∗
asymptotically as ε → 0. More precisely, if E denotes the set of equilibrium points and
Nδ(E) denotes a small enough δ-neighborhood of E, then asymptotically (as t → ∞),
the fraction of time zε(t) spends in Nδ(E) goes to one in probability, as ε → 0; see
Kushner and Yin [1997, Section 8.2.1, Theorem 2.1]. The vector of routing probabilities
φε(n), being a continuous function of the delay estimate, asymptotically approaches

the set of points φ∗ with components φ∗
i j = (z∗

i j )
−β∑

k∈N(i) (z∗
ik)−β , ∀(i, j) ∈ L (the meaning of

the term “asymptotically approaches” is the same as described earlier for the delay
estimate vector). In the discussion for the rest of this section, we shall refer to z∗

i j
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as an equilibrium delay estimate, and φ∗
i j as an equilibrium routing probability, it

being understood that the delay estimate zε
i j(t) and the routing probability φε

i j(n) are
asymptotically very close to these quantities with probability close to one, with ε small
enough.

Under our assumption that the total arrival rate into every queue is smaller than the
packet service rate, the equilibrium delay estimates are finite, and so the equilibrium
routing probabilities must be all positive. Consequently, Eq. (18) reduces to: Dij(z∗) =
z∗

i j,∀(i, j) ∈ L. Now, denoting the functional dependence of the mean stationary delays
on the routing probabilities also by Dij(φ) (a slight abuse of notation), and noting that

φ∗
i j = (z∗

i j )
−β∑

k∈N(i) (z∗
ik)−β , we find that the equilibrium routing probabilities must satisfy the

following fixed-point system of equations

φ∗
i j =

(
Dij(φ∗)

)−β∑
k∈N(i)

(
Dij(φ∗)

)−β
, ∀(i, j) ∈ L. (19)

We check that, for a vector φ∗, there is a unique vector with components Dij(φ∗),
(i, j) ∈ L. To that end, we first notice that, for every (i, j) ∈ L,

Dij(φ∗) = wi j(φ∗) + Jj(φ∗), (20)

where Jj(φ∗) is the expected delay from node j to destination D experienced by an FA
packet when the routing probability vector is φ∗; JD(φ∗) = 0. wi j(φ∗) is the expected
delay along link (i, j) experienced by an ant packet when the routing probability vector
is φ∗; we assume for a given φ∗, wi j(φ∗) is unique8. The quantities Ji(φ∗), i ∈ N , satisfy
the following equations

Ji(φ∗) =
∑

j∈N(i)

φ∗
i j

(
wi j(φ∗) + Jj(φ∗)

)
, ∀i ∈ N , i �= D,

JD(φ∗) = 0. (21)

Because our equilibrium probabilities φ∗
i j are all positive, there exists a path from

every node i to the destination D consisting of a sequence of links (i, k1), . . . , (kn, D) for
which φ∗

ik1
> 0, . . . , φ∗

knD > 0. Then, the previous set of equations (21) have a unique
solution (vector) J(φ∗) that has components Ji(φ∗), i ∈ N ; see Bertsekas and Tsitsiklis
[1989, Section 4.2, pages 311–312]. Taking note of this and relation (20), we see that
for every vector φ∗, there is a unique vector of delays Dij(φ∗), (i, j) ∈ L.

Also, for any (i, j) ∈ L, Dij(φ∗) is a continuous function of the probabilities. Further-
more, being at least equal to the average service time experienced by an FA packet in
the queue Qij , it is lower bounded by a positive quantity. By an application of Brouwer’s
fixed-point theorem, there exists a vector of equilibrium routing probabilities φ∗ satis-
fying the fixed-point system (19) (the right-hand side of the fixed-point system maps a
compact, convex set—a Cartesian product of probability simplices—to itself).

Uniform ant case. For the uniform ant case, at equilibrium, the components z∗
i j satisfy

the following equations (
DU

ij (z∗) − z∗
i j

)
|N(i)| = 0, ∀(i, j) ∈ L. (22)

8We have a similar abuse of notation for wi j and Jj as we had for Dij . In Section 4.2, we denoted by wi j (z)
and Jj (z) the average stationary delay in queue Qij , and delay (expected “cost-to-go”) from j to destination
D, both experienced by an ant packet, delay estimate vector being fixed at z.
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Fig. 3. The network with N parallel links.
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We can show in a manner similar to the regular ant case that the equilibrium routing
probabilities must be all positive and satisfy the fixed-point system of equations

φ∗
i j =

(
DU

ij (φ∗)
)−β∑

k∈N(i)

(
DU

ij (φ∗)
)−β

, ∀(i, j) ∈ L. (23)

Also, for a vector of equilibrium routing probabilities φ∗ there is a unique vector of
delays DU

ij (φ∗), (i, j) ∈ L. Also, there exists a solution to the set of fixed-point Eq. (23),
by an application of Brouwer’s fixed-point theorem.

5. EXAMPLE: THE N PARALLEL LINKS CASE

In this section we consider the special case involving a simple routing scenario where
arriving traffic at a single source node S has to be routed to the single destination D.
There are N available parallel links between the source and the destination through
which traffic can be routed. The network and its equivalent queuing theoretic model
are shown in Figures 3 and 4, respectively. The queues represent the output buffers
at the source and are associated with the N outgoing links. We have more detailed
results for this example that explore properties of the routing algorithm. In particular,
we study the dependence of the equilibrium routing probabilities on capacities of the N
links and the effect of parameter β on the equilibrium routing behavior. In this special
case, packet service times are allowed to be generally distributed. In Section 5.1 we
discuss in detail the regular ARA case, and in Section 5.2 we focus on the uniform ARA
case.
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5.1. The Regular Ant case

An ant and a data stream arrive at S as Poisson processes with rates λa
S > 0 and

λd
S > 0. At node S, every packet of the combined stream is routed according to the

current routing probabilities towards queues Q1, . . . , QN. Samples of delays in the N
queues are collected by ant (FA) packets as they traverse through the queues along with
data packets. The packet lengths of the combined stream constitute an identically and
independently distributed sequence, which is statistically independent of the arrival
processes. The capacity of link i is Ci bits/sec, i = 1, . . . , N. We assume that the lengths
of an ant and a data packet are generally distributed with means La and Ld bits,
respectively. If we denote the service times of an ant and a data packet in Qi by the
generic random variables Sa

i and Sd
i , then Sa

i and Sd
i are generally distributed according

to some cumulative distribution functions, say Ga
i and Gd

i , with means E[Sa
i ] = La

Ci
and

E[Sd
i ] = Ld

Ci
, respectively.

The delay estimation and routing probability update algorithms are special cases of
the general update algorithms (7) and (8), and are hence not written down again here.
The delay estimate vector X(n) has components X1(n), . . . , XN(n) (corresponding to the
N queues), and the routing probability vector φ(n) has components φ1(n), . . . , φN(n).

5.1.1. The ODE Approximation. The ODE approximation result (14) specialized to the N
parallel links case reads as follows

dz1(t)
dt

= (z1(t))−β
(
D1(z1(t), . . . , zN(t)) − z1(t)

)∑N
k=1 (zk(t))−β

,

...
...

dzN(t)
dt

= (zN(t))−β
(
DN(z1(t), . . . , zN(t)) − zN(t)

)∑N
k=1 (zk(t))−β

, (24)

with initial conditions z1(0) = X1(0), . . . , zN(0) = XN(0)9. Notice that clearly, ζS(z(t)) =
1, and so this term is not explicitly mentioned in the ODE given before. As usual,
Di(z1, . . . , zN), i = 1, . . . , N, are the mean delays (sojourn times) in the queues under
stationarity as experienced by ant packets, with the delay estimates considered fixed
at z1, . . . , zN.

In order to numerically solve the ODE, we need to compute the quantities
Di(z1, . . . , zN) for our queuing system. With the delay estimates considered fixed at
z1, . . . , zN, the routing probabilities are given by φi = (zi )

−β∑N
k=1 (zk)−β , i = 1, . . . , N. We now

discuss how to compute the Di(z1, . . . , zN)’s given our assumptions on the statistics of
the packet arrival processes and the packet lengths.

Every arrival at S from either of the Poisson streams (ant or data) is routed indepen-
dent of other arrivals with probability φi towards queue Qi. Thus the incoming arrival
process in Qi is a superposition of two independent Poisson processes with rates λa

Sφi

and λd
Sφi. Consequently, every incoming packet into Qi is with probability λa

S
λa

S+λd
S

an ant

packet, and with probability λd
S

λa
S+λd

S
a data packet. Also, under our assumptions, the

queues evolve as independent M/G/1 queues. The cumulative incoming stream into Qi
is Poisson with rate (λa

S +λd
S)φi, and every incoming packet’s service time is distributed

9Instead of using the notation zjD(t), DjD(z(t)), we employ the simpler notation zj (t), Dj (z(t)).
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according to the cumulative distribution function Ga
i with probability λa

S
λa

S+λd
S

and accord-

ing to the cumulative distribution function Gd
i with probability λd

S
λa

S+λd
S
. We assume that

the input arrival rate is smaller than the service rate: (λa
S +λd

S)φi E[Si] < 1, i = 1, . . . , N
(the queue stability condition). E[Si], the mean packet service time in Qi, is given by
E[Si] = λa

S E[Sa
i ]+λd

S E[Sd
i ]

λa
S+λd

S
. We further note that the average sojourn time experienced by an

ant arrival to Qi is the same as the average sojourn time of packets in Qi by the PASTA
(Poisson Arrival See Time Averages) property. Thus, using the Pollaczek-Khinchin for-
mula for the average sojourn time, we obtain the following expression for Di(z1, . . . , zN)
(i = 1, . . . , N)

Di(z1, . . . , zN) = E[Si] +
(
λa

S + λd
S

)
φi E

[
S2

i

]
2
(
1 − (

λa
S + λd

S

)
φi E

[
Si
]) , (25)

where E[S2
i ] is given by E[S2

i ] = λa
S E[(Sa

i )2]+λd
S E[(Sd

i )2]
λa

S+λd
S

, and φi = (zi )−β∑N
k=1 (zk)−β

.

Once the expressions for Di(z1, . . . , zN) are available, we can numerically solve the
ODE system (24), starting with initial conditions z1(0), . . . , zN(0).

5.1.2. Equilibrium Behavior of the Routing Algorithm. For our present case, the fixed-point
system of Eq. (19) reduces to

φ∗
i =

(
Di(φ∗

i )
)−β∑N

k=1

(
Dk(φ∗

k)
)−β

, i = 1, . . . , N. (26)

The equilibrium routing probabilities are positive and are solutions to Eq. (26). The
equilibrium routing probabilities must also satisfy the conditions (λa

S + λd
S)φ∗

i E[Si] <
1, i = 1, . . . , N. We now show that Eq. (26) forms the necessary and sufficient optimality
conditions for an optimization problem involving the minimization of a convex objective
function of (φ1, . . . , φN) subject to the afore mentioned constraints. A consequence of
this fact is that, if there exists a solution to Eq. (26) that also satisfies the mentioned
constraints, then such a solution is unique.

Consider the optimization problem

Minimize F(φ1, . . . , φN) = ∑N
i=1

∫ φi

0 x[Di(x)]β dx,
subject to φ1 + · · · + φN = 1,

0 < φ1 < a1,
...

0 < φN < aN,

where ai = 1
(λa

S+λd
S)E[Si ]

, i = 1, . . . , N.
The cost function, which is a function of the link delays, is a measure of congestion in

the N links. The feasible set C ⊂ R
N of the preceding optimization problem is convex. It

is possible that the set C is empty (for a given set of values of λa
S, λd

S, and E[Sa
i ], E[Sd

i ],
i = 1, . . . , N), which means that there are no feasible solutions to the optimization
problem in such a case. We assume in what follows that C is nonempty.

We assume that functions Di(x) are positive, differentiable, and monotonically in-
creasing on their domains of definition. This is true in most cases of interest, because
when the routing probability for an outgoing link increases, the amount of traffic flow
into that link also increases, resulting in an increase of the delay. We then have the
following easy proposition.
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PROPOSITION 5.1. Given the previous assumption on delay functions Di(x), i =
1, . . . , N, a probability vector φ∗ is a local minimum of F over C if and only if φ∗
satisfies the fixed-point system (26). φ∗ is then also the unique global minimum of F
over C.

PROOF. The Hessian of F is a diagonal matrix given by

∇2 F(φ1, . . . , φN) = diag
(
[Di(φi)]

β−1{Di(φi) + βφi D′
i(φi)

})
, (27)

where D′
i(.) denotes the derivative of Di(.). Under the aforesaid assumptions on Di(x)’s,

∇2 F(φ1, . . . , φN) is positive definite over C, and so F is a strictly convex function on
C. Consequently, any local minimum of F is also a global minimum of F over C;
furthermore, there is atmost one such global minimum; see Bertsekas [1995].

If φ∗ = (φ∗
1, . . . , φ

∗
N) is a local minimum of F over C, we must have by Proposition 2.1.2

of Bertsekas [1995],
N∑

i=1

∂F
∂φi

(
φ∗)(φi − φ∗

i

) ≥ 0, ∀φ ∈ C. (28)

Let us fix a pair of indices i, j, i �= j. Then choose φi = φ∗
i + δ and φ j = φ∗

j − δ, and let
φk = φ∗

k,∀k �= i, j. Now, choosing δ > 0 small enough that the vector φ = (φ1, . . . , φN) is
also in C, the preceding condition becomes(

∂F
∂φi

(
φ∗)− ∂F

∂φ j

(
φ∗)) δ ≥ 0,

or, φ∗
i

[
Di
(
φ∗

i

)]β ≥ φ∗
j

[
Dj
(
φ∗

j

)]β
.

By a similar argument, we can show that φ∗
j [Dj(φ∗

j )]
β ≥ φ∗

i [Di(φ∗
i )]β . Thus, the necessary

conditions for φ∗ to be a local minimum are

φ∗
1

[
D1
(
φ∗

1

)]β = · · · = φ∗
N

[
DN
(
φ∗

N

)]β
.

Combining this with the normalization condition, φ∗
1 +· · ·+φ∗

N = 1, gives us the system
of Eq. (26).

The necessary conditions given before can also be written in the form

∂F
∂φ1

(φ∗) = · · · = ∂F
∂φN

(φ∗).

We check that these conditions are also sufficient for φ∗ to be a local minimum. Suppose
φ∗ ∈ C satisfies the previous conditions. Then for every other vector φ ∈ C, we have∑N

i=1(φi − φ∗
i ) = 0. So, the quantity

N∑
i=1

∂F
∂φi

(φ∗)
(
φi − φ∗

i

) = ∂F
∂φ1

(φ∗)
N∑

i=1

(
φi − φ∗

i

) = 0.

Then, because F is convex over C, by Proposition 2.1.2 of Bertsekas [1995], φ∗ is a local
minimum.

In our case, it is easy to check that functions Di(x) are positive, differentiable, and
monotonically increasing. Thus, if there is an equilibrium routing probability vector
satisfying fixed-point system (26), then such a vector is unique.

We have carried out a discrete event simulation of the queuing system. We present
a result with the number of parallel links N = 3. Step size ε = 0.002 and β = 1.
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The ant and data arrival processes have rates λa
S = 1 and λd

S = 1. For ant packets,
service times in the queues are exponential with means E[Sa

1] = 1/3.0, E[Sa
2] = 1/4.0,

and E[Sa
3] = 1/5.0. For data packets also, service times are exponential with the

same means. Initial values of the delay estimates are set at X1(0) = 0.8, X2(0) = 2.8,
and X3(0) = 5.6. With the initial delay estimates set as before, the initial routing
probabilities are φ1(0) = 0.7, φ2(0) = 0.2, and φ3(0) = 0.1.

Let μi = 1
E[Si ]

be the service rate of packets in queue Qi, i = 1, 2, 3. Delays Di(φi),
using relation (25) are then given by

Di(φi) = 1
μi − λφi

, (29)

where λ = λa
S + λd

S. Consequently, the fixed point Eq. (26) reduces to

φ∗
i = μi − λφ∗

i∑3
j=1

(
μ j − λφ∗

j

) , i = 1, 2, 3,

which on simplification gives us

φ∗
i = μi∑3

j=1 μ j
, i = 1, 2, 3.

In this special case the equilibrium routing probabilities are directly proportional to
the service rates in the queues. Figures 6(a) and 6(b) provide plots of the interpolated
delay estimates zε

i (t), i = 1, 2, in two of the queues versus the components zi(t), i = 1, 2,
of the ODE approximation obtained by numerically solving (24). The components of
the ODE approximation track the delay estimates from the simulation well, for the
mentioned value of ε. Figures 6(c) and 6(d) provide plots of the routing probabilities
φε

1(n), φε
2(n). The equilibrium routing probabilities are φ∗

1 = 3/12, φ∗
2 = 4/12, φ∗

3 = 5/12
(note that μ1 = 3, μ2 = 4, μ3 = 5).

5.1.3. Effect of the Parameter β. We observed in Section 5.1.2 that, for a given β, the
equilibrium routing probabilities satisfy the fixed-point system (26). Let’s denote the
equilibrium routing probability vector by φ∗(β) = (φ∗

1(β), . . . , φ∗
N(β)) (a function of β).

The delay function for the i-th queue is written as Di(φi) = D(φi, Ci), emphasizing its
dependence on φi and on capacity Ci. We keep λa

S, λd
S fixed throughout the discussion

in this section. We assume that the delay function has the following properties: it is
positive, is a strictly increasing function of φi when Ci is held fixed, and a strictly
decreasing function of Ci when φi is held fixed. Also, let β be a positive real number
(instead of being a positive integer).

Suppose C1 > C2 = · · · = CN. Then using the relations

φ∗
1(β)

[
D
(
φ∗

1(β), C1
)]β = · · · = φ∗

N(β)
[
D
(
φ∗

N(β), CN
)]β

,

it can be checked that10

φ∗
1(β) > φ∗

2(β) = · · · = φ∗
N(β),

and consequently that

D
(
φ∗

1(β), C1
)

< D
(
φ∗

2(β), C2
) = · · · = D

(
φ∗

N(β), CN
)
. (30)

10More generally, if C1 > C2 > · · · > CN , it can be checked that φ∗
1(β) > φ∗

2(β) > · · · > φ∗
N(β), so that the

paths “are ranked” according to the capacities. Then, D(φ∗
1(β), C1) < D(φ∗

2(β), C2) < · · · < D(φ∗
N(β), CN).
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We show that, as β increases, the routing probability on the highest-capacity path
also increases. To arrive at a contradiction, let’s suppose, for some small positive δβ
that φ∗

1(β + δβ) < φ∗
1(β); then we also have φ∗

2(β + δβ) > φ∗
2(β). This implies that

φ∗
1(β + δβ)

φ∗
2(β + δβ)

<
φ∗

1(β)
φ∗

2(β)
. (31)

Using the relationships with the delays, we then have[
D
(
φ∗

2(β + δβ), C2
)

D
(
φ∗

1(β + δβ), C1
)]β+δβ

<

[
D
(
φ∗

2(β), C2
)

D
(
φ∗

1(β), C1
)]β

,

or,

[
D
(
φ∗

2(β + δβ), C2
)

D
(
φ∗

2(β), C2
) .

D
(
φ∗

1(β), C1
)

D
(
φ∗

1(β + δβ), C1
)]β+δβ

<

[
D
(
φ∗

1(β), C1
)

D
(
φ∗

2(β), C2
)]δβ

.

Using the hypothesis and the monotonicity property of the delay function with respect
to the routing probability, it is easy to see that the left-hand side of the preceding
inequality is greater than one, which implies that

D
(
φ∗

1(β), C1
)

> D
(
φ∗

2(β), C2
)
,

contradicting relation (30). Thus, we must have φ∗
1(β+δβ) > φ∗

1(β) and φ∗
2(β+δβ) < φ∗

2(β).
We now consider an example studying what happens when β ↑ ∞. The service times

of ant and data packets are exponentially distributed and the means in a particular
queue are the same (E[Sa

i ] = E[Sd
i ]). Then E[Si] = E[Sa

i ]; we let μi = 1
E[Si ]

. The delays
are then given by Di(φ∗

i ) = 1
μi−λφ∗

i
. Let the number of parallel links N = 3. The traffic

parameters are λa
S = 1, λd

S = 1, μ1 = 4, μ2 = 3, μ3 = 311. The fixed-point equations for
the equilibrium routing probabilities then become (with φ∗

2 = φ∗
3)

φ∗
1 =

(
4 − 2φ∗

1

)β(
4 − 2φ∗

1

)β + 2
(
3 − 2φ∗

2

)β ,

φ∗
2 = 1 − φ∗

1

2
.

We solve the previous fixed-point system in Mathematica for increasing values of β. The
equilibrium routing probabilities are close to φ∗

1 = 2
3 , φ∗

2 = 1
6 , φ∗

3 = 1
6 for high values of

β. It is not possible that φ∗
1 ≥ 2

3 , because then D1(φ∗
1) = 1

4−2φ∗
1

≥ D2(φ∗
2) = 1

3−2φ∗
2
, which is

impossible by (30). Thus it may be surmised in this case that when β ↑ ∞, φ∗
1 increases

to 2/3 but never attains that value.
If we now increase the service rate in queue Q1 to μ1 = 6, the equilibrium routing

probabilities are close to φ∗
1 = 1, φ∗

2 = 0, φ∗
3 = 0 for high values of β; then all the

incoming traffic is routed through Q1 in steady state. It may be noted in this case that
for no φ∗

1 ∈ [0, 1], is it possible that D1(φ∗
1) ≥ D2(φ∗

2).
Thus β acts like a tuning parameter that can be used to modulate the fraction of

flow on the outgoing links under equilibrium. Higher values of β make the flows more
concentrated on the outgoing links with more capacity; in the limiting case of β ↑ ∞,
as the example that came earlier shows we can even have all the incoming flow routed
to the highest-capacity path. Lower values of β make the flows more evenly distributed

11The service rates are proportional to the link capacities. We work with them instead of the capacities for
convenience.
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on the outgoing links; in the limiting case of β = 0, the incoming flow is perfectly split:
φ∗

i = 1
N , i = 1, 2, . . . , N.

5.2. The Uniform ARA Case

We now turn our attention to the case when ant packets are routed uniformly. The
discussion is brief because the same methods as for the regular ant case can be used
to analyze this case. Specializing to the N parallel links case the ODE approximation
result (15), we have the following ODE system

dz1(t)
dt

= DU
1

(
z1(t), . . . , zN(t)

)− z1(t)
N

,

...
...

dzN(t)
dt

= DU
N

(
z1(t), . . . , zN(t)

)− zN(t)
N

, (32)

with appropriate initial conditions. As for the regular ants case, ζU
S (t) = 112.

The ODE before, namely (32) can be numerically solved once quantities
DU

i (z1, . . . , zN), i = 1, . . . , N, are available for a fixed z = (z1, . . . , zN). For our queu-
ing system, with identical assumptions on the arrival processes and packet lengths of
the ant and data streams as for the regular ant case, we can compute DU

i (z1, . . . , zN) in
an identical manner. The details are omitted. For each i = 1, . . . , N, DU

i (z1, . . . , zN) is
given by the Pollaczek-Khinchin formula

DU
i (z1, . . . , zN) = E[Si] +

(
λa

S
N + λd

Sφi

)
E
[
S2

i

]
2
(
1 −

(
λa

S
N + λd

Sφi

)
E
[
Si
]) ,

where E[Si] =
λa

S
N E[Sa

i ]+λd
Sφi E[Sd

i ]
λa

S
N +λd

Sφi

, E[S2
i ] =

λa
S

N E[(Sa
i )2]+λd

Sφi E[(Sd
i )2]

λa
S

N +λd
Sφi

, φi = (zi )
−β∑N

j=1 (zj )
−β . We again

require that the input arrival rate is smaller than the service rate for each queue:
( λa

S
N + λd

Sφi)E[Si] < 1, i = 1, . . . , N.
The equilibrium routing probabilities must satisfy the fixed-point system of equa-

tions

φ∗
i =

(
DU

i

(
φ∗

i

))−β∑N
k=1

(
DU

k

(
φ∗

k

))−β
, (33)

and must be all positive. It can be shown, using methods similar to those in Sec-
tion 5.1.2 that, if there exists a solution to Eq. (33) that also satisfies the conditions
( λa

S
N + λd

Sφi)E[Si] < 1, i = 1, . . . , N, then such a solution is unique.
We also make the following observation comparing the equilibrium routing proba-

bilities for the regular and the uniform ARA case for the N parallel links network. We
consider the two cases with β = 1, and with identical statistics on the arrival processes
and service times of the packet streams. Service times in queue Qi of ant and data
packets are exponential, with identical means E[Sa

i ] = E[Sd
i ]. The service rate in Qi is

then μi = 1
E[Si ]

= 1
E[Sa

i ] . For the regular ARA case, the equilibrium routing probabilities
are given in Section 5.1.2; they are directly proportional to the queue service rates. For

12Again, instead of using the notation zjD(t), DU
jD(z(t)), j = 1, . . . , N, we employ the simpler notation

zj (t), DU
j (z(t)), j = 1, . . . , N.
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the uniform ARA case, φ∗
i , i = 1, . . . , N satisfy the equations

φ∗
i =

μi −
(

λa
S

N + λd
Sφ∗

i

)
∑N

j=1

[
μ j −

(
λa

S
N + λd

Sφ∗
j

)] , i = 1, . . . , N. (34)

These equations can be solved for the equilibrium routing probabilities

φ∗
i = μi − λa

S
N∑N

j=1

[
μ j − λa

S
N

] , i = 1, . . . , N. (35)

For purposes of comparison, without much loss of generality, let’s assume that μ1 >
μ2 > · · · > μN. We denote the vectors of equilibrium routing probabilities in the uniform
and in the regular case by (φ∗)U and (φ∗)R, respectively. We can then check, by simply
applying the definition, that (φ∗)R is majorized by (φ∗)U , denoted by (φ∗)R ≺ (φ∗)U

(Marshall and Olkin [1979] is a reference on majorization theory). That is, the routing
probabilities in the regular ARA case are “less spread out”. This can be understood
by observing that, when ant packets are routed uniformly, their contribution to the
average delays in the N queues are the same, and hence more uniform, than when
they are routed as in the regular case. Thus, delays in queues with higher service
rates are lower for the uniform than for the regular ARA case. The result can then
be expected, because the routing probabilities are inversely proportional to the delays.
Results in a similar spirit might be expected to hold when β > 1, but we haven’t been
able to show this.

Stability of the ODE system. We now show for the ODE system (32) that for almost all
initial conditions, z(t) converges to the set of equilibria of the ODE, which are solutions
of the system of equations zi = DU

i (z1, . . . , zN), i = 1, . . . , N. Though this is a desirable
result in general, that is, for the acyclic network case with both regular and uniform
ant routing, we have succeeded in showing this result only for the present case of an N
parallel links network with uniform ant routing. We consider the special case when the
lengths of an ant and a data packet are both exponentially distributed with the same
mean. Then E[Sa

i ] = E[Sd
i ] for each i = 1, . . . , N, and we have the following expression

for DU
i (z1, . . . , zN)

DU
i (z1, . . . , zN) = 1

1
E[Sa

i ] −
(

λa
S

N + λd
S(zi )

−β∑N
j=1 (zj )

−β

) , i = 1, . . . , N. (36)

Let’s denote the right-hand sides of the ODE system (32) by FU
i (z1(t), . . . , zN(t)), i =

1, . . . , N. A straightforward computation shows that, for j �= i,

∂FU
i (z)
∂zj

= βλd
S(zi)

β

NT 2 P2(zj)
β+1 ,

where T = 1
E[Sa

i ] − ( λa
S

N + λd
S(zi )

−β∑N
j=1 (zj )

−β ) and P = (zi)
β ∑N

j=1 (zj)
−β (note that T > 0, because

the input rate is smaller than the service rate, for each i). Thus, for j �= i,

∂FU
i (z)
∂zj

≥ 0.

We thus have a cooperative ODE system. Such ODEs have been proposed and studied
as models describing the behavior of a set of interacting agents (in our case a set of
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interacting queues). Hirsch, in a series of papers, extensively studied such ODEs13. We
shall make use of results in one of the papers in the series Hirsch [1985].

We first note that, if the ODE starts in the convex open set C = {(z1, . . . , zN) : z1 >
0, . . . , zN > 0}, it remains in that set for all time t > 0. We can check this by noting
that, from (36),

DU
i (z1, . . . , zN) ≥ E

[
Sa

i

] = ni (say),

the ni ’s being all positive. Then a trajectory z(t) = (z1(t), . . . , zN(t)) of the ODE system
(32) must satisfy the following relations

dz1(t)
dt

≥ n1 − z1(t)
N

,

...
...

dzN(t)
dt

≥ nN − zN(t)
N

,

and so all components shall remain away from zero, once the ODE starts in C.
Also, the trajectories of our ODE system remain bounded. To see this, we note from

(36) that

DU
i (z1, . . . , zN) ≤ 1

1
E[Sa

i ] −
(

λa
S

N + λd
S

) = mi (say).

Then a trajectory z(t) of the ODE system satisfies

dz1(t)
dt

≤ m1 − z1(t)
N

,

...
...

dzN(t)
dt

≤ mN − zN(t)
N

,

and so must be bounded.
Consider a general ODE system ẋ(t) = F(x(t)), with initial condition x(0) = x, evolv-

ing on an open subset W ⊂ R
n. The flow {φt} associated with the ODE is said to be

strongly monotone [Hirsch 1985], if for initial conditions x, y, with x < y, φt(x) < φt(y),
for all t > 0. For vectors p, q, p < q here means that componentwise pi < qi, i = 1, . . . , n.

Our vector field FU being cooperative and irreducible on the set C, by Theorem 1.5
of Hirsch [1985] the flow {φt} is strongly monotone. Also, because the trajectories of our
ODE system remain bounded, by Theorem 4.1 of Hirsch [1985], the forward trajectory
starting from almost any initial condition in C approaches the set of equilibria of the
ODE system. Also, by Theorem 2.4 of Hirsch [1985], the flow cannot have an attracting
closed orbit (same as a periodic solution for our case, since our ODE is autonomous).

6. EXAMPLE: AN ACYCLIC NETWORK

In this section, we consider the acyclic network of Figure 5. The numbers beside the
links indicate the link capacities (Cij units for link (i, j)). Data packets arrive at nodes
1, 2, and 3, as Poisson processes with rates λd

1, λd
2, and λd

3. Ant (FA) packets arrive as a
Poisson process at node i with rate λa

i , i = 1, . . . , 7.

13In Borkar [2008] it is shown to arise in other application contexts involving ODE approximations.
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Fig. 5. An acyclic network.

We carry out a discrete event simulation of the network and present results for the
regular ARA case. The arrival rates of the streams are as follows: λa

i = 2, i = 1, . . . , 7,
and λd

1 = 6, λd
2 = 8, and λd

3 = 6. Parameter β = 1 and step-size ε = 0.002.
The approximating ODE system is (14). The ant arrival rates λa

i being all equal,
ζi(z) = 1

7 , i = 1, . . . , 7. Delay estimate for the route 1 → 4 → · · · → 8 is approximated
by the component z14(t) which follows the equation

dz14(t)
dt

= (z14(t))−1 (D14(z(t)) − z14(t)
)

7
(
(z14(t))−1 + (z15(t))−1) , t > 0.

Delay estimates for route 1 → 5 → · · · → 8, and for other routes 2 → j → · · · → 8, j =
4, 5, 3 → j → · · · → 8, j = 4, 5, are approximated by corresponding components, which
follow similar equations. For route 4 → 6 → 8 the ODE approximation z46(t) follows

dz46(t)
dt

= (z46(t))−1 (D46(z(t)) − z46(t)
)

7
(
(z46(t))−1 + (z47(t))−1) , t > 0.

For routes 4 → 7 → 8, 5 → j → 8, j = 6, 7, the ODE components follow similar
equations. Finally, for link 6 → 8 the ODE approximation z68(t) is given by

dz68(t)
dt

= D68(z(t)) − z68(t)
7

, t > 0.

There is a similar equation for z78(t). For each z, computation of the means Dij(z), that
appear in the ODE expressions given before, can be accomplished following Section 4.2.
We solve the ODE system numerically, starting from certain initial conditions zij(0) =
xij, (i, j) ∈ L.

Figures 7(a) and 7(b) provide plots of the interpolated delay estimates zε
14(t), zε

46(t),
and alongside plots of the corresponding components of the ODE system. The ODE
approximation again tracks the interpolated delay estimates well. Figures 7(c) and 7(d)
provide plots of the routing probabilities φε

14(n), φε
46(n). We note that though we initially

start with a routing probability φε
14(0) < 0.5, the routing probability φε

14(n) converges
to a value which is greater than 0.5. This is to be expected of a routing algorithm;
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Fig. 6. N parallel links: ODE approximations and routing probabilities. Parameters: λa
S = 1, λd

S = 1, E[Sa
1 ] =

E[Sd
1 ] = 1/3.0, E[Sa

2 ] = E[Sd
2 ] = 1/4.0, E[Sa

3 ] = E[Sd
3 ] = 1/5.0, β = 1, ε = 0.002.

the (equilibrium) routing probability on outgoing links that lie on paths with higher-
capacity links should be higher.

7. CONCLUDING REMARKS

Summary. In summary, in this article we have studied the convergence and equilib-
rium behavior of an ARA algorithm for wireline, packet-switched networks. We have
considered acyclic network models, with multiple sources of incoming traffic whose
packets are bound for specified destinations. We have considered stochastic models for
the arrival processes and packet lengths for the ant and data streams. The link delays
are stochastic and time-varying. We have shown that the evolution of the vector of
delay estimates can be tracked by an ODE system when the step size of the estimation
scheme is small. We then study the equilibrium routing behavior and properties of the
equilibrium routing probabilities.
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Fig. 7. Acyclic network: ODE approximations and routing probabilities. Parameters: λa
i = 2, i = 1, . . . , 7,

λd
1 = 6, λd

2 = 8, λd
3 = 6, β = 1, ε = 0.002.

There are certain advantages of ARA algorithms that are worth pointing out. ARA
algorithms do not require explicit knowledge of incoming data traffic rates, or a knowl-
edge of the link capacities. Instead, ARA algorithms rely directly on online estimates
of path delays in the network that are collected by the ant packets. This enables the
algorithm to adapt to changes in the incoming traffic rates, and/or changes in the net-
work topology. On the other hand, because there is a learning process to ascertain the
delays (based on which the routing probabilities are updated), the convergence of the
algorithm can be slow. Further experimentation with the step size ε is necessary, in
order to enable the algorithm to be fast enough that it can react and adapt to changes.

Extensions. We can extend our results to the case when we have an acyclic network
with multiple destinations for the incoming data traffic. As usual, at every node, ant
(FA) packets would be sent out to explore delays in the paths towards each destination.
The ant packets can be routed using either the regular or the uniform ARA algorithm.
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Suppose that there are M destinations overall. With Assumptions (M1) and (M2)
regarding the algorithm operation in force, we can write down the stochastic iterative
equations describing the evolution of delay estimates and routing probabilities in a
form similar to Eqs. (7) and (8). We will have a set of equations corresponding to each
of the M destinations. Let us consider first the case when the queue Qij associated
with (i, j) is shared by all ant and data packets that are bound for various destinations.
The scheduling discipline is FIFO. In this case it can be checked that we would again
have an ODE approximation of the form (14) for the regular ARA case ((15) for the
uniform ARA case). There is a set of equations for each of the M destinations, and
the equations together constitute a system of coupled ODEs. In order to compute the
stationary means of delays—Dij(z), for a given z—related to the ODE approximation,
we can employ the same procedure as in Section 4.2, with appropriate modifications.
In this regard we note that we have an open Jackson network with M classes for the
regular ARA case, and with M + 1 classes for the uniform ARA case (data packets
are routed according to routing probabilities at the nodes and ant packets are routed
uniformly). The equilibrium behavior of the routing algorithm can be described in a
similar way as in Section 4.3.

The second, more general case is a per-destination queuing arrangement which is
more appropriate in a routing context. In this case, for a link (i, j), M separate outgoing
queues Qk

ij, k = 1, . . . , M, are maintained, each corresponding to a particular destina-
tion. Qk

ij holds ant and data packets that are bound for destination k. The transmission
capacity of link (i, j) is then shared between the queues; the manner in which the
sharing takes place is known as the link-scheduling discipline. The form of the update
algorithms does not change, and we can arrive at an ODE approximation for the system
as described before for the first case. However, in this case, it may not be always possible
to compute analytically the stationary mean delays. Only for certain symmetric link-
scheduling disciplines like processor-sharing, which are analytically tractable (that
is, have joint stationary product form distributions for the number of packets in the
queues; see Mitrani [1998]) can we compute the stationary mean delays.

The ODE approximation results hold whenever assumptions (A1), (A2), and (A3)
((A1), (A2′), and (A3′) for the uniform ARA case) hold. (A2) and (A3) are essentially
law of large number-like conditions, which require that when the delay estimate vector
X is considered fixed at z, the queuing system converges to a stationary distribution.
This may hold under more general conditions on the statistics of arrival processes and
packet lengths of the packet streams, than we have considered. Under our assumptions,
we are explicitly able to compute the quantities Dij(z) and ζi(z) using results from the
theory of queuing networks, and hence solve the ODE numerically. This enables us to
compare the theoretical ODE with the piecewise constant interpolation of the delay
estimates obtained through a discrete event simulation.

In our framework, we can also consider a slightly more general dependence of outgo-
ing routing probabilities on delay estimates: φi j = g(Xij )∑

k∈N(i) g(Xik) , where g is a continuous
function, that is positive real-valued, and nonincreasing. The analysis remains the
same. An example of g is g(x) = e−βx, x ≥ 0, where β is a positive integer.

Future directions. In our work, we have considered models where are no cycles in
the network. It remains to study convergence and equilibrium behavior of the al-
gorithm when there are cycles. There are two issues that arise. First, cycles in the
network adversely affect the process of estimation of the path delays by the ant pack-
ets. This is because the estimates can grow unbounded if there is a positive probability
of an ant packet being routed in a cycle. Second, it may happen that we converge
to an equilibrium routing solution that has loops. That is, for a given destination
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k, the equilibrium routing probabilities might be such that, for a sequence of links
(i1, i2), . . . , (in−1, in), (in, i1) that forms a cycle, φk

i1i2 > 0, . . . , φk
in−1in > 0, φk

ini1 > 0. There
is no reason to believe that the scheme that we analyze in this article can lead to a
loop-free equilibrium solution. For the case when the network has cycles, we might
need to modify the scheme so that it can converge to a loop-free routing solution which
is desirable. Another direction for future exploration is to relax Assumption (M1) and
consider the case when there is a delay in the feedback; that is, when BA packets
take nonnegligible time to travel back to the source nodes carrying the delay estimate
information. It remains to study convergence issues and equilibrium behavior of the
algorithm under such conditions.

APPENDIX

A.1. Proof of Convergence of the Ant Routing Algorithm

As discussed in Section 3, the evolution of the delay estimates and the routing proba-
bilities is given by Eqs. ((7) and (8))

Xε
i j(n) = Xε

i j(n − 1) + ε I{T ε (n)=i,Rε
i (ξε

i (n))= j}
(
�ε

i j(ψ
ε
i j(n)) − Xε

i j(n − 1)
)
,

∀(i, j) ∈ L, n ≥ 1,

φε
i j(n) =

(
Xε

i j(n)
)−β∑

k∈N(i)

(
Xε

ik(n)
)−β

, ∀(i, j) ∈ L, n ≥ 1,

with the appropriate initial conditions.
We now consider the piecewise constant interpolation of {Xε

i j(n)}, which is the process
{zε

i j(t), t ≥ 0}, defined by Eq. (9) in Section 4.1. We also consider the vector-valued piece-
wise constant process {zε(t), t ≥ 0}. This process evolves on the path space D|L|[0,∞),
consisting of right-continuous R

|L|-valued functions possessing left-hand limits.
The stochastic iterations (7) (considered along with (8)) are an example of constant

step-size stochastic approximation algorithms. For the proof of the ODE approximation
for the algorithm, we follow the approach as given in the textbook of Kushner and Yin
[1997, Chapter 8, Sections 8.1 and 8.2.1]. We provide the proof for the regular ant case.
The proof for the uniform ant case can be similarly done. The main theorem is the
following.

THEOREM 8.1. Under Assumptions (A1), (A2), and (A3), we have the following: there
exists a subsequence {ε(k)}, with ε(k) ↓ 0 as k → ∞, such that the process {zε(k)(t)}
converges weakly (as k → ∞) to a solution {z(t)} of the ODE approximation (14).

PROOF. A brief outline of the proof is as follows.

—We first show that the family of processes {zε(t)}, ε ∈ (0, 1), is tight. Then there exists
a subsequence ε(k) ↓ 0 as k → ∞, and a process {z(t)} such that {zε(k)(t)} converges
weakly to {z(t)}. The process {z(t)} has Lipschitz continuous paths.

—The limit process {z(t)} will be then shown to have the following property (z(t) has com-
ponents zij(t), (i, j)∈L). Let t, τ >0 be arbitrary numbers, and let 0 ≤ s1, s2, . . . , sp ≤ t
also be a set of arbitrary numbers. Then, for a bounded continuous function h, we
show that

E
[
h(z(s1), z(s2), . . . , z(sp))

(
zij(t + τ ) − zij(t) −

∫ t+τ

t
Fij(z(u)) du

)]
= 0, (37)

for each (i, j) ∈ L. This fact then implies that {zij(t) − zij(0) − ∫ t
0 Fij(z(u)) du, t ≥ 0}

is a martingale with respect to the filtration generated by the process {z(t)}. This
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martingale process, because it has Lipschitz continuous paths, can be shown to have
zero quadratic variation [Kushner and Yin 1997]. It is hence a constant. Because the
martingale is zero at t = 0, it is identically zero with probability one. We shall thus
have the result.

The fact that (37) holds will be shown by showing that

E
[
h(zε(s1), zε(s2), . . . , zε(sp))

(
zε

i j(t + τ ) − zε
i j(t) −

∫ t+τ

t
Fij(zε(u))du

)]
= 0, (38)

and using the fact that {zε(t)} converges weakly to {z(t)} (we are actually going through
the subsequence ε(k)).

We now embark on the proof. We first show the tightness of the family {zε(t)}, ε ∈
(0, 1), using the uniform integrability assumption.

From Eq. (7) we can write

Xε
i j(n + 1) = (

1 − ε I{T ε (n+1)=i,Rε
i (ξε

i (n+1))= j}
)

Xε
i j(n) + ε I{T ε (n+1)=i,Rε

i (ξε
i (n+1))= j}

�ε
i j

(
ψε

i j(n + 1)
)
,

Xε
i j(n + 1) ≤ Xε

i j(n) + ε I{T ε (n+1)=i,Rε
i (ξε

i (n+1))= j}�ε
i j

(
ψε

i j(n + 1)
)
.

Iterating we can see that for every positive integer m,

Xε
i j(n + m) ≤ Xε

i j(n) + ε

(
n+m∑

k=n+1

I{T ε (k)=i,Rε
i (ξε

i (k))= j}�ε
i j

(
ψε

i j(k)
))

.

Consequently, for any L > 0, we have

E
[∣∣Xε

i j(n + m) − Xε
i j(n)

∣∣] ≤ ε

n+m∑
k=n+1

E
[
�ε

i j

(
ψε

i j(k)
)

I{�ε
i j (ψ

ε
i j (k))≥L}

+�ε
i j

(
ψε

i j(k)
)

I{�ε
i j (ψ

ε
i j (k))<L}

]
.

Thus, for any n, n + m ∈ {0, 1, 2, . . . , � T
ε
�} (for some fixed 0 < T < ∞), we have

E
[∣∣Xε

i j(n + m) − Xε
i j(n)

∣∣] ≤ mε

(
L + sup

k≥1
E
[
�ε

i j(ψ
ε
i j(k))I{�ε

i j (ψ
ε
i j (k))≥L}

])
.

If we now let t = nε and τ = mε, and noting that zε
i j(t) = Xε

i j(� t
ε
�), we have

sup
0≤t,t+τ≤T

E
[∣∣zε

i j(t + τ ) − zε
i j(t)

∣∣] ≤ Lτ + τ sup
k≥1

E
[
�ε

i j

(
ψε

i j(k)
)

I{�ε
i j (ψ

ε
i j (k))≥L}

]
.

The uniform integrability of the sequence {�ε
i j(m)} allows us to choose L large enough

that the second term on the right-hand side can be made as small as we like. Once L is
so chosen, we can choose τ small enough that the first term on the right can be made
as small as we like. Thus, for any 0 < T < ∞, we have

lim
τ↓0

sup
ε

sup
0≤t,t+τ≤T

E
[∣∣zε

i j(t + τ ) − zε
i j(t)

∣∣] = 0.

Now, because E
[∣∣∣∣zε(t + τ ) − zε(t)

∣∣∣∣] ≤ ∑
(i, j)∈L E

[∣∣zε
i j(t + τ ) − zε

i j(t)
∣∣], we have

lim
τ↓0

sup
ε

sup
0≤t,t+τ≤T

E
[∣∣∣∣zε(t + τ ) − zε(t)

∣∣∣∣] = 0.
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The fact that this holds for every 0 ≤ T < ∞ is sufficient for the family {zε(t)}, ε ∈ (0, 1),
to be tight.

We now show the validity of (38). We have the following expression for Xε
i j(n)

Xε
i j(n) = Xε

i j(0) + ε

n∑
m=1

(
I{T ε (m)=i,Rε

i (ξε
i (m))= j}�ε

i j

(
ψε

i j(m)
)

− E
[
I{T ε (m)=i,Rε

i (ξε
i (m))= j}�ε

i j

(
ψε

i j(m)
) | F ε(m− 1)

])
+ ε

n∑
m=1

(
E
[
I{T ε (m)=i,Rε

i (ξε
i (m))= j}�ε

i j

(
ψε

i j(m)
) | F ε(m− 1)

]
− ζi

(
Xε(m− 1)

)
φε

i j(m− 1)Dij
(
Xε(m− 1)

))+ ε

n∑
m=1

ζi
(
Xε(m− 1)

)
×φε

i j(m− 1)Dij
(
Xε(m− 1)

)− ε

n∑
m=1

(
I{T ε (m)=i,Rε

i (ξε
i (m))= j}Xε

i j(m− 1)

− E
[
I{T ε (m)=i,Rε

i (ξε
i (m))= j} Xε

i j(m− 1) | F ε(m− 1)
])

− ε

n∑
m=1

(
E
[
I{T ε (m)=i,Rε

i (ξε
i (m))= j}Xε

i j(m− 1 | F ε(m− 1)
]− ζi

(
Xε(m− 1)

)
×φε

i j(m− 1)Xε
i j(m− 1)

)
− ε

n∑
m=1

ζi
(
Xε(m− 1)

)
φε

i j(m− 1)Xε
i j(m− 1). (39)

We can then write, using the fact that zε
i j(t) = Xε

i j(� t
ε
�) for all t ≥ 0,

zε
i j(t) = zε

i j(0) + ε

� t
ε
�∑

m=1

Mε
i j(m) + ε

� t
ε
�∑

m=1

Nε
i j(m) + ε

� t
ε
�∑

m=1

ζi(Xε(m− 1))φε
i j(m− 1)

× Dij(Xε(m− 1)) − ε

� t
ε
�∑

m=1

Pε
i j(m) − ε

� t
ε
�∑

m=1

Qε
i j(m) − ε

� t
ε
�∑

m=1

ζi(Xε(m− 1))

×φε
i j(m− 1)Xε

i j(m− 1),

where Mε
i j(m), Nε

i j(m), Pε
i j(m), and Qε

i j(m) refer to the corresponding quantities in Eq. (39)
given before.

We introduce the quantities: Gε
1(t) = ε

∑� t
ε
�

m=1 Mε
i j(m), Gε

2(t) = ε
∑� t

ε
�

m=1 Nε
i j(m), Gε

3(t) =
ε
∑� t

ε
�

m=1 Pε
i j(m), and Gε

4(t) = ε
∑� t

ε
�

m=1 Qε
i j(m). Now the term

ε

� t
ε
�∑

m=1

ζi(Xε(m− 1))φε
i j(m− 1)

(
Dij(Xε(m− 1)) − Xε

i j(m− 1)
) =

∫ t

0
Fij(zε(u)) du,

when t is an integral multiple nε of ε, and is an approximation otherwise, the approxi-
mation error vanishing when ε → 0.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 1, Article 3, Publication date: April 2013.



Convergence Results for Ant Routing Algorithms 3:31

Hence, in order to show (38), from Eq. (39) and the previous developments, we can
see that all that we need to show is that

lim
ε→0

E
[
h(zε(s1), zε(s2), . . . , zε(sp))

(
Gε

1(t + τ ) − Gε
1(t)

+ Gε
2(t + τ ) − Gε

2(t) − [
Gε

3(t + τ ) − Gε
3(t) + Gε

4(t + τ ) − Gε
4(t)

])] = 0.

We show that each of the summands in the preceding expectation tend to zero as ε → 0,
that is, for i = 1, 2, 3, 4,

lim
ε→0

E
[
h(zε(s1), zε(s2), . . . , zε(sp))

(
Gε

i (t + τ ) − Gε
i (t)
)] = 0.

We start by showing that limε→0 E
[
h(zε(s1), . . . , zε(sp))

(
Gε

1(t + τ ) − Gε
1(t)

)] = 0. Now,

E
[
h(zε(s1), zε(s2), . . . , zε(sp))

(
Gε

1(t + τ ) − Gε
1(t)

)]
= E

⎡⎣h(zε(s1), zε(s2), . . . , zε(sp))

⎛⎝ε

� t+τ
ε

�∑
m=� t

ε
�+1

Mε
i j(m)

⎞⎠⎤⎦ .

It can be checked that the sequence {Mε
i j(n)} is a martingale difference sequence

with respect to {F ε(n)}; that is, the sequence T ε
i j(n) = ∑n

m=1 Mε
i j(m) is a martingale with

respect to the same filtration. It then follows that

E
[
h
(
zε(s1), zε(s2), . . . , zε(sp)

) (
Gε

1(t + τ ) − Gε
1(t)

)] = 0;

the result then also holds true when ε → 0.
Similarly, we can show that limε→0 E[h(zε(s1), . . . , zε(sp))(Gε

3(t + τ ) − Gε
3(t))] = 0.

The arguments for showing that limε→0 E[h(zε(s1), . . . , zε(sp))(Gε
2(t + τ ) − Gε

2(t))] = 0
and limε→0 E[h(zε(s1), . . . , zε(sp))(Gε

4(t + τ ) − Gε
4(t))] = 0 hold are similar in nature.

Consequently, we shall discuss in detail the steps for only one of them.
Let’s show that limε→0 E[h(zε(s1), . . . , zε(sp))(Gε

2(t + τ ) − Gε
2(t))] = 0. We recall that

Gε
2(t + τ ) − Gε

2(t) = ε

� t+τ
ε

�∑
m=� t

ε
�+1

(
E
[
I{T ε (m)=i,Rε

i (ξε
i (m))= j} �ε

i j

(
ψε

i j(m)
) | F ε(m− 1)

]
− ζi(Xε(m− 1))φε

i j(m− 1)Dij(Xε(m− 1))
)
. (40)

Now, for a scalar η > ε > 0 (with η < τ ), the expression on the right-hand side of (40)
can be written as

� τ
η
�∑

j=0

η

⎡⎢⎣ ε

η

� t+( j+1)η
ε

�∑
m=� t+ jη

ε
�+1

(
E
[
I{T ε (m)=i,Rε

i (ξε
i (m))= j} �ε

i j(ψ
ε
i j(m)) | F ε(m− 1)

]

−ζi
(
Xε(m− 1)

)
φε

i j(m− 1)Dij
(
Xε(m− 1)

) )⎤⎦ .

In the interval {� t+ jη
ε

� + 1, . . . , � t+( j+1)η
ε

�}, each of the preceding summands can be
written as a sum of the terms

E
[
I{T ε (m)=i,Rε

i (ξε
i (m))= j} �ε

i j

(
ψε

i j(m)
) | F ε(m− 1)

]− ζi

(
Xε

(⌊
t + jη

ε

⌋))
φε

i j

(⌊
t + jη

ε

⌋)
× Dij

(
Xε

(⌊
t + jη

ε

⌋))
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and

ζi

(
Xε

(⌊
t + jη

ε

⌋))
φε

i j

(⌊
t + jη

ε

⌋)
Dij

(
Xε

(⌊
t + jη

ε

⌋))
− ζi

(
Xε(m− 1)

)
φε

i j(m− 1)

× Dij
(
Xε(m− 1)

)
.

Choosing an η small enough, noting that ζi(x)φi j Dij(x) is assumed to be a continuous
function of x (Assumption (A3)), and the fact that the family {zε(t), ε ∈ (0, 1)}, is tight,
shows that the latter terms tend to zero in the mean as ε → 0. For the former terms,
we note that for any small η > 0, the expression

ε

η

� t+( j+1)η
ε

�∑
m=� t+ jη

ε
�+1

(
E
[
I{T ε (m)=i,Rε

i (ξε
i (m))= j} �ε

i j

(
ψε

i j(m)
) | F ε(m− 1)

]
−ζi

(
Xε

(⌊
t + jη

ε

⌋))
φε

i j

(⌊
t + jη

ε

⌋)
Dij

(
Xε

(⌊
t + jη

ε

⌋)))
,

tends to zero as ε tends to zero, by Assumption (A2). We then have
limε→0 E[h(zε(s1), . . . , zε(sp))(Gε

2(t + τ ) − Gε
2(t))] = 0.

A.2. Expression for ζi(z)

We show here that ζi(z) = λa
i∑

j∈N λa
j
, for each i ∈ N , for the regular ARA case. The same

argument holds for the uniform ARA case. As discussed in Section 4.2, with the delay
estimate vector X considered fixed at z, we have a single-class open Jackson network.
For each queue Qij with the arrival rate of packets Aij(z) < Cij , the queuing network
converges to stationarity. Let Tij, (i, j) ∈ L denote the total number of packets (in
queue and in service) in queues Qij, (i, j) ∈ L, under stationarity. Let {Rn} denote the
sequence of times when Tij, (i, j) ∈ L returns to the state consisting of all zeros. Thus,
{Bn}, where Bn = Rn − Rn−1 constitutes the sequence of successive busy periods for
the queuing network. Under our assumptions on the statistics of the arrival processes
and packet lengths of the various streams, {Bn} is an identically and independently
distributed sequence, with the mean E[Bn] < ∞. {Rn} is a sequence of stopping times
for the ant Poisson arrival processes at the nodes.

For each i ∈ N , let Di(t) = number of FA packets that arrive at destination D by time
t. Then

ζi(z) = lim
t→∞

Di(t)∑
j∈N Dj(t)

. (41)

Furthermore, we have

lim
t→∞

Di(t)∑
j∈N Dj(t)

= E[Di(Bn)]∑
j∈N E[Dj(Bn)]

. (42)

This is intuitive, and can be established by using the renewal reward theorem, the
interrenewal times being the sequence {Bn}, and the rewards in a renewal period being
the number of ant packets launched from i that arrive at D.

Now, because Di(Bn) = number of ant Poisson arrivals at node i in the interval Bn,
the mean E[Di(Bn)] = λa

i E[Bn], and so

ζi(z) = λa
i∑

j∈N λa
j
. (43)
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