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Abstract—The seminal work of Maynard Prince and Price
in 1973 laid the foundations in establishing the concept of
evolutionary game stable strategies. It attempts to select strategies
which are robust to evolutionary selection pressures. We observe
that most of the literature as evolved is concentrated on single
objective games. In this work we extend the notion of evolutionary
stability to games with vector payoff functions. We illustrate that
this notion of Multicriteria evolutionary stability, models a much
larger class of interactions in social, economic and biological
problems. Particular applications of interest are in autonomic
wireless sensor networks and autonomic networked control sys-
tems. We present a multi-population replicator dynamics, which
models the evolution of agent actions in a network with varying
levels of selfishness. We observe that this model clearly demarks
the regions of cooperation among these selfish agents. We provide
analytical results on the dynamic stability of the replication. This
clearly characterizes the aforementioned demarcations.

I. INTRODUCTION

We live in an age where information technology has matured
to understand and incorporate social behaviors of individuals
adopting the technology in an environment. And the abundance
of inexpensive communications technology ([8], [16], [21])
has enabled these individuals to establish ties and collaborate
among themselves in an almost autonomous setting. This
form of collaboration enables autonomous agents (possibly
humans) to accomplish tasks which would be otherwise impos-
sible individually: [7], [1], [4], [6]. However these protocols
require that the users dedicate their resources towards this
collaboration [15]. This could be user’s time, device’s battery,
computational effort, memory storage, or other infrastructure
usages. Thus there is a clear quantification of the benefits
a user receives from a collaboration and the resources he
expends for the collaboration. In an autonomic network the
agents might opt for different trade-offs between the benefits
and cost of collaboration. This introduces a heterogeneity
in the environment. For instance, in a large sensor network
configuration there might be nodes with high computational
capabilities to carry out the number crunching, which should
be willing to sacrifice their battery for this regard. There
might be also selfish nodes, which only want to benefit from
the collaboration. Thus in modelling protocols in autonomous
networks, we need to pay heed to realistic non-altruism in the
participating agents. In this paper we provide a mathematical

model to describe the action dynamics in such a heterogeneous
environment.

In this paper, we do not consider any specific network
protocol. Instead we adopt an abstract model for the ac-
tion space of the agents participating in the protocol. In an
autonomic environment, there is no centralized control of
the user’s decision and thus each user has the free will to
choose his actions. In an abstract sense, we refer to as the
act of adhering to the protocol as cooperation. It should be
mentioned here that this abstract model can be used to model a
large class of network interactions. Examples include wireless
ad-hoc networks, peer-to-peer networks, social networks and
e-services.

We observe that for every action of each agent, there are
at least two metrics which reflect the benefit she derives
from and the cost she pays to the network for collaboration.
However in many contexts, there are no obvious methods to
combine these metrics. For instance, in a tactical Mobile Ad-
Hoc Network (MANET) or for an e-business, the transactions
are closely monitored by peers or specialized sentinel nodes
[17], [10], [12]. In this case, the agents expend their resources
following the agreed protocol. In doing so, they boost their
reputation in the network or market which is beneficial for
their future transactions. As these examples illustrate, the cost
(battery life or user effort) and the benefits (reputation) are
not trivially comparable. In such situations it is common
in optimization theory to consider decision strategies which
are Pareto Optimal. This multi-agent multi-criteria decision
problem lends itself to Pareto Nash equilibria strategies.

In this paper we consider a modified form of the standard
replicator dynamics called the Multi-population replicator dy-
namics and study its dynamic stability properties under various
levels of selfishness that the agents exhibit. We establish
strong relations of the stability of the stationary states of the
dynamics with the Pareto Nash strategies. To the best of our
knowledge, there is no prior literature on the evolutionary
dynamics for games involving such vector payoffs. In this
paper, we show that for our dynamics, the perceived trade-
off function serves as a bifurcation parameter. This bifurcation
clearly demarcates different forms of evolution in our agent
setting. The corresponding stability analysis suggests methods
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of mechanism design to propel the agent environment to a
grand coalition.

This paper is organized as follows. In section II we delineate
the role of trust in a large sensor network setting. In section
III we present a population dynamics model for the action
dynamics in a heterogeneous setting. Section IV introduces our
multi-population dynamics model. In sections V and VI, we
present our stability results for this multi-population dynamics.

II. ROLE OF TRUST IN AUTONOMOUS SENSOR NETWORKS

Advances in low power electronics has fuelled the de-
velopment and deployment of large scale sensor networks
[16]. There have been several protocols proposed for self-
organization in such large scale autonomous networks [19].
Most of the initial protocols assumed altruistic behavior of the
sensor nodes for proper functioning of the system. But several
security flaws in these protocols stemmed from selfish node
behavior [12]. However traditional cryptographic techniques
were handicapped to solve this problem of node selfishness.
Instead trust and reputation methods from e-business and e-
services were adopted to propel the functioning of sensor
networked systems [17]. In these protocols the services are
usually offered to and taken from nodes which have a high
trustworthiness in the system. In such a framework the sensor
nodes in the network are more likely to cooperate with the
ones prescribed by the protocol (to boost their reputation).
Any node with a good reputation in the system is likely to be
trusted and thereby gains from the coalition.

In the process of forming the coalition, the sensor nodes
expend their resources for communication and cryptographic
primitives. To treat both trust and cost metrics in the spirit
of maximization, we define the residual-resource gain as
the resources left after paying for the cost of cooperation.
Sensor nodes are typically limited in these resources and in an
autonomous setting display varying levels of selfishness. This
is because different nodes operate at different trade-off points
in the residual gain-benefit objective space.

In this paper we model this heterogeneous environment
as multi-population environment, where the agents within a
population, bias their strategies based on their fitness in the
current environment. We emphasize again that the heterogene-
ity arises from the different trade-offs the agents choose. As
far as capability and limitations are concerned, all the agents
are assumed to be homogeneous. In order to understand the
relation between these dynamics and Pareto Nash strategies
we present a series of ideas inspired from evolutionary biology
and multi-criteria optimization in the forthcoming sections.

III. MODELING ACTION DYNAMICS

Let us consider a large population of sensor agents. To
accomplish any task in the network, all the agents must act
as per the given protocol. Each agent might have a specific
task and we do not attempt to model it. Instead we adopt a
point of view that the agent might or might not adhere to the
protocol. This then models the action space of the agents in
the system.

Definition If the agent conforms with the protocol, then the
agent is said to cooperate (C). Otherwise the agent is said
to defect (D). We borrow this terminology from the famous
prisoner’s dilemma problem in game theory.

Definition A task is said be achieved if all the participat-
ing agents cooperate. Any heterogeneous system which can
achieve the task is said to have a grand-coalition trade-off.

To model the action dynamics of the system, we use
population dynamics that have been studied rigorously in
evolutionary biology. In using the population models, we
assume that the number of agents participating in a given
task is very large and thus the population shares can be
modelled as a continuum. These continuum population models
are common in evolutionary biology [18]. In working with
population dynamics the payoffs for the actions are usually
the ensemble average payoffs. In our case this would corre-
spond to the average residual-gain and average benefit in the
current population state. Thus the bi-criteria payoff-objective
space is convex and can be characterized by weighted-sum
scalarization [13].

For our problem, we have a heterogeneous population P .
This population is divided into n homogeneous factions each
with its own perceived trade-off. Each of these factions,
i ∈ {1, 2, · · · , n} chooses a particular trade-off between the
residual gain and benefit (λi, 1 − λi), 0 ≤ λi ≤ 1 (trade-
offs from weighted sum scalarization). We denote these sub-
populations as {Pi , 1 ≤ i ≤ n}. Since we assume that
the capabilities and limitations of the nodes are identical,
associated with every agent are two identical (i.e the same for
all agents) payoff functions which reflect the cost and benefit
of collaboration. We denote the action set for every player as
(C,D) for cooperate and defect respectively.

Within each sub-population Pi, every player is assumed to
play one of the pure strategies (C,D). Let the size of the sub-
population Pi be pi. Within Pi, let pCi agents play cooperate
and pDi agents play defect. The population shares within Pi
are then represented by xCi = pC

i

pi
and xDi = pD

i

pi
respectively.

This forms the population share state in Pi, xi =
[
xCi
xDi

]
.

Then the overall population share state is given by x =
[x1, x2, · · · , xn]. Let x−i denote the population share states of
all sub-populations other than Pi. Let n-linear functions ur and
ub represent the residual gain and benefit function for all the
players. Standard population dynamics assumes that n players
are chosen randomly, one from each sub-population and are
made to compete. In our setting, one player is drawn for each
sub-population Pi and they are assumed to carry out the task.
Based on their perceived gains, these players change their
action strategy. In evolutionary biology this perceived gain
is defined as fitness. It represents the number of off-springs
the action strategy A ∈ {C,D} produces in the environment.
ur(C,x−i) represents the residual gain left in player i after
she cooperates. Similarly ub(C,x−i) represents the benefit
she receives out of the cooperation. If this player lives in
the subpopulation Pi, then the average perceived fitness is
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given by λiur(C,x−i)+(1−λi)ub(C,x−i). Correspondingly
λiu

r(C,x−i)+(1−λi)ub(C,x−i) represents the fitness when
she choses to defect. We refer the reader to Chapters 3 and
5 of [11] for the rationality arguments behind evolutionary
dynamics. In the next section we consider a particular class
of evolutionary dynamics driven by the fitness function.

IV. MULTI-CRITERIA MULTI-POPULATION REPLICATOR
DYNAMICS

Let us assume there is some inherent birth and death
rates βi and δi within each of these sub-populations. If we
use the fitness function introduced in Section III then the
corresponding population dynamics would turn to be

ṗCi = (βi + λi(ur(C,x−i))
+(1− λi)(ub(C,x−i))− δi)pCi

ṗDi = (βi + λi(ur(D,x−i))
+(1− λi)(ub(D,x−i))− δi)pDi

The corresponding population share action dynamics would
then be

ẋCi = (λi(ur(C,x−i)− ur(x))
+(1− λi)(ub(C,x−i)− ur(x)))xCi

ẋDi = (λi(ur(D,x−i)− ur(x))
+(1− λi)(ub(D,x−i)− ur(x)))xDi
· · · (MPMCR)

We refer to these equations as the Multi-Population Multi-
Criteria Replicator dynamics (MPMCR). We refer the reader
to [11] for a detailed derivation of these dynamics. The
MPMCR are simple dynamics which capture the action dy-
namics of our heterogeneous autonomous agent system. In
the next section we study the properties of this dynamics in
a bi-heterogeneous system before we go to the general n-
heterogeneous system.

V. BI-HETEROGENEITY

In this case the population is divided into only two factions,
with perceived trade-offs (λ1, 1 − λ1) and (λ2, 1 − λ2).
The game can be modelled as a symmetric matrix game
(homogeneity in capabilities assumption). Let player I and II
be the row and column players respectively. For the scenario
to conform to the rationality of cost and benefit, the following
inequalities should be satisfied.

rdc > rcc, rdd > rcd

bdc < bcc, bdd < bcd

For these payoff matrices, the MPMCR can be written as

ẋC1 = (λ1([1 0]Urx2 − x1.U
rx2)

+(1− λ1)([1 0]U bx2 − x1.U
bx2))xC1

ẋC2 = (λ2([1 0]UrTx1 − x2.U
rTx1)

+(1− λ2)([1 0]U b
T
x1 − x1.U

bTx1))xC2

C D
C rcc rcd

D rdc rdd

TABLE I
Ur MATRIX

C D
C bcc bcd

D bdc bdd

TABLE II
Ub MATRIX

And xD1 = 1 − xC1 , xD2 = 1 − xC2 for the dynamics on the
cartesian product of the simplices. On simplifying the above
expression we obtain,

ẋC1 = (a1x
C
2 − a2x

D
2 )xC1 x

D
1 (1)

ẋC2 = (b1xC1 − b2xD1 )xC2 x
D
2 (2)

Here, a1 = λ1(rcc−rdc)+(1−λ1)(bcc−bdc), a2 = λ1(rdd−
rcd)+(1−λ1)(bdd−bcd), b1 = λ2(rcc−rdc)+(1−λ2)(bcc−
bdc) and a2 = λ2(rdd − rcd) + (1− λ2)(bdd − bcd). Thus the
pair λ1, λ2 forms the bifurcation parameters for the dynamics.
Let us consider an example system with payoffs

Ur =
[

3 2
10 10

]
, U b =

[
15 15
0 5

]
Here a1 = −7λ1 + 15(1−λ1), a2 = 8λ1− 10(1−λ1), b1 =
−7λ2 + 15(1 − λ2) and b2 = 8λ2 − 10(1 − λ2). Different
values for the bifurcation parameters create different dynamics.
The normalized vector fields for the bifurcation pair (λ1 =
1
3 , λ2 = 1

4 ), for which the grand coalition is achievable, are
shown in Figure 1. However for the non-cooperative setting
with bifurcation parameters (λ1 = 2

3 , λ2 = 3
4 ), where the

emphasis is on the residual gain, the grand coalition is not
an asymptotically stable equilibrium. This is depicted by the
normalized vector fields shown in Figure 2

The vector fields shown in the two figures suggest that none
of the interior strategies are asymptotically stable. We prove
this result is insensitive to the perceived trade-offs.

Theorem 5.1: The MPMCR dynamics in a bi-heterogeneous
environment always converges to population states, where all
the individuals in a given subpopulation P1 or P2 either defect
or cooperate.

Proof: We use a standard proof method suggested in [11].
Dividing both equations (1) and (2), by xC1 x

C
2 x

D
1 x

D
2 in the

interior of the cartesian product of the simplex, we obtain

ẋC1 =
(a1x

C
2 − a2x

D
2 )

xC2 x
D
2

ẋC2 =
(b1xC1 − b2xD1 )

xC1 x
D
1

To analyze stability of the MCMPR of equations (1) and (2), it
suffices to study the stability of the above dynamics, because
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Fig. 1. Normalized Vector Field For Grand Coalition
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Fig. 2. Normalized Vector Field For Non-Cooperation

constant positive scaling of the vector field does not change
the orbits. The above vector field has zero divergence. By Li-
ouville’s theorem (chapter 6 of [11]) none of the interior states
(in the cartesian product of the simplexes) is asymptotically
stable.
Thus to obtain the grand coalition (C,C) as an asymptotically
stable strategy we need

λ1, λ2 < min(
bcc − bdc

rdc − rcc + bcc − bdc
,

bcd − bdd
rdd − rcd + bcd − bdd

)

The agents with different perceived trade-offs cooperate to
achieve a task if the above condition is met. Those perceived
trade-offs, which satisfy the inequality, constitute the grand
coalition tradeoffs for a bi-heterogeneous environment evolv-
ing under multi-population replicator dynamics. In the next
section we extend the bi-heterogeneity stability results to a
general n-heterogeneity stability.

VI. DYNAMIC STABLITY OF MPMCR IN n-Heterogeneity

In this section we establish the relation between the stable
dynamic equilibria of the MPMCR and the Pareto Nash Equi-

libria of an auxiliary bi-objective game. The ideas are inspired
from the relations between standard replicator dynamics and
the evolutionary stable Nash strategies in a single objective
setting.

We present a brief summary of the methods from vector
payoff games before we present the linking results. We refer
the reader to [20] for a detailed description of the methods
and analysis that we have developed for these vector payoff
games. These vector payoff games were originally introduced
by Zeleny [14]. Subsequently several modifications of these
games appeared in [9], [3] and [2]. An existential algorithm
for sieving the equilibria of these games was proposed by [5].
However we observe that there is no constructive algorithm to
obtain the set of equilibria. Interestingly, as with single objec-
tive games and the standard replicator dynamics, we show that
the MPMCR dynamics have the property of obtaining certain
Pareto Nash equilibria.

Let us consider a n-player bi-objective symmetric game G

with payoffs u =
[
ur
ub

]
. Each player’s pure and mixed action

strategies xi,∀i ∈ I = {1, 2, · · · , n} live on the standard
simplex ∆i = [0, 1] (xCi + xDi = 1, xCi , x

D
i ≥ 0).

A. Pareto Nash Equilibria

In comparing vectors in R2 we use the component-wise
order where a > b, a, b ∈ R2 implies a1 ≥ b1, a2 ≥ b2 and
a 6= b.

Definition The Pareto Reply of player i ∈ I for the strategy
profile x−i of the rest of the players is defined as that strategy
xi ∈ ∆i such that the strategy profile (xi,x−i) is Pareto
optimal with respect to the vector payoff function u(.,x−i).

This Pareto Reply correspondence for player i is given by

βPi (x−i) = { xi ∈ ∆i : 6 ∃z ∈ ∆i

such that u(z,x−i) > u(xi,x−i}

.
The combined best reply correspondence is given by βP (x).

Definition A strategy profile xP is called a Pareto Nash
Equilibrium for G if xP ∈ βP (xP ). The set of all Pareto
Nash Equilibria is denoted by ΘPNE .

Lemma 6.1: If xP ∈ ΘPNE , then every component strat-
egy x∗i ,∀i ∈ I is a supported strategy. i.e.

x∗i = arg max
z∈∆i

λiu
r(z,x−i) + (1− λi)ub(z,x−i)

The proof for lemma 6.1 is given in [20]. Essentially, the
lemma establishes that at Pareto Nash Equilibria, every com-
ponent strategy xi∗i is supported by a hyperplane, whose

normal is given
[

λi
(1− λi)

]
. This gives an interesting dual

interpretation to the Pareto Nash strategies. Let us denote
the set of Pareto Nash strategy profiles supported by the
collection of hyperplanes (whose normals are Λ = {(λ1, 1 −
λ1)T , (λ2, 1− λ2)T , · · · , (λn, 1− λn)T }) as ΘPNE

Λ .
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Definition xS ∈ ΘPNE is a strict Pareto Nash equilibrium if
βP (xs) = {xs}.

B. Linking the Equilibria

In this final subsection, we present the linking relations
between the dynamic stability of MPMCR dynamics and the
Pareto Nash Equilibria.

Theorem 6.2: If x is Lyapunov stable in MPMCR then x ∈
ΘPNE

Λ .
Proof: Let us suppose x 6∈ ΘPNE

Λ .
⇒ ∃ a player i such that there is better Pareto reply z ∈
βPi (x−i) supported by Λ.
⇒ ∃ an action A ∈ {C,D}

λiu
r(A,x−i)+(1−λi)u

b(A,x−i)>λiu
r(x)+(1−λi)u

b(x)

⇒λi(u
r(A,x−i)−ur(x))+(1−λi)(u

b(A,x−i)−ub(x))>0

By continuity of ur and ub, there exists a neighborhood Nδ
containing x, such that for y ∈ Nδ

λi(u
r(A,y−i)−ur(y))+(1−λi)(u

b(A,y−i)−ub(y))≥δ>0

Then by Gronwall’s lemma, xAi ≥ eδt, for x0 ∈ Nδ . Thus x
is not Lyapunov stable.

Theorem 6.3: If xS ∈ ΘPNE is a strict equilibrium, then
xS is asymptotically stable in MPMCR.

Proof: If xS is a strict Pareto Nash equilibrium, then
each component Pareto Nash best reply is a unique corner
point/pure strategy. (Section 5 of [20]). ⇒ ∀i ∈ I, Ai =
βPi (x−i) ∈ {C,D}. i.e. xS is a collection of pure strategies.

⇒λi(u
r(A,xS

−i)−u
r(xS))+(1−λi)(u

b(A,xS
−i)−u

b(xS))<0

where A 6= Ai. Again by the continuity of ur and ub, we have
a neighbourhood Nδ around xS such that for y ∈ Nδ

⇒λi(u
r(A,y−i)−ur(y))+(1−λi)(u

b(A,y−i)−ub(y))≤δ<0

Thus for x0 ∈ Nδ, x
A
i ≤ eδt, which decays exponentially

to zero. Thus the vector field around a strict Pareto Nash
equilibrium has an inward velocity, which makes a strict Pareto
Nash equilibrium asymptotically stable.

We trust that these methods of stability analysis provide a
good insight to the mechanism design of trust and reputation
games to achieve a grand coalition in a environment with
heterogeneous agents. Our analysis can be extended to other
regular, payoff monotonic and payoff positive [11] evolution-
ary dynamics to establish stability results.

VII. CONCLUSIONS

We present a simple model of replication using biological
fitness to understand collaboration in large sensor networks.
This model clearly delineates the regions of operation in a
network with agents which have varying levels of selfishness.
We trust that this method provides simple control laws to
provide incentives for nodes to change their actions to achieve
a grand coalition.
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