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Abstract

Authentication is the process where claims of identity are
verified. Though authentication mechanisms typically exist
above the physical layer, physical layer methods have re-
cently been introduced that do not require extra bandwidth.
In this paper we propose a multi-carrier extension to the
work and consider the stealth and robustness tradeoffs. We
conclude by discussing the power-reliability tradeoff and
the applicability to cross-layer security.

1 Introduction

Physical layer authentication systems have been shown
to be stealthy, robust, and secure [4] in single carrier sys-
tems. In this paper we consider extensions in multi carrier
systems to improve these properties.

Multi-carrier systems are increasingly prevalent for
wideband wireless communications. We are motivated by
the single-carrier authentication results to consider how an
authentication system can use multiple carriers to improve
its stealth and robustness.

By using multiple carriers, the authentication tags can
be hidden in both time and frequency. However, us-
ing multiple carriers also introduces some additional wrin-
kles. Frequency-selective fading attenuates the carriers un-
equally, thus allowing only some of the symbols to be re-
covered. We give results that indicate that the authentica-
tion can be made robust to channel conditions with reason-
able parameters. We show that the single carrier PHY au-
thentication ideas can be extended to the multi-carrier case,
without sacrificing stealth or robustness.

2 Physical Layer Authentication

In this paper we consider single-antenna transceivers.
The sender (Alice) has blocks of symbols that she wishes
to transmit to the receiver (Bob). The adversary (Eve) is

able to hear what Alice is transmitting and also transmit ar-
bitrary messages to Bob.

Alice transmits messages to Bob in plain view: Eve can
also recover the messages. In addition, Alice superimposes
tags upon her messages for authentication purposes. Bob
authenticates Alice only when he detects the correct tags in
his received signal. When a signal contains an authentica-
tion tag, we say it is tagged. In the next section we describe
how the messages and tags are created in a multi-carrier set-
ting.

2.1 Multiple Carrier Signal Models

Suppose that Alice and Bob communicate using N > 1
sub-carriers. This is the situation with orthogonal frequency
division multiplexing (OFDM). Of the N carriers, Ns are
used to transmit messages and Nn are used as null carri-
ers for spectral shaping. Each frame is composed of Nf

OFDM symbols; hence there are NsNf message symbols
per frame. In addition to the message, there are N tNf au-
thentication symbols per frame. We allow the authentica-
tion to be superimposed on the message symbols only, and
hence N t ≤ Ns.

The ith message is denoted by Bi. The multi-carrier
analogue of the single carrier case is straightforward. Alice
and Bob share secret keys ki which are used to generate
the authentication signal. The message and authentication
signals are respectively

Si = fe(Bi) (1)
Ti = g(Bi, ki) (2)

where fe(·) encapsulates any coding and modulation of the
message symbols and g(·) generates the authentication tag
from the corresponding message and secret key. Both sig-
nals are complex matrices of size N ×Nf and satisfy∑

m,n

I(S(m,n)) = NsNf (3)

∑
m,n

I(T (m,n)) = N tNf (4)
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where I(·) is the indicator function. That is, the message
signal has exactly NsNf non-zero entries while the tag
signal has exactly N tNf . We allow the tag symbols to
be placed randomly across the message carriers (Figure 1).
The placement of the tags may vary from frame to frame
and is determined by the choice of g(·) (equation (2)). Be-
cause the tag is generated using a secret key, it is unknown
to the adversary.

The frequency domain signal is formed by superimpos-
ing the tag atop the message

Xi = ρsSi + ρtTi (5)

where ρs, ρt are scalar terms that determine the signal
power as discussed below. We assume that the message and
tags are i.i.d. and thus in the following we drop the frame
index i.

Assume that the message and tag symbols have unit vari-
ance. Therefore the energy of the message and tag are given
by their Frobenius norm, respectively

||S||2 = Trace(SHS) = NsNf (6)
||T||2 = Trace(THT) = N tNf (7)

where (·)H denotes Hermitian transpose. Further, we as-
sume that the message and tag symbols are uncorrelated, so

E[Trace(SHT)] = 0 (8)

The scale terms ρs and ρt are used to enforce the energy
constraint

||S||2 = ||X||2 (9)
= ||ρsS + ρtT||2 (10)
= (ρs)2||S||2 + (ρt)2||T||2 (11)

(ρt)2 =
||S||2

||T||2
(1− (ρs)2) (12)

=
Ns

N t
[1− (ρs)2] (13)

Since Ns, N t are fixed system parameters, specifying ρs

determines ρt and vice versa. Therefore we only refer to
(ρs)2 since it is simply the percentage of power used to
signal the message. The remaining power 1 − (ρs)2 is di-
vided up amongst the tag symbols and depends on the ratio
Ns/N t.

Assuming perfect synchronization with Alice, Bob
makes the signal observation

Y = HX + W (14)

where H is a diagonal matrix of carrier attenuations and W
is AWGN. We assume slow fading so that the channel is
held constant over the entire frame of symbols.

a)

Frame i Frame (i+1)

b)

Message symbol only
Message and Tag symbol

Null symbolX

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

Figure 1. Nf = 8, Ns = 4, N t = 2. Tags are (a)
randomly scattered or (b) on certain carriers.

In this paper we assume that Bob uses pilot symbol as-
sisted modulation (PSAM) to make the simplified minimum
mean square error estimate (LMMSE) [1]. In general the
channel estimate may be written

Ĥ = H + η (15)

where η is the channel estimation error.
Using the channel estimate, the receiver estimates the

message signal as

X̂(k) =
Ĥ∗(k)
|Ĥ(k)|2

Y (k) (16)

= X(k)− η(k)X(k)
Ĥ(k)

+
W (k)
Ĥ(k)

(17)

The estimated message is

B̂ = fd(X̂) (18)

where fd(·) is the decoding function corresponding to the
encoder fe(·) from equation (2).

For example, suppose that fe(·) applies an error-
correction code to the raw data B. The corresponding
decoder fd(·) depends on the choice of code. Cyclic
codes such as Reed-Solomon (RS) and Bose-Chaudhuri-
Hocquneghem (BCH) can be efficiently decoded using
Berlekamp-Massey algorithm [2].

2.2 Message Recovery

We consider the uncoded bit error probability of the sym-
bols. For analysis, we assume that the message and tag
symbols are modulated using QAM. For example, when the
message and tag symbols are both modulated with 4-QAM,
the tag constellation is superimposed on each message sym-
bol to form the constellation shown in Figure 2. In the liter-
ature this is called the 4/16 hierarchical QAM constellation.
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Note that the constellation has 16 symbols; each of these
symbols signal the message symbol (which quadrant) and
the tag symbol (which point in the quadrant). That is, the
message symbol is fictitious in the sense that it is not actu-
ally transmitted.

To calculate the BER for a hierarchical QAM constel-
lations, we must know the distance between the symbols
(see Figure 2) as well as the noise power. 2d1 is the mini-
mum distance between any two message points, 2d2 is the
minimum distance between any two tag points within the
same quadrant, and 2d′1 is the minimum distance between
points in adjacent quadrants. We first give the exact BER
expressions for unit-energy 4/16 constellations and then ap-
ply them to the authentication signals. In general, any num-
ber of QAM constellations may be superimposed on each
other. The general expressions for the BER of general hier-
archical QAM constellations are given in [3].

In AWGN, the BER of the message symbol can be writ-
ten as [3]

ps =
1
2

(
1
2

erfc
d′1√
N0

+
1
2

erfc
d′1 + 2d2√

N0

)
(19)

=
1
4

(Ψ(1, 0) + Ψ(1, 2)) (20)

where N0 is the noise power, while the BER of the tag bit is

pt =
1
2

(
erfc

d2√
N0

+
1
2

erfc
2d′1 + d2√

N0

−1
2

erfc
2d′1 + 3d2√

N0

)
(21)

=
1
4

(2Ψ(0, 1) + Ψ(2, 1) + Ψ(2, 3)) (22)

The noise power N0 is the average noise power for a unit
variance channel. For perfect channel information, 1/γ,
while for MMSE estimation it is 1/γlmmse > 1/γ. The
helper function Ψ(·) [3] depends on the channel distribu-
tion, and for the Rayleigh channel with unit energy constel-
lations it is

Ψ(a, b) = 1−

√
(ad′1 + bd2)2γ

1 + (ad′1 + bd2)2γ
(23)

Next we consider three cases, depending on the tag loca-
tions.

2.2.1 Case 1: Each message symbol is tagged

For a symbol that contains both message and tag, we have
that the message symbol is scaled by ρs and the tag symbol
is scaled by ρt. Since the symbols are each unit variance,
the effective SNR is [(ρs)2 + (ρt)2]/σ2

w. In order to use
Equations (19) and (21), the constellation needs to be unit

energy. Thus we scale

ρ̃s = ρs/
√

(ρs)2 + (ρt)2 (24)

ρ̃t = ρt/
√

(ρs)2 + (ρt)2 (25)
N0 = σ2

w/[(ρs)2 + (ρt)2] (26)

and calculate the following parameters:

d1 = ρ̃s

√
2 (27)

d2 = ρ̃t

√
2 (28)

d′1 = d1 − d2 (29)

We calculate the BER of the message and tag bits by using
these values in Equations (19) and (21). respectively.

2.2.2 Case 2: Message symbol only

When a message symbol stands alone without any super-
imposed tag, it uses the 4-QAM constellation. Note that it
is still scaled by the term ρs, and thus the effective SNR is
(ρs)2/σ2

w. Once again we scale in order to make the con-
stellation unit energy:

ρ̃s = 1 (30)
ρ̃t = 0 (31)

N0 = σ2
w/(ρs)2 (32)

and calculate the following parameters:

d1 = ρ̃s

√
2 (33)

d2 = 0 (34)
d′1 = d1 (35)

We calculate the BER of the message and tag bits by using
these values in Equations (19) and (21). respectively.

2.2.3 Case 3: Some messages are tagged, others are not

Denote by ps
1 the message BER for the tagged case, and ps

2

the message BER for the untagged case. Let pt
1, p

t
2 be sim-

ilarly defined for the tag BER. Given the fraction of tagged
symbol Nt/Ns, the overall message and tag BER of the sys-
tem is simply

ps =
Nt

Ns
ps
1 − (1− Nt

Ns
)ps

2 (36)

pt =
Nt

Ns
pt
1 − (1− Nt

Ns
)pt

2 (37)

2.3 Tag Detection

With his estimate of the data B̂, Bob uses g(·) from equa-
tion (2) to reconstruct the estimated tag:

T̂k = g(B̂, k) (38)

Next we develop two cases, depending on whether the cor-
rect tag is generated.
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2d1

2d2 d'1

Figure 2. 4/16 QAM constellation.

2.3.1 Case 1 - Bob generates the correct tag

Assuming that Bob generates the correct tag (T̂k = T),
he uses matched filtering to detect it in his observation Y.
First, he calculates the residual R and then correlates it with
the tag

R =
1
ρt

(
Y − 1

ρs
fe(B̂)

)
(39)

τk = tr(T̂H
k R) (40)

Assume that the Bob is synchronized with Alice and es-
timates the channel without error (Ĥ = H). Then τk is a
sum of N tNf Gaussian variables. The resulting Gaussian
variable has variance is

∑
k σ2(k), where the kth variance

is σ2(m) = (
∑

m |T (m,n)|2)/γ(m) where k is the carrier
tone. The mean is simply N tNf when the tag is present
and we assume that it is 0 when the tag is not present.

Bob decides hypothesis Hδ according to

δ =
{

0 τk < τ0

1 τk ≥ τ0

}
(41)

where the hypotheses are

H0 : T̂k is not present in R (42)
H1 : T̂k is present in R (43)

Bob calculates the threshold τ0 as follows:

τ0(γ) = arg min
τ

Φ(τ/
∑

k

c(γ̂(k))) ≥ 1− α (44)

c(γ) =
1
ρt

√
N tNf/γ (45)

where α is the acceptable false alarm probability of the au-
thentication. The probability of correct authentication given
the carrier SNRs γ(1), . . . , γ(Ns) and T̂k = T is

P a(γ) = 1− Φ
(

τ0(γ)−N tNf∑
k c(γ(k)

)
(46)

2.3.2 Case 2 - Bob generates an incorrect tag

When Bob generates the incorrect tag (T̂k = T), he will
identify it as correct with false alarm probability α. Assum-
ing that Bob has the correct key, it is clear from equation
(38) that this occurs when his recovered message contains
errors. Therefore, the performance of the authentication is
directly tied to the performance of the message; authentica-
tion will occur only when the message is correctly received.
This is logical because distorted messages should not be au-
thenticated.

Consider the (n, k, t) BCH code. It encodes k message
bits into n code bits and is able to recover from up to t
errors. Consider the authentication system with parameters
γ, (ρs)2, Nt, and Ns. With LMMSE channel estimation the
BER of the message symbols ps is given by (36).

With bit interleaving, the symbol errors can be assumed
independent, and thus the probability that there are at most
t errors in n bits is given by

P =
t∑

i=0

(
n

i

)
(ps)i(1− ps)n−i (47)

Thus the probability that the BCH code (n, k, t) can recover
the message without error is P .

We can apply this result to the robustness of the authen-
tication as follows. Given the correct tag, the authentication
probability is (P a|T̂ = T) while the false alarm probability
is α. Now given the incorrect tag, the detection probability
is simply α. Thus the unconditional authentication proba-
bility is

P a = (P a|T̂ = T) ∗ P + α ∗ (1− P ) (48)

3 Properties of the Authentication System

We now discuss the stealth and robustness of the authen-
tication system. We will then qualitatively and quantita-
tively give heuristics for system design.

In the simulations, we assume N = 32 carriers, of which
Ns = 28 are message carriers and Nn = 4 are null carriers.
Each frame consists of Nf = 8 OFDM symbols, for a total
of 8 ∗ 28 = 224 message symbols (and 32 null symbols).

3.1 Stealth

The stealth of the system is measured by the inability
of the adversary to distinguish between signals containing
authentication information and signals that do not. Many
statistics of the observation can be measured and compared
against the statistics of the reference signal (the signal that
contains messages only, i.e., ρt = 0).

A straightforward comparison is between the bit error
probabilities of the observation with that of the reference
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Figure 3. Stealth is improved with more mes-
sage power (higher ρs).

system. We compare the uncoded bit error probabilities.
That is, fe(·) and fd(·) only modulate and demodulate the
symbols, respectively. In our simulation, fe(·) is a 4-QAM
mapper while fd(·) is the corresponding demapper.

In Figure 3 we compare the BER of the tagged and un-
tagged signals for various power allocations (ρs)2. The the-
oretical BER curves are indicated by the lines; the simu-
lation results are indicated by the hash marks. This figure
verifies the validity of equations (36) and (37). Not sur-
prisingly, the more power that is allocated to the message
symbols, the lower the message BER.

Now we fix the power allocation (ρs)2 to observe the
effects of N t. In Figure 4 we see that decreasing N t in-
creases the message BER. It is perhaps counter-intuitive to
note that decreasing the number of tag symbols actually in-
creases the overall message BER. However, note that by de-
creasing N t, the tag power is more concentrated in fewer
symbols, thereby increasing the interference to the under-
lying message symbol. While many tag symbols each with
low power may avoid causing errors to the message, a few
high powered tag symbols probably will.

3.2 Robustness

The robustness of the system is measured by the ability
of the intended receiver (Bob) to authenticate Alice while
rejecting signals without the proper tags. Equation (46)
gives the probability of authentication under ideal condi-
tions: perfect channel estimation and zero frequency offset.

In Figure 5 the probability of authentication is compared
for various message powers. As the message power (ρs)2

decreases, there is more power available to signal the au-
thentication tags. The figure confirms the intuition that in-

9 10 11 12 13 14 15 16 17 18

10!2

10!1

SNR (dB)

B
ER

Message BER for Various Nt in Rayleigh Fading, (!s
m)2 = 0.97

                      LMMSE Channel Estimation

Nt=1
Nt=2
Nt=4
Nt=28

Unmarked signal

Figure 4. Stealth is improved with more scat-
tered tag placement (higher N t).

creasing the tag power increases the authentication proba-
bility.

Now we fix the power allocation (ρs)2 to observe the
effects of N t. In Figure 6 we see that increasing N t in-
creases the probability of authentication. As with stealth,
this may be counter-intuitive because the tag power is fixed.
However, the answer lies in the frequency selectivity of the
channel: a tag that utilizes more carriers has more resistance
to deep fades.

The above discussion assumed that the authentication tag
is always generated without error at the receiver. Let us now
consider the tradeoff between the robustness of the authen-
tication and the message rate. In Figure 7 we see that the
more powerful the message coding, the better the probabil-
ity of detection. Of course, this decreases the rate of the
message. Note that since all systems have some coding to
ensure accurate recovery of the message, the authentication
does not impose any stricter requirements on the system.

4 Tradeoffs

The parameters of a multi-carrier authentication system
are the power allocation (ρs)2 and the fraction of tag sym-
bols N t. We see from Section 3 that increasing N t im-
proves both properties simultaneously (Figures 4 and 6).
Thus the best strategy is to set N t = Ns.

When the message power is decreased, the stealth of the
system increases (Figure 3) while the robustness decreases
(Figure 5). Thus there is a fundamental tradeoff between
the power of the authentication and its reliability. Note that
we constrain the power of the authentication tag, but not the
energy. That is, we can extend the length of the tag in time
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and thus increase the robustness of the detection [4].
The more important property is stealth, because with-

out it the messages cannot be recovered. Therefore the pa-
rameters should first satisfy the stealth requirements. Each
requirement (e.g. BER below x, probability of authentica-
tion above y) maps to a set of values for (ρs)2 and N t. As
long as the intersection is non-empty, the requirements are
jointly satisfiable.

5 Conclusion

A flexible framework for designing multi-carrier physi-
cal layer authentication systems is presented. By constrain-
ing the allocation of power between message and authenti-
cation tag, the authentication can be made simultaneously
stealthy and robust. Rather than concentrating the energy in
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Figure 7. Robustness: the authentication
probability increases with stronger codes.

a few high powered few carriers, it is better to use many low
powered carriers to improve stealth and robustness. This
finding indicates the main benefit of multi-carrier authen-
tication systems: improved stealth and robustness with no
increase in power.

This work has many interesting potential applications
for cross-layer security designs. In conjunction with higher
layer mechanisms, this method allows nodes to make low-
complexity but high quality authentication decisions. Since
it is a physical layer technique, no changes need to be made
at the higher layers, nor is any data bandwidth taken to ex-
plicitly signal any authentication information. In contrast,
typical authentication mechanisms time multiplex authenti-
cation tags with data.
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