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Game Theoretic Modeling of Malicious Users in
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Abstract—If a network is to operate successfully, its users
need to collaborate. Collaboration takes the form of following
a network protocol and involves some resource expenditure on
the part of the user. Therefore, users cannot automatically be
expected to follow the protocol if they are not forced to. The
situation is exacerbated by the presence of malicious users whose
objective is to damage the network and increase the cost incurred
by the legitimate users. The legitimate users are, at least initially,
unaware of the type (legitimate or malicious) of the other users.
Our contribution is a model for the strategic interaction of

legitimate and malicious users as described above. The model is
based on repeated graphical games with incomplete information.
We describe and analyze two specific instantiations, aiming to
demonstrate the model’s expressive power and tractability. The
main benefit we see from using game theory for this essentially
security problem is the ability to bound the damage caused by
the malicious users.

Index Terms—collaborative networks, incomplete information,
repeated games, security

I. INTRODUCTION

TODAY’S technology has enabled individuals to commu-
nicate and collaborate with one another to a much greater

extent than ever before. Of course, successful collaboration
needs user resources to be dedicated, whether these are the
(human) user’s time and effort, or a device’s battery, or an in-
frastructure’s bandwidth. Even assuming that all collaborating
parties willingly share these resources, malicious individuals
or organizations have much to gain from exploiting the will-
ingness of others to collaborate. To aggravate things, malicious
entities are usually much more motivated, knowledgeable, and
sophisticated than the average legitimate user. Any strategy,
best practice, or protection used by the legitimate users is
sooner or later compromised by the malicious ones, and
exploited.

Manuscript received August 15, 2007; revised March 10, 2008. This paper
was presented in part at the IEEE/CreateNet International Conference on
Security and Privacy in Communication Networks, Baltimore, MD, USA,
August 2006, and in part at the IEEE International Conference on Computer
Communications, Anchorage, AK, USA, May 2007. This research was
supported through collaborative participation in the Communications and
Networks Consortium sponsored by the U.S. Army Research Laboratory un-
der the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2-0011. The research was also supported by the U.S. Army
Research Office under grant No DAAD19-01-1-0494.
George Theodorakopoulos was with the Institute for Systems Research

and the Department of Electrical and Computer Engineering, University of
Maryland College Park, USA. He is now with the School of Computer and
Communication Sciences at the Ecole Polytechnique Fédérale de Lausanne,
Switzerland (e-mail: george.theodorakopoulos@epfl.ch).
John S. Baras is with the Institute for Systems Research and the Department

of Electrical and Computer Engineering, University of Maryland College Park,
USA (e-mail: baras@isr.umd.edu).
Digital Object Identifier 10.1109/JSAC.2008.080928.

The ideal thing would be to provide a recommendation to
the legitimate users that would at the same time be simple, and
give provable guarantees against any malicious user strategy.
We believe that game theory is a promising model to examine
such situations. In this paper, we make a first attempt at a
model that incorporates these characteristics.

We model networks consisting of users who try to maximize
a personal benefit through their participation in the network.
Associated with the network, there is a protocol that describes
the available actions that each user has at his disposal. The
protocol also defines a behavior that is expected of each user;
this behavior involves some cost on the user’s part. However,
there is no centralized control of the users’ decisions, so
each user is free to choose his actions in a selfish or even
malicious way. If we call “collaboration” the act of following
the protocol, we can use the term “collaborative networks” to
collectively address networks where these circumstances hold.
Examples of such networks are wireless ad hoc networks,
peer-to-peer networks, but also social networks or online
marketplace communities, as long as there is a protocol or a
pre-specified behavior expected from the users, which cannot
be enforced and costs something to adhere to.

Each user receives a payoff that reflects the benefit he
derives from being part of the network, typically in terms
of the services that the rest of the network provides to him
through the operation of the protocol. In general, the level
of service that a user receives may depend on many or all
other users of the network; we model these dependencies as a
graphical game. For example, if the protocol is about packet
forwarding, then all users on the path from the source to the
destination can affect the level of the service. However, the
users may not want to follow the protocol, since that will
entail resource consumption of some sort, such as energy
consumption in the case of packet transmission in wireless
networks. The cost associated with following the protocol is
also reflected in the payoff, as a decrease in the derived benefit.

The users can have varying degrees of selfishness. Selfish-
ness can be quantified as the level of service that a user desires
from the network before he decides to follow the protocol
himself. In the examples that we will analyze later, we will
only consider users who are equally selfish, but we will point
out how different degrees of selfishness can be incorporated.
Nevertheless, we will make an important distinction between
selfish users, who care about the level of service they receive,
and malicious users. More precisely, we model malicious users
as users whose payoff does not depend at all on the level
of service that they receive. Our choice is to model them as
playing a zero-sum game against legitimate players, i.e., their
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objective is directly opposite of whatever the objective of the
legitimate users is.
A crucial modeling decision is to make the payoff matrix

of each user known only to himself. This reflects the lack
of knowledge that users have for each other in a network
without centralized control. To enhance the capabilities of the
malicious users, we will assume that they know the payoffs
of everybody. That is, they know who is malicious and who
is only selfish. This is a game of incomplete information, and
the information is asymmetric, since malicious users know the
payoffs of everyone, but each selfish user only knows his own
payoff.
When solving the models we do not attempt to find the

set of all equilibria. Instead, we assume that the legitimate
users follow simple processes that do not place excessive
demands on users’ hardware in terms of memory or computing
power. So, we only look for equilibria that arise through
these processes. Also, the malicious users know what simple
processes the legitimate users will follow, and take this knowl-
edge into account when choosing a strategy to maximize their
payoff. This extra knowledge gives the game the flavor of a
Stackelberg game, with the Bad users being leaders and the
Good users followers, but the Good user strategies are limited
so we choose not to cast the game as a Stackelberg one.
Since the network operates for a long time, the users choose

actions repeatedly. We assume that time is discrete, and users
choose their actions simultaneously in rounds. At each round,
users remember the past history of their own actions and of
the actions of the users that affect their payoff. They can
use this history to help them choose their action in the next
round. Given the incomplete information assumption, repeated
interactions can help increase the knowledge of non-malicious
users.

II. FORMAL DESCRIPTION OF THE MODEL

The network is modeled as an undirected graph G = (V, L),
where each node in V corresponds to one user. An edge
(i, j) ∈ L means that there is a communication link between
the users corresponding to nodes i and j. The set of one-hop
neighbors of user i is denoted by Ni, Ni = {j ∈ V |(i, j) ∈
L}.
Since the graph is undirected, the neighbor relationship is

symmetric: j ∈ Ni ⇔ i ∈ Nj . The assumption for an undi-
rected graph can be dropped, in order to model asymmetric
links, but we believe the extension to be straightforward. We
denote the set of Bad users by VB , and the set of Good users
by VG. It holds that VB ∩VG = ∅ and VB ∪VG = V . The type
ti ∈ {G, B} of a user i denotes whether he is Good or Bad.
The Good users correspond to the selfish users mentioned in
the Introduction.
The graph of the game is identified with the graph of the

network. Therefore, the payoff of a user is only affected
by his one-hop network neighbors, whose actions are also
directly observable. As mentioned in the introduction, payoff
dependencies on the actions of remote nodes can also be
modeled. But that would require a mechanism for each user to
learn which user (neighbor in the game graph) played which
action. Since those users would be more than one hop away, it

seems that the existence of such a mechanism is a rather strong
assumption, especially considering that there are malicious
users in the network who would try to interfere.
Users have a choice between two actions: C (for Cooper-

ate), and D (for Defect). When all users choose their actions,
each user receives a payoff that depends on his own and his
neighbors’ actions, and his own and his neighbors’ types.
Observe that each user is playing the same action against

all neighbors. If the user can play different actions against
different neighbors, then the game on each link is decoupled
from all the other games. Each of these games can be solved
independently using our framework, only the graph will be
a two node, one edge graph. Which user model is more
appropriate depends on the granularity of the user’s control
over his hardware. For instance, if all the user can do is
switch his wireless connection ON or OFF, then he should
be modeled as only being able to play the same action against
all neighbors.
The payoff is decomposed as a sum of payoffs, one term for

each adjacent link. Each term of the sum depends on the user’s
own action and type, and the action of his neighbor along that
link. It may also depend on the type of his neighbor along
that link, but in that case the separate terms of the sum are
not revealed to him. Only the total payoff (sum of all link
payoffs) is revealed to the user, otherwise he would be able
to discover immediately the types of his neighbors.
The payoff of user i is denoted by Ri(ai|ti), when i’s action

is ai and i’s type is ti. We extend this notation to denote by
Ri(aiaj |titj) the payoff for i when j is a neighbor of i and
j’s action and type are aj and tj . So, the decomposition of
i’s payoff along each adjacent link can be written as

Ri(ai|ti) =
∑
j∈Ni

Ri(aiaj |titj), (1)

or, when i’s payoff does not depend on the types of his
neighbors,

Ri(ai|ti) =
∑
j∈Ni

Ri(aiaj |ti·). (2)

We assume there are no links between any two Bad users.
The Bad users are supposed to be able to communicate and
coordinate perfectly; hence, there is no need to restrict their
interaction by modeling it as a game theoretic interaction.
Moreover, the Bad users are assumed to know exactly both
the topology and the type of each user in the network. Good
users only know their local topology, i.e., how many neighbors
they have and what each one of them plays, but not their types.
These assumptions enhance the power of the Bad users, as is
standard practice in security research.
Since there are no links between Bad users, the two games

that can appear are Good versus Good, and Good versus Bad.
The payoff of a Bad user is the opposite of the payoff of
the Good user. That is, the Good versus Bad game is a zero-
sum game. Also, the Good versus Good game obviously needs
to be symmetric. These two observations are encoded in the
payoffs shown in Fig. 1.
The game is played repeatedly with an infinite horizon, and

time proceeds in rounds t = 1, 2, 3, . . .. The action and payoff
of user i at round t are denoted with superscript t: at

i and Rt
i .

Each Good user i remembers his own payoff and action at
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C D
C r1,−r1 r2,−r2

D r3,−r3 r4,−r4

C D
C s1, s1 s2, s3

D s3, s2 s4, s4

Fig. 1. The two games that can take place on a link: Good versus Bad and
Good versus Good. The payoffs reflect that the Good versus Bad game is
zero-sum, and the Good versus Good game is symmetric. The row player is
assumed to be Good in both cases.

each past round, and the actions of his neighbors at each past
round. The n-round history available to user i is defined to be
the collection of all this information from round 1 up to and
including round n:

H1...n
i = {Rt

i} ∪ {at
j, j ∈ Ni ∪ {i}}, t = 1, . . . , n. (3)

User i then uses the n-round history to decide what his
action will be in round n + 1. User i’s strategy is a function
that, for each n-round history and for all n, determines the
probability with which user i will play C. The history is used
to form estimates about actions expected of i’s neighbors at
round n + 1. The estimates can either be directly about the
neighbors’ actions, or indirectly through first estimating their
types and then the probability that, given their type, they will
play a certain action.
The quantity Rn+1

i (C) is the expected round n + 1 payoff
for user i, if he plays C at round n + 1.

Rn+1
i (C) =∑

j∈Ni

Ri(CC|GB) · Pr(an+1
j = C|tj = B) · Pr(tj = B)

+
∑
j∈Ni

Ri(CC|GG) · Pr(an+1
j = C|tj = G) · Pr(tj = G)

+
∑
j∈Ni

Ri(CD|GB) · Pr(an+1
j = D|tj = B) · Pr(tj = B)

+
∑
j∈Ni

Ri(CD|GG) · Pr(an+1
j = D|tj = G) · Pr(tj = G)

(4)

We can similarly calculate Rn+1
i (D). After all players

choose their actions, they receive their payoffs and observe
their neighbors’ actions. They incorporate that information in
their history, and update the probability estimates accordingly.
The optimal strategy maximizes the game payoff Ri, which
is a function of the per-round payoffs Rn

i , n = 1 . . .∞.
In this paper, we consider the limit-of-means payoff Ri =
limT→∞ 1

T

∑T
n=1 Rn

i , and the δ-discounted payoff Ri =
(1 − δ)

∑∞
n=1 δn−1Rn

i .
In Sections IV and V, we will give specifics of two

models that instantiate the general model we just described.
The difference will be, first and foremost, in the way that
Good users treat collaboration with Bad users. In Section IV,
collaboration with Bad users will be identical to collaboration
with Good ones, that is, the costs and benefits will be the
same in both cases. In Section V, the assumption will be that a
Good user prefers to collaborate with Good users, but receives
a negative payoff when collaborating with Bad users. So, he
will be able to detect that Bad users are among his neighbors,
but he will not immediately know which are the Bad ones.

There, the interest will be in how soon the Good user discovers
which the Bad neighbors are. Additionally, upon discovering
a Bad user, a Good user will be able to break the link that
joins them, thus altering the game graph.

III. RELATED WORK

Repeated games with incomplete information were intro-
duced in [1]. The 2-person case is also discussed in [2], and,
at greater depth, in [3].
The most relevant piece of game theoretic literature is [4].

There, the authors deal with the case of tree games with
incomplete information, i.e., the graph of the game is a tree,
the players have private information, but there is no history
(the game is not repeated). They provide algorithms for finding
approximate Bayes-Nash equilibria. Their algorithm does not
generalize to non-tree graphs in an obvious way.
In the literature for inducing cooperation among network

users, mostly selfish users have been studied, where incentives
are provided for users to cooperate [5], [6]. However, they are
modeling Malicious users as “Never Cooperative”, without
any further sophistication, since their main focus was dis-
couraging selfish free-riders. There is no degree of selfishness
that can approximate the behavior of our Malicious users. For
example, in [7] the authors assume that the payoff function
of a user is non-decreasing in the throughput experienced by
the user. Our Bad users do not care about their data being
transmitted. For the same reason, the model proposed in [8]
does not apply (as the authors themselves point out).
In other related work [9] a modified version of Generous

Tit for Tat is used (for an early famous paper in the history of
Tit for Tat see [10]), but they have no notion of topology and,
consequently, of neighborhoods. In their setting, each user is
comparing his own frequency of cooperation to the aggregate
frequency of cooperation of the rest of the network. In [11],
a scheme is proposed for punishing users whose frequency
of cooperation is below the one dictated by a certain Nash
equilibrium. Aimed particularly against free-riding in wireless
networks is [12], and also [13].
To the best of our knowledge, there has been no game

theoretic modeling of malicious users as we describe them
here. Malicious users are modeled in [14] in a game theoretic
setting, but in a different way. The game they are considering
is a virus inoculation game, in which selfish users decide
whether to pay the cost for installing anti-virus software (in-
oculation), or not pay and risk getting infected. The malicious
users declare that they have been inoculated, when in fact
they have not, so as to mislead the selfish ones. After the
selfish users have made their decisions, the attacker chooses
an uninoculated user, uniformly at random, and infects him.
The infection propagates to all unprotected users that can be
reached from the initially infected users on paths consisting
of unprotected users (the malicious ones are equivalent to
unprotected). One major difference is that in this model the
selfish users are assumed to know the topology of the network
(a grid, in particular), whereas in our model they only know
their local neighborhood topology. Another difference is that
the notion of Byzantine Nash Equilibrium that they consider
is restricted to the strategies of the selfish users alone.
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C D
C N − E, E − N −E, E
D 0, 0 0, 0

C D
C N − E, N − E −E, 0
D 0,−E 0, 0

Fig. 2. The two games that can take place on a link: Good versus Bad and
Good versus Good.

IV. COLLABORATION IN THE FACE OF MALICE

There are two salient points introduced and used in this
instantiation of the general model. First, Good users do not
care if they cooperate with other Good users or with Bad users.
They get the same costs and benefits in either case. Second,
the Good users’ indifference to the other players’ type implies
that Good users only care about estimating their neighbors’
potential future actions, and not their type. A preliminary
analysis of this model appeared in [15].
The main conclusion is that the higher the cost-to-benefit

ratio for the Good users, the lower the achievable payoff for
the Bad ones. Intuitively, a high cost-to-benefit ratio makes the
Good users more demanding against their neighbors (Good or
Bad, indifferently), so the Bad users cannot get away with
very “bad” behavior.

A. Malicious and Legitimate User Model

For the purposes of this section, we define a game with
the payoffs shown in table form in Fig. 2 for the two pairs
of types that can arise (Good versus Good, and Good versus
Bad). We explain the payoffs as follows: In the example of
a wireless network, a C means that a user makes himself
available for communication, that is, forwarding traffic of other
nodes through himself. A link becomes active (i.e., data is
exchanged over it) only when the users on both endpoints of
the link cooperate, that is, play C. Playing C is in line with
what Good users want to achieve – good network operation
– but it costs energy, since it means receiving and forwarding
data. So, when both players on a link play C, the Good
player (or both players, if they are both Good) receives N
(for Network) minus E (for Energy) for a total of N − E.
We assume N > E > 0, otherwise no player would have an
incentive to play C. On the other hand, when a Good player
plays C and the other player D, then the Good player only
wastes his energy since the other endpoint is not receiving or
forwarding any data. For this reason, the payoff is only −E.
In general, the values of E and N provide a way to quantify
the selfishness of Good users, if we allow these values to vary
across users. That is, values Ei and N i, instead of E and
N , would signify user i’s personal cost of spending energy,
and his personal benefit from activating an adjacent link. The
larger the ratio Ei

Ni , the more selfish the user.
The Bad user’s payoff is always the opposite of the Good

user’s payoff. In particular, we do not assume any energy
expenditure when the Bad users play C.
In a peer-to-peer network, a C would mean uploading high

quality content (as well as, of course, downloading), and a D

would be the opposite (e.g. only downloading). The benefit
of cooperation is the increased total availability of files. The
cost of cooperation E could be, for instance, the hassle and
possible expense associated with continuing to upload after
one’s download is over. In a general social network, edges
would correspond to social interactions, a C would mean
cooperating with one’s neighbors toward a socially desirable
objective (like cleaning the snow from the sidewalk in front
of one’s house), and a D would mean the opposite of a C.
The cost E and benefit N are also obvious here.
As we have discussed, we allow the Bad users to have

all information about the past (their own moves, as well as
everybody else’s moves since the first round). On the other
hand, the Good users follow a fictitious play process [16],
that is, they assume that each of their neighbors chooses his
actions independently at each round and identically distributed
according to a probability distribution with unknown param-
eters (Bernoulli in this case, since there are only two actions
available: C and D). So, at each round they are choosing the
action that maximizes their payoff given the estimates they
have for each of their neighbors’ actions. For example, if
player i has observed that player j has played c Cs and d
Ds in the first c + d rounds, then i assumes that in round
t = c+ d+1, j will play C with probability c

c+d and D with
probability d

c+d . We denote by qt
j the estimated probability that

j will play C in round t + 1, which is based on j’s actions in
rounds 1, . . . , t.
We choose the limit-of-means payoff as our repeated game

payoff function:

Ri = lim
T→∞

1
T

T∑
t=1

Rt
i. (5)

Let us now calculate the expected payoff for each of the
two actions of a Good user. We assume that t rounds have
been completed, and Good user i is contemplating his move
in round t + 1. The following equation is an instantiation of
the generic payoff equation (4) for the specific payoffs shown
in Fig. 2.

Rt+1
i (C|G) =

∑
j∈Ni

{
qt
jRi(CC|G) + (1 − qt

j)Ri(CD|G)
}

= N ·
∑
j∈Ni

qt
j − |Ni| · E

Rt+1
i (D|G) = 0.

(6)

So, in order to decide what to play, user i has to compare the
expected payoffs that the available actions will bring. Action
C will be chosen if and only if Ri(C|G) ≥ Ri(D|G), that is,
if and only if ∑

j∈Ni

qt
j ≥ |Ni|

E

N
. (7)

We can see why the ratio E
N can encode the selfishness of a

user. It is the empirical frequency of cooperation per neighbor
that the user expects to see before cooperating himself. The
simplicity of (7) makes the implementation of the Good user
behavior particularly easy, since they only need to keep track
of one number for each neighbor, as opposed to the whole
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history of actions observed. It remains to see what the Bad
users can do against this strategy. On the one hand, perhaps
they can exploit its simplicity to gain the upper hand against
the Good users. On the other hand, the fact that the Bad users
have full knowledge of the history and can achieve perfect
coordination in their actions may not be very useful here. The
reason is that Good users only care about the frequencies of
the actions that they observe, and the Bad users may achieve
nothing by more elaborate strategies.

B. Searching for a Nash Equilibrium

In game theory, the main solution concept is the Nash
Equilibrium. In our case, we have already restricted the Good
players’ strategies to fictitious play, so the Nash Equilibrium
will be restricted to be obtainable through fictitious play. More
formally, the Nash Equilibrium in our case would be a vector
�s ∈ [0, 1]|V |, where si is the strategy of user i, i.e., the function
of the n-round history that determines the probability with
which user i plays C at round n+1. What a Good user plays
will be determined by the choice of strategies by all the Bad
users. Given a choice of strategies �sB by the Bad users, the
responses of the Good users are determined by the fictitious
play process. It is then easy to determine the payoffs for every
user (Good or Bad).
In general, a change in the strategy of a Bad player i will

affect the payoffs of other Bad players, too, since it will
change the optimal responses of Good users that could, e.g., be
common neighbors of i and other Bad users. So, the definition
of the Nash Equilibrium we gave earlier could be expanded
to regard the Bad players as a team that aims to maximize
the sum of their payoffs, rather than each Bad user trying
to maximize his own individual payoff. In Section IV-C, we
will see what happens in the “Uncoupled Configurations”:
the set of configurations (i.e., values for E and N , graphs,
and associated Good/Bad node placements) where local payoff
maximization by each Bad user is equivalent to maximization
of the sum of all the Bad users’ payoffs. In Section IV-D we
will examine in an example exactly how a general configura-
tion differs, and hint at a heuristic solution.

C. The Uncoupled Configurations

Let us start with the case of a single Bad player in the whole
network. Since no other Bad players exist, the choice of the
Bad user will only affect his own payoff. We will see what he
has to do in order to maximize his payoff in a tree topology
where the Bad player is at the root of the tree.
Assume that the Bad user – labeled user 0 – has k neighbors,

labeled 1, . . . , k. We also assume that all the Good users will
start by playing C, and will only change toD if they are forced
by the Bad user. Applying (7) for each neighbor, we see that
each expects to see a different sum of empirical frequencies
from his own neighbors in order to keep playing C. User i
expects to see a sum of empirical frequencies that is at least
E
N |Ni|. Since all of i’s neighbors except user 0 are Good, they
will at least start by playing C, so user i will see a sum of
frequencies equal to |Ni|−1 from them. So, in order to make
user i play C at round t+1, the Bad user should, in the first t

rounds, play C with a large enough empirical frequency. We
call the minimum such empirical frequency the threshold ti:

Definition 1. The threshold ti of a Good user i is the empirical
frequency of Cs that his Bad neighbor needs to play, so that
i keeps playing C. We assume that all the Good neighbors of
i play C.

ti = max
{

E

N
|Ni| − (|Ni| − 1), 0

}
(8)

Observe that ti is decreasing as |Ni| increases, since E <
N . Also, ti increases as E increases towards N , that is, as
the selfishness of user i grows.
Without loss of generality, we assume that the Bad user’s

neighbors are labeled in increasing order of ti. So, t1 < t2 <
. . . < tk. We will now describe a strategy that provably
achieves optimal limit-of-means payoff for the Bad user.
The proof proceeds in two steps. First, we assume the Bad
user only has one Good neighbor, whose threshold is θ. We
describe and prove the optimality of a strategy as a function
of θ in this case, and then show how it changes when the Bad
user has more than one Good neighbor.
1) One Bad user with one Good neighbor: The Bad user

can choose any strategy s he wants, where the space of all
strategies is the set of infinite-length vectors of Cs and Ds:
S = {C, D}∞. In choosing a strategy, his objective is to
maximize his limit-of-means payoff, knowing that the Good
user will play C in the first round, and then play according to
fictitious play (FP). Strategies can be constructed that result in
non-convergent payoffs, but we do not concern ourselves with
them. Let θ be the threshold to be exceeded by the Bad user’s
empirical frequency of Cs qt

0 =
∑t

s=1 1{as
0=C} in order for

the Good user to play C. Since θ and qt
0 are known to the Bad

user, he can predict after the end of round t what the Good
user will play at round t + 1.
The limit-of-means payoff for the Bad user is:

R0 = lim
T→∞

1
T

T∑
t=1

Rt
0 (9)

= lim
T→∞

1
T

T∑
t=1

(
E − N1{at

0=C}
)

1{qt−1
0 ≥θ}.

We now prove that no strategy can achieve a payoff higher
than (1− θ)E. Then we will describe a strategy that achieves
this payoff, and is, as a consequence, optimal. So we can
conclude that the more selfish the Good user is, the lower the
maximum payoff for the Bad user. Selfishness makes the Good
users more demanding, and more likely to stop participating
in the network, which would make the payoff of the Bad user
0.

Theorem 1. For any strategy, R0 ≤ (1 − θ)E.

Proof: We will assume R0 > (1 − θ)E, and reach a
contradiction:

R0 > (1 − θ)E ⇒

⇒ lim
T→∞

1
T

T∑
t=1

(
1 − N

E
1{at

0=C}

)
1{qt−1

0 ≥θ} > 1 − θ
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⇒ lim
T→∞

1
T

T∑
t=1

1{at
0=C} < θ (10)

⇒ lim
T→∞

qT
0 < θ

⇒∃T0 such that ∀T > T0 : qT
0 < θ

⇒∃T0 such that ∀T > T0 : Good plays D at T + 1

⇒∃T0 such that ∀T > T0 : RT+1
0 = 0

⇒R0 = 0,

where we have used the facts that N ≥ E, and 1{·} ≤ 1. So
we have reached a contradiction, which proves the theorem.

Theorem 2. The strategy s∗(θ):

at
0 =

⎧⎪⎨
⎪⎩

D t = 1,

C t > 1, and qt−1
0 < θ,

D t > 1, and qt−1
0 ≥ θ

achieves payoff R0 = (1 − θ)E.

Proof: The first step is proving that the empirical fre-
quency of Cs of this strategy converges to θ, so the empirical
frequency of Ds converges to 1 − θ.
We will omit the subscript 0 from qt

0 for convenience. We
partition the set of all time instants (rounds) into four subsets:

1) T1 = {t|qt ≥ θ, at+1 = D, qt+1 ≥ θ}
2) T2 = {t|qt ≥ θ, at+1 = D, qt+1 < θ}
3) T3 = {t|qt < θ, at+1 = C, qt+1 ≥ θ}
4) T4 = {t|qt < θ, at+1 = C, qt+1 < θ}

Lemma 1. The set T2∪T3 has an infinite number of elements.
Also, sup T2 ∪ T3 = ∞.

Proof: Assume |T2 ∪ T3| < ∞. Then, ∃K <
∞ such that (∀t > K : qt < θ) or (∀t > K : qt ≥ θ).
But, according to the strategy, qt ≥ θ ⇒ at+1 = D ⇒
∃K ′ such that qK′ < θ, and similarly for qt < θ. So we have
reached a contradiction. The second part of the lemma follows
immediately, since the set T2 ∪ T3 is a subset of the positive
integers, and as such has no finite accumulating points.

Lemma 2. Along the infinite subsequence of time instants in
T2∪T3, the empirical frequency of Cs under the strategy s∗(θ)
converges to θ.

Proof:

t ∈ T2 ⇒ qt+1 < θ ≤ qt

⇒ tqt

t + 1
= qt+1 < θ ≤ qt <

tqt + 1
t + 1

(11)

t ∈ T3 ⇒ qt < θ ≤ qt+1

⇒ tqt

t + 1
< qt < θ ≤ qt+1 =

tqt + 1
t + 1

(12)

So, t ∈ T2 ∪ T3 ⇒ tqt

t+1 ≤ θ ≤ tqt+1
t+1 . Subtracting qt from the

three parts of the inequality, and recalling that qt ≤ 1, we get
that − 1

t+1 ≤ θ − qt ≤ 1
t+1 . Letting t ∈ T2 ∪ T3 go to infinity

(which we can do because of Lemma 1), we reach the desired
conclusion.

Lemma 3. The empirical frequency of Cs under the strategy
s∗(θ) converges to θ: limt→∞ qt = θ.

Proof: From Lemma 2, limt→∞, t∈T2∪T3 qt = θ. By the
definition of qt, and of the sets T1 and T4, the distance |qt−θ|
is decreased by actions at

0 taken whenever t ∈ T1∪T4. Given
ε > 0, we pick K(ε) = min{t|t ∈ T2 ∪ T3 ∧ 1

t+1 < ε}. Then,
∀t > K(ε) : |qt − θ| < ε, so limt→∞ ft = θ.
Having proven that qt → θ, it follows that the empirical

frequency of the Ds that the Bad player plays converges to
1−θ. But, by construction of the strategy s∗(θ), eachD brings
a round-payoff of E and each C brings a round-payoff of 0,
so from (9) the game-payoff of s∗(θ) is (1 − θ)E.

Corollary 1. The strategy s∗(θ) is optimal for the Bad user.

Proof: Follows from Theorems 1 and 2.
The description of strategy s∗(θ) is equivalent to “Play C

when the Good user will play D, and play D when the Good
user will play C”. Then, it follows directly that the frequency
of the Cs played by the Good user converges to 1 − θ, and
the payoff that the Good user receives from the Bad user is
(1 − θ) · (−E).
2) One Bad user with many Good neighbors: Each Good

neighbor i, 1 ≤ i ≤ k compares qt
0 with a different threshold

ti, 1 ≤ i ≤ k before deciding whether to cooperate at round
t + 1. The Bad user will choose the strategy s∗(t∗i ) that gives
him the highest limit-of-means payoff. In particular, out of
the k Good neighbors, the i∗ − 1 with lower thresholds than
t∗i will play always C, the k − i∗ with higher thresholds will
play always D, and the i∗th neighbor will behave as the single
Good neighbor in the preceding section. So, the payoff for the
Bad user will be:

R0(s∗(t∗i )|B) = (i∗ − 1) · {t∗i (E − N) + (1 − t∗i )E}
+ (k − i∗) · {t∗i · 0 + (1 − t∗i ) · 0}
+ (1 − t∗i )E

= (i∗ − 1)(E − Nt∗i ) + (1 − t∗i )E

(13)

Again, we see that the more selfish the Good users (higher
thresholds ti), the lower the payoff for the Bad user.
Since the thresholds ti, 1 ≤ i ≤ k are known to the Bad

user, he can pick the value for i∗ that maximizes his payoff.
He then follows s∗(t∗i ) augmented with an initial stage: Play
nC initial Cs and then nD Ds, so that ti∗−1 < nC

nC+nD
<

t∗i . In this way, the Bad user makes sure that all Good users
with thresholds below t∗i play C forever. This initial stage
is of finite duration so it does not affect the game payoff
computed above. After the initial stage, the Bad user reverts
to the strategy s∗(t∗i ). The optimality proof of the strategy then
follows the one in the preceding section. The intuition behind
the proof is that any strategy with a higher payoff would have
to have an empirical frequency of Cs lower than the chosen
optimal threshold, thus making more Good users start playing
D, thus reducing the (claimed) higher payoff.
When the Bad user plays the augmented s∗(t∗i ) strategy, as

we have said i∗−1 of his neighbors will play C, k−i∗ will play
D, and one will play both C andD. The ones who play at least
someD may cause their own neighbors to start playingD, and
so on. However, the Ds cannot, by propagating, influence the
other Good neighbors of the Bad user: That is a consequence
of the tree topology that we have assumed, since the only
path that joins two one-hop neighbors of the Bad user, goes
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2 E
N
− 1 2 E

N
− 1

Fig. 3. Example to contrast the uncoupled with the general configuration.
Shown next to each node is its threshold. The black nodes are the Bad
users. Depending on the value of E

N
, the Bad users may or may not need to

coordinate to maximize the sum of their payoffs. In particular, if E
N

> 2
3
,

they need to coordinate.

through the Bad user. So, tree topologies with a single Bad
node are uncoupled configurations. What happens when there
are multiple Bad users in a general topology? Can we have
an uncoupled configuration then?
If so, the Nash equilibrium consists of the Bad users playing

their augmented s∗(t∗i ) strategy for a suitable t∗i each, and
the Good users following fictitious play as they have been
constrained to do. It is then straightforward to compute the
payoffs of the Good and Bad users. In what follows, we will
see these considerations coming into play in the more general
case.

D. Example and General Configuration

We now examine a specific example, shown in Fig. 3, to
see the difference between the uncoupled and the general
configurations. There are two Bad users, labeled B1 and
B2, and three Good users. Shown in the picture are the
thresholds of the Good users. If E

N ≤ 1
2 , the thresholds are

non-positive, so both Bad users can play D forever without
causing the Good users ever to play D. That would be the
payoff maximizing strategy for the Bad users, given that the
Good users play according to fictitious play. The payoff for
each Bad user would be E, the payoff for the Good user in
the middle would be 2(N −E), and the payoff for each of the
other two Good users would be N−2E. Since the Bad players
optimize separately, but the resulting strategy also optimizes
the sum of their payoffs, this configuration is an uncoupled
one.
For any values of E

N > 1
2 , the strategy maximizing each

Bad user’s payoff separately is s∗(2 E
N − 1). That strategy

causes their two Good neighbors to play C with frequency
1 − (2 E

N − 1) = 2 − 2 E
N . So the Good user in the middle

sees a total frequency of 4 − 4 E
N , which needs to be at least

2 E
N for him to cooperate. So, as long as E

N ≤ 2
3 , he will

play C forever, and the thresholds of the other two Good
users will hold. The payoffs will be 2(1− E

N )E for each Bad
user, and accordingly for the Good users. So we are still in
an uncoupled configuration. However, if E

N > 2
3 , then the

Good user in the middle will not cooperate, so the other two
Good users will not see the total empirical frequency that they
require. As a consequence, they will all play D, and the Bad
users’ payoff will be reduced to zero. So, the Bad users can
no longer optimize separately.
A heuristic solution would then be for one of the Bad users

to make a “sacrifice” and choose a strategy that gives him a
payoff that is lower than the one he would get if he were alone
in the network. The rationale would be that the other Bad user
would gain in payoff enough to cover the difference lost, and
even more.

V. DETECTING MALICIOUS USERS

In this part, the general scenario that we want to capture is
the following: Good users want to cooperate with other Good
users, but not with Bad users. Bad users, on the other hand,
want to cooperate with Good users. The Good are unaware of
who is Good and who is Bad, but since the game is played
repeatedly they can gradually detect the Bad ones. We will
explore strategies that the Good users can follow to detect
and isolate the Bad ones.
This scenario applies to intruder detection in the following

sense: Assume there is a pre-existing mechanism that detects
the existence of malicious users in a user’s neighborhood,
but cannot identify exactly which the malicious users are.
They may be eavesdroppers who monitor traffic (through
cooperating in the network operation, i.e., playing C) and try
to learn and then leak sensitive information. The mechanism
is then supposed to be able to detect the leak. As a result, the
existence of malicious users would be deduced, but not their
identity. Alternatively, they may inject malformed packets in
the network (worms, etc.), which cannot be traced back to
them.
Note that we will not be assuming collusion among the Bad

users, although this can be an extension of our model. Also,
our model for the Bad users means that they benefit from
cooperating for as long as possible without getting caught.
So, we do not cover situations where a single cooperation
between a Bad and a Good user is enough, e.g., to destroy the
whole network.
Our main conclusion is that the optimal policy for the Bad

users is to always cooperate, aiming to maximize their short-
term payoff, even though this may result in a quick detection.
The intuition is that, even when the Bad user is hiding, some
of the Good users are eliminated as potential candidates for
being Bad. As a consequence, the Bad users still come closer
to being detected, but do not gain any payoff when hiding.
Again, playing C corresponds to making oneself available

for communication (e.g. sending/receiving data). Playing D
corresponds to shutting down all communications to and from
the user. After all users have chosen an action, each user learns
his neighbors’ actions (i.e. which neighbor played which
action), and his own payoff for that round, which depends
only on his own action and these of his neighbors. Note that
a user’s payoff is known only to him, and is never reported to
others. If a Good user is able to tell that a particular neighbor
of his is Bad, then he can sever the link that joins them, so as
not to be affected by that neighbor’s actions in the future. In
Section V-A, we will discuss how Good users can detect Bad
ones.
At round t, the payoff Rt

i of a Good user i who played C
equals the number of Good neighbors who played C minus
the number of Bad neighbors who played C. This reflects the
preference of Good nodes to cooperate with other Good nodes
and not with Bad ones. A Good user who played D receives
a zero payoff regardless of the actions of the neighbors. This
means that he risks no losses, but he has no gain, he learns
nothing about his neighbors, and his neighbors learn nothing
about him. The payoff of a Bad user who plays C is equal to
the number of his Good neighbors who played C (remember
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C D
C −1, +1 0, 0
D 0, 0 0, 0

C D
C +1, +1 0, 0
D 0, 0 0, 0

Fig. 4. The two games that can take place on a link: Good versus Bad and
Good versus Good.

that a Bad user has only Good neighbors). So, it is the opposite
of Rt

i . We can translate the above considerations to payoffs,
shown in Fig. 4 for the two possible games (Good versus Good
and Good versus Bad).

A. Analysis

To simplify the analysis, we will concentrate on a star
topology network, where the central node is a Good user,
and his neighbors are N Good users and 1 Bad. We assume
that the central node knows that he has exactly one Bad
neighbor, but he does not know who that is. We will see that
the assumption that only one Bad user exists can be removed
without significant conceptual change in the analysis.
Note from the previous discussion that Good users only

learn the total payoff they receive after each round, and not
the per-link payoffs they receive due to their interactions with
individual neighbors. So, they cannot immediately tell which
of their neighbors are Good and which are Bad, but they do
get some information about the types of their neighbors. In
what follows, we will describe strategies for the Good and
Bad players that form a Nash equilibrium. For the most part,
we will be seeing things either from the central Good user’s
point of view, or from the point of view of the Bad user. Since
in a general network all Good nodes will see themselves in the
role of a central node in a (local) star topology, we are looking
for strategies that are symmetrical with respect to Good nodes.
That is, we want all the Good nodes to follow the same rules
when choosing what to play.
Assume that the central Good user i has memory of the past

history (own and neighbor moves, as well as received payoffs).
Let CN t

i (resp. DN t
i ) be the subset of i’s neighbors that play

C (resp. D) at round t. We assume that i plays C at round t,
so i’s payoff at round t is |CN t

i | if the Bad user played D,
or |CN t

i | − 2 if the Bad user played C (Remember that a C
from a Good user gives +1, whereas from a Bad user it gives
−1.). So, just by looking at his payoff, the central Good user
i can deduce whether the Bad user played C or D at round
t. The Bad user is then known to be either in the set CN t

i or
in DN t

i . Without loss of generality, let’s assume that the Bad
user played C.
In the next round (t + 1), if the Bad user plays C again,

then i can deduce that he is in the intersection CN t
i ∩CN t+1

i .
If he plays D, then he is in CN t

i ∩DN t+1
i . This sequence of

sets (the sequence of hiding sets, the initial of which is Ni)
is non-increasing, but the Bad user will only be detected if
the sequence converges to a singleton set. If the behavior of
the Good users is deterministic, then the Bad user can imitate
a Good user, and he will never be discovered. However, if
the Good nodes choose their actions in a randomized manner,
they are no longer predictable.

We will look at the simplest possible randomization: each
Good user plays C with probability p independently at each
round. We will use the δ-discounted payoff: Given an infinite
sequence of round payoffs {Rt

i, t = 1, 2, . . .}, the game payoff
for user i is Ri = (1 − δ)

∑∞
t=1 δt−1Rt

i . In our case, δ
could correspond to how long the users think that the network
will keep operating. To be precise, δ could be seen as the
probability that the network will stop operating at time t + 1,
given that it has been operating up to and including time t.
We do not claim that playing such a strategy is optimal among
all strategies, but we will prove that, for δ sufficiently close
to 1, such a simple randomization strategy (for any value of
p) is indeed optimal among all strategies. For a given value
of δ, we will find the probability p that maximizes the central
Good user’s payoff among all iid randomization strategies.
To compute the payoff, we split the network evolution into

two stages: pre-detection and post-detection of the Bad user. In
the pre-detection stage, the Good users start by playing C with
probability p, and we assume that the Bad user always plays
C. We will see that this is the best that the Bad user can do.
We again use the generic payoff equation (4) with the specific
payoffs shown in Fig. 4. Moreover, the Bad users always play
C, so Pr(at+1

j = C|tj = B) = 1. We know that there is
exactly one Bad neighbor, so for each j the probability that
j is Bad is Pr(tj = B) = 1

|HSt| if j is in the round-t hiding
set HSt and zero otherwise. The expected round t payoff for
the central Good user i is

Rt
i(C) =

∑
j∈Ni

Ri(CC|GB) Pr(at
j = C|tj = B) Pr(tj = B)

+
∑
j∈Ni

Ri(CC|GG) Pr(at
j = C|tj = G) Pr(tj = G)

=
∑

j∈HSt

(−1) · 1 · 1
|HSt| + (+1) · p · |HSt| − 1

|HSt|

+
∑

j∈Ni\HSt

(+1) · p · 1

= p(Ni − 1) − 1, (14)

when he plays C, and

Rt
i(D) = 0, (15)

when he plays D. Recalling that Ni − 1 = N is the number
of Good neighbors, the overall expected payoff for user i at
round t is

Rt
i = Pr(at

i = C)Rt
i(C) + Pr(at

i = D)Rt
i(D)

= p(pN − 1) (16)

After the Bad user has been detected, the link to him
is severed and the Good nodes are free to play C forever.
So, the central Good user’s payoff is N from then on (+1
from each one of the N Good neighbors). We now compute
the total game payoff for the central Good user. Define the
random variable M to be the number of observations needed
to be made by the Good user until detection. Define the
random variable R to be the number of rounds until detection.
Obviously, M ≤ R, since observation rounds are only the
rounds when the central Good user plays C. To compute the
distribution of M observe that each of the Good neighbors
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remains in the hiding set for as long as he plays C at each
observation round. Each C is played independently at each
round with probability p, so each Good neighbor remains
in the hiding set for a geometrically distributed number of
observation rounds.

Pr(M ≤ m) =
= Pr(After m obs. rounds, |HS| = 1)
= Pr(After m obs. rounds, all Good nbr have played ≥ 1D)

=(1 − pm)N

⇒Pr(M = m) = (1 − pm)N − (1 − pm−1)N (17)

To compute the distribution of R – the number of rounds
until detection – observe that, given the number of observation
rounds M , the conditional distribution Pr(R = r|M = m) is
a negative binomial. It is the number of rounds needed to have
m “successes”, each “success” happening with probability p.

Pr(R = r) =

=
r∑

m=1

Pr(R = r, M = m)

=
r∑

m=1

Pr(R = r|M = m) Pr(M = m) (18)

=
r∑

m=1

(
r − 1
m − 1

)
pm(1 − p)r−m

(
(1 − pm)N − (1 − pm−1)N

)
For the total game payoff, we have:

Ri(δ, p, N) =

=(1 − δ)E

{
R∑

t=1

δt−1p(pN − 1) +
∞∑

t=R+1

δt−1N

}

=
(1 − δ)

δ

(
p(pN − 1)E

[
R∑

t=1

δt

]
+ NE

[ ∞∑
t=R+1

δt

])
(19)

We define

S(p, δ) =
∞∑

r=1

δr Pr(R = r) (20)

and after some calculations we can see that the payoff can be
rewritten as:

Ri(δ, p, N) = p(pN − 1)(1 − S(p, δ)) + NS(p, δ). (21)

Corollary 2. Given any value for p, the strategy “Play C
independently with probability p” is optimal for the Good
users among all possible strategies for δ sufficiently close to
1, i.e., δ ∈ [δ∗(p), 1].

Proof: For δ → 1, we can see that S(p, δ) → 1, so the
payoff Ri(δ, p, N) → N , which is the maximum achievable
by any strategy, since it corresponds to receiving the maximum
per-round payoff N at every round. Another way of proving
the same result is observing that, for any p, detection is
achieved in a finite number of rounds with probability 1
(Pr(R < ∞) = 1), so for sufficiently patient players (δ → 1)
the pre-detection payoff becomes irrelevant.
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Fig. 5. Payoff Ri and optimal probability of cooperation p versus discount
factor δ. When δ is close enough to 1, it becomes worthwhile for the Good
users to aim for detection. Otherwise, the best thing they can do is always
cooperate, and not try to detect the Bad user.

For a given value of δ, the optimal value of p maximizing
(21) can be computed numerically. We show the resulting
optimal values of p and corresponding payoffs in Fig. 5 when
the number of Good neighbors (N ) is 5. For values of δ less
than 0.9 the optimal p is 1, and the achieved payoff is equal
to 4. The optimal p being 1 means that the Bad user is never
discovered, as a consequence of the impatience (small δ) of the
Good users. After δ crosses a threshold, it becomes worthwhile
for the Good users to try and detect the Bad one, resulting in
a finite detection period and larger payoff. For various given
values of δ, it may be interesting to observe how the payoff
changes as a function of p. Due to lack of space, we point the
interested reader to [17], where a preliminary analysis of the
current model appeared.
Why does the Bad user have to play C all the time? If he

plays what most Good play, he prolongs the time of detection.
If he plays C, he gains payoff. If p was chosen by the Good to
be larger than 1

2 , then these two considerations of the Bad user
would both concur to playing C. However, the maximizing p
may be less than 1

2 for some values of δ, so it might make
sense for the Bad user to play D once in a while so as to hide
a bit longer.
We will see that playing D never increases the Bad user’s

payoff, and it can even decrease it. Suppose the current hiding
set is X , and the Bad plays D. If the central Good plays D,
nothing changes. If the central Good plays C, he observes who
plays D and who plays C, so by looking at the payoff he can
tell what the Bad played. The new hiding set is X ∩ Y ⊆ X ,
i.e. smaller than X , the Bad has gained nothing in the current
period, and because of the discount factor δ the payoff of a
C has become smaller. So, in effect, the Bad player is facing
the exact same situation he was facing before, only he is in
a smaller hiding set, and the benefit of a C is smaller. This
allows us to conclude that the best thing the Bad can do is
play C from the first round until he is detected. Hence, the
strategies “always C” for the Bad and “C with probability
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p” (for the maximizing value of p) for the Good form a Nash
equilibrium, as long as the Good user strategies are constrained
to be of the type “Play C with some probability p”. No one can
do better by unilateral deviation within the allowed strategies.
Observe that the “Always C” Bad user strategy is optimal

regardless of the value of p in the “Play C with probability
p” Good user strategy. Therefore, as long as the maximizing
p is unique, the Nash equilibrium is unique. In any case, all
maximizing values of p would give the same payoff to the
Good user, so the payoff will definitely be unique across all
Nash equilibria.

B. Discussion of the General Case

In the general case of the star topology, the central Good
user will have more than one Bad neighbors, and will not know
exactly how many he has. Then, the concept of the hiding set
has to be amended. At each observation, the central Good user
will know how many Bad neighbors played C at that round.
As a heuristic, the Good users can play C in the first round,
which would disclose immediately how many Bad neighbors
each Good user has. Later, by suitable randomization, the Bad
users will definitely be detected: At the very least, in some
round the central Good user will play C and all other Good
users will play D (this is a positive probability event), so the
Bad users who play D at that round will be detected.
Also, in a general topology each Good user will have a

different number of Good and Bad neighbors, so the optimal
cooperation probabilities will be different for each Good
user. Even then, however, we claim that, as long as there
is randomization in the actions of the Good users, they will
eventually be able to detect all the Bad ones.

VI. CONCLUSION

We have presented a game theoretic model for the in-
teraction of legitimate and malicious users in collaborative
networks. To show the expressive power of the model we
described two particular instantiations: The first is inspired
from wireless packet forwarding protocols, and captures the
double objective of the attackers to reduce the connectivity of
the network, while at the same time depleting the legitimate
users’ energy. The second resembles an intruder detection
framework, where the intruder causes damage while trying
to stay hidden for as long as possible.
In both instantiations we have focused on equilibria that

result when the legitimate users are following simple proce-
dures with no severe requirements in terms of memory and
computing power. We can conclude that useful conclusions
can be derived from the model, without delving too deep into
intricate analysis. A future objective is to see if more detailed
analysis can model more realistic scenarios, or find equilibria
that improve the payoffs of the legitimate users. In any case,
however, the current model appears to be quite tractable.
From a security perspective, finding Nash equilibria has

allowed us to find strategies for legitimate users that enforce
upper bounds on the damage that the malicious users can
do. We have been assuming that complete knowledge of the
network is available to the attackers; if that is not the case,
then their payoff will be lower than the equilibrium payoff.

Identifying and quantifying the tradeoff between the malicious
users’ knowledge and their equilibrium payoff is, we believe,
another worthwhile future goal.

REFERENCES

[1] R. J. Aumann and M. Maschler, “Game theoretic aspects of gradual
disarmament,” in Report to the U.S. Arms Control and Disarmament
Agency ST-80. Princeton: Mathematica, Inc., 1966.

[2] R. B. Myerson, Game Theory: Analysis of Conflict. Harvard University
Press, 1991.

[3] R. J. Aumann and S. Hart, Eds., Handbook of Game Theory. Elsevier
Science Publishers B.V., 1992.

[4] S. Singh, V. Soni, and M. Wellman, “Computing approximate bayes-
nash equilibria in tree-games of incomplete information,” in Proceedings
of the 5th ACM conference on Electronic commerce. ACM Press, 2004,
pp. 81–90.

[5] A. Blanc, Y.-K. Liu, and A. Vahdat, “Designing incentives for peer-to-
peer routing,” in Proceedings IEEE Infocom 2005, Miami, FL, March
2005.

[6] L. Buttyan and J.-P. Hubaux, “Stimulating Cooperation in Self-
Organizing Mobile Ad Hoc Networks,” ACM/Kluwer Mobile Networks
and Applications, vol. 8, no. 5, 2003.
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