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Abstract— In this paper we consider a policy-based routing
scheme for a wireless communication network consisting of
a set of robots as nodes. Our scheme provides a communi-
cation infrastructure that enables the multi-robot system to
accomplish its assigned tasks. Our scheme is adaptive and
can be implemented in a distributed manner by the nodes of
the network. The scheme makes estimates of link and path
costs in the network and uses these estimates to construct
probabilistic routing tables in the nodes. We use ideas from
the literature on simulation methods for approximate dynamic
programming to compute, in a distributed manner, the cost
estimates. We propose two schemes that update the probabilistic
routing tables at the nodes of the network. One of the schemes
is an adaptation of the Linear Reward Inaction rule found in
studies of stochastic learning automata. Our other scheme is a
modification of an Ant-Based Routing algorithm. We assume
a simple model of the link behavior in the wireless network
- a message transmission on a wireless link is assumed to be
successful with a certain probability and is lost otherwise. We
also analyze our algorithms and show that our probabilistic
update schemes direct packets along paths with low costs.

I. INTRODUCTION

We consider in this paper a policy-based scheme for

routing packets in a system consisting of multiple robots.

Such a system of robots is deployed in a wide variety of

scenarios, ranging from collection of data in sensor networks

to surveillance/scouting in military missions to automated

co-ordination of operation in factories. The robots need to

communicate with each other frequently in order to co-

ordinate their actions and accomplish their assigned tasks.

Though a lot of effort in the robotics literature has been

focussed on path planning and task co-ordination in multi-

robot systems, an area that has received much lesser attention

concerns the communication infrastructure to achieve the

above mentioned goals. Communication in such systems is

accomplished with the aid of the ambient wireless medium,

and involves the exchange of information packets. The robots

usually have power constraints and have short transmission

ranges. Those that wish to communicate and are physically

distant from each other have to rely on intermediate robots

to forward their packets. Thus, the multi-robot system can

be thought of as a miniature multi-hop, ad hoc network, with

the nodes being the robots themselves.
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In wireless adhoc networks information transmission be-

tween nodes has to contend with the multipath fading,

interference, and signal attenuation effects on the links of the

wireless network. Routing protocols in wireless networks aim

to find, between any pair of source-destination nodes, paths

consisting of “good quality” links. However, the standard

multi-hop wireless routing protocols like AODV (Ad hoc On

Demand Distance Vector), DSR (Dynamic Source Routing),

TORA (Temporally Ordered Routing Algorithm) that have

been proposed basically only discover paths between sources

and destinations. There is no attempt in these protocols to do

routing based on Quality of Service (QoS) metrics. Works

that are in the literature on routing schemes for multi-robot

network systems include [6], [9] and [1]. The papers [6], [9]

emphasize the importance and the need for developing policy

based routing schemes for such systems. These papers pro-

pose a routing protocol called the Source-Initiated Adaptive

Routing Algorithm (SARA) that can switch between policy-

based routing and best-effort routing depending on whether

the network has symmetric or asymmetric links. They claim

that their protocol does not require significant computational

resources on the nodes (robots) and that it outperforms stan-

dard wireless protocols like DSDV (Destination-Sequenced

Distance-Vector) and TORA. The paper [1] provides an im-

plementation of an AODV inspired protocol for a multi-robot

system. Although these works consider policy based routing,

they do not address the issue of quantitative evaluation of

their schemes. Our work is a first attempt to address this

gap in the literature - we propose a policy based routing

scheme and analytically study its convergence properties.

Our scheme makes estimates of path costs from every

source node in the network to a destination node via the

neighbor nodes, and uses these to construct probabilistic

routing tables in the nodes. Our scheme is an adaptive

scheme that admits a distributed implementation. We use

ideas from the literature on ’simulation-in-the-loop’ methods

for approximate dynamic programming to compute, in a

distributed manner, the estimates of the costs. Also, we

propose two adaptive schemes to update the probabilistic

routing tables in the nodes. We analyze our probabilistic

update schemes and show that they enable the information

packets to be routed along paths that have lower costs. Our

routing algorithm is expected to have low communication

and computational overhead because we use the HELLO

messages (which are used to obtain and maintain basic neigh-

borhood information) themselves to exchange information

regarding path costs between neighboring nodes.

We consider a model in which the connectivity between a

pair of neighbor nodes i and j of the network changes with
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time (owing possibly to mobility and/or channel conditions).

We model this fluctuation by assuming that under steady

state a packet sent from i to j is successfully received with

some probability. This assumption can be valid in certain

situations - for example, in random mobility models in which

the motion of nodes follows a stationary stochastic process.

Another example is the situation when a group of robots

follow a set of trajectories designed by a path planning

algorithm. Then the fluctuations of the distances between the

nodes under steady state is not very large. Another example

arises in certain sensor network applications, where moving

obstacles affect the link conditions between pairs of nodes.

More elaborate models which integrate routing with path

planning can be constructed as extensions of our basic model.

In such models, the information from the routing algorithm

can be fed back to the path planning algorithm to improve

its performance.

Our paper is organized as follows. In Section II we provide

a description of our routing scheme, outlining the details of

estimation of link and path costs in a distributed manner,

and update schemes for our node routing probabilities. In

Section III, we provide an analysis of our scheme. Section

IV describes some simulation results in a simplified set-up,

and Section V provides a few conclusive remarks.

II. DESCRIPTION OF OUR POLICY-BASED

ROUTING SCHEME

Our routing scheme is a proactive routing scheme. This

means that routing related information at every node (for

example, the neighbors of the node, the routing probabilities

for the outgoing links, etc.) is regularly updated. Because the

routing information is maintained up-to-date at any point of

time, whenever a node wishes to transmit to another node,

paths to the destination node are made available. Packet

transfer can then commence without significant additional

delay. Our routing scheme establishes a set of paths from

every node of the network to the destination nodes, based on

the quality of the links joining the nodes to the destination

nodes. The link quality, in our case, is a function of the

probability with which a packet, upon transmission, gets lost

in the link. We assign a cost (metric) to a link that is a

function of the link loss probability; it is high if the loss

probability is high and low otherwise. We do not consider

the queueing delay of packets in the link as a metric. These

delays may not be significant because a network of robots

is not expected to exchange data in bulk quantities (e.g.,

files) as, for example, the nodes in a wireless Local Area

Network. The scheme operates in a separate network control

plane (some portion of the bandwidth of the links can be

set aside for such control messages). It is expected to work

concurrently with the usual information transfer taking place

between the nodes of the robot network. The scheme makes

estimates of the link cost and adaptively modifies the routing

probabilities at the nodes based on them. The incoming

data packets at the nodes are then routed according to these

routing probabilities.

In this section we describe our routing scheme. Before we

do so, in subsection II-A we describe the basic assumptions

we make about the multi-hop robot network that we consider,

and based upon which our scheme is designed. In subsection

II-B we then describe our routing scheme in detail.

A. Model and Assumptions

As remarked earlier, the robots in the multi-robot system

form a mobile wireless communication network. We assume

that each of the robots acts as a node that can transmit as

well as receive packets. A pair of nodes in the wireless

network are assumed to be capable of directly transmitting

messages to each other if and only if they are within a certain

distance R (assumed to be a fixed constant) of each other.

Equivalently, we then say that the link between the nodes is

UP. If the distance between the nodes is greater than R then

we say that the link is DOWN. This assumption (often made

in studies that analyse the performance of Mobile Ad-hoc

Networks) abstracts out details related to wireless channel

fading and interference modeling. The relative motion of a

node with respect to another causes the link between the two

nodes to fluctuate between the states UP and DOWN. Let

Eij(t) denote the state of the link at time t ≥ 0; Eij(t) = 1,

if the link is UP at time t, and Eij(t) = 0, if the link is

DOWN at time t. Now, if the system is allowed to operate

for a long time, the system can attain a steady state. Under

steady state, the probability that a link (i, j) is UP is assumed

to have a mean vij with negligible fluctuations about it. A

scenario where such steady state is attained is one where

the motion of the nodes follows a random mobility model

(for example, a multi-robot system that acts as a sensor

network gathering data while moving in a bounded region),

and when allowed to operate for a long time attains statistical

steady state. The random process Eij(t) then becomes a

stationary process, and the mean under stationarity of Eij(t)
is a constant, which by the above discussion is vij . Another

situation when this can happen is when a set of robots is

made to follow a particular set of trajectories (designed by a

path planning algorithm, for example). Then the fluctuations

of the distances between the nodes is not very large under

steady state, and our approximation can be valid. However,

in the presence of large deviations from nominal trajectories,

it would be difficult to design converging routing schemes,

unless the deviations take place in a time scale that is much

slower compared to that of the routing algorithm.

To sum up, we assume that transmission of packets

through a link (i, j) is successful with probability vij . The

links are assumed to be bidirectional so that vij = vji. We

also assume that the nodes don’t have explicit knowledge of

the probabilities vij . Our model encompasses the important

scenario when there are obstacles between nodes in the

network, owing to which the nodes on either side of the

obstacle cannot communicate with each other. Our link cost

estimation models in the following subsection then assign

high costs to such links, and our probability update algo-

rithms then give low routing probabilities to those links. This

enables the information packet flows to be routed around the
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obstacles.

B. The Routing Scheme

Our routing scheme operates as follows. For simplicity

of description, we consider the problem of routing from

every node of the network to a fixed destination node, say

node k. Every node i periodically broadcasts short HELLO

messages for determining its neighborhood. A neighbor

node j that receives such a HELLO message piggybacks

an acknowledgement of its receipt back to node i when it

sends out its own broadcast HELLO messages. Once node i

receives this acknowledgement it updates its estimate of the

cost to node j, denoted by dij , using the simple exponential

average estimator

dij := dij + ǫ(1 − dij), (1)

where 0 < ǫ < 1 is a small positive number. If node i does

not receive an acknowledgement within a time-out period

TO, it updates its estimate of the cost dij at the end of the

time-out period using the equation

dij := dij + ǫ(N − dij), (2)

where N > 1 is a large positive constant. This rule effec-

tively assigns high cost to the link (i, j) when it has very

poor quality, i.e., the probability of packet loss on the link is

high. If the probability of packet loss in the link is high then

more time-outs will occur, and dij will be largely updated

by the equation (2). Rules (1) and (2) enable us to assign a

cost to the link (i, j) that can be interpreted as an average

hop count. N , TO, and ǫ are parameters of the algorithm

that have a significant impact on its performance as a whole.

Along with the acknowledgement, the neighbor node j

also transfers to node i its current estimate Jj(k) of the cost

to a destination node k of the network. Once node i receives

this information it updates its own estimate Qij(k) of the

cost to node k via a route that goes through neighbor node

j, using the estimator

Qij(k) := Qij(k) + ǫ(dij + Jj(k) − Qij(k)). (3)

Simultaneously, the estimate of the cost from node i to node

k is updated using the estimator

Ji(k) := Ji(k) + ǫ(dij + Jj(k) − Ji(k)). (4)

If no acknowledgement is received from neighbor node j, a

fresh estimate of Jj(k) is unavailable. The updates (3) and

(4) (which take place at the end of the time-out period) then

utilize the latest available Jj(k) and the update of dij from

(2), to update Qij(k) and Ji(k), respectively.

Thus, at node i, the update of the quantities dij , Qij(k),
and Jj(k) are simultaneously affected whenever an acknowl-

edgement is received from a neighbor j or when a time-out

period ends. Also, when the quantities related to a neighbor

node j are updated, the corresponding quantities related to

the other neighbor nodes j′ 6= j are left unchanged (the

updates, thus, take place one neighbor node at a time).

Furthermore, a destination node k always sets the estimate

of the cost to itself as zero, i.e., Jk(k) = 0.

The motivation for algorithm (4) comes from the literature

on simulation-based methods for solving stochastic shortest

path problems using dynamic programming (see, for exam-

ple, [4]). Algorithm (4) is a Temporal Difference method

(specifically, it is TD(λ), with λ = 0 [4]) used to estimate

the average costs-to-go in policy iteration methods for such

problems. Algorithm (3) is a simple, straightforward way to

estimate the cost to destination node k via a route that goes

through neighbor node j. As noted earlier, all costs can be

interpreted as average hop counts. Notice that, node i, in

its turn, disseminates the information regarding Ji(k) to its

neighbor nodes, whenever it sends out acknowledgements to

HELLO messages received from them. This form of simple

message passing enables each node to have estimates of the

cost to a destination k via its neighbors. This information is

used below to update the routing tables at every node.

The routing table at a node i consists of the probabilities

pij(k) of routing an incoming data packet at node i and

destined for k via the neighbor nodes j. The routing table is

updated based on the estimates of the Q-values (Qij(k)’s)

and the update is triggered simultaneously as the update of

the estimates Qij(k) and Ji(k). We examine in this paper

two possible probability update rules.

The first rule that we consider is a slight variation of the

Linear Reward Inaction (L-R-I) rule, considered in studies

of stochastic learning automata (see, for example, [10] and

[7]). It is a reinforcement learning algorithm that tries to

converge to the correct action based on the reinforcement

feedback it receives from the environment. We adapt it for

our purposes here. A neighbor node j is chosen based on the

current probability vector pi.(k) at the node. The value of

the estimate Qij(k) is used to update the probability pij(k)
using the following rule

pij(k) := pij(k) − ǫ′Qij(k)(1 − pij(k)), (5)

where 0 < ǫ′ < 1 is a small positive number. (If pij(k)
extends beyond the interval [0, 1], it is projected back into the

interval). The other probabilities are simultaneously changed

in the following manner so that the updated probabilities sum

to unity

pil(k) := pil(k) + ǫ′Qij(k)pil(k), (6)

for all neighbors l 6= j. (The probabilities are normalized if

they still do not lie on the probability simplex).

The second rule that we consider is a variation of a

reinforcement rule considered in Ant-Based Routing schemes

(see [5] and [2], [8]). Suppose that the quantity Qij(k)
related to node j gets updated. Then we simultaneously

update all the probabilities pij(k) using the equations

pij(k) =
e−

Qij(k)

β

∑
l∈N (i,k) e−

Qil(k)

β

, ∀j ∈ N (i, k), (7)

β being a positive constant. Thus, higher probabilities are

assigned to those outgoing links (i, j) which have lower

associated costs to the destination k. The role of β will be

discussed later in the section .
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III. ANALYSIS OF OUR ROUTING ALGORITHMS

In this section we provide analysis of the convergence of

the algorithms mentioned in section II. We start with the

analysis of the linear reward case. The equations (5) and (6)

for updating the routing probabilities are a set of discrete

stochastic equations, which can be studied as a particular

case of the adaptive algorithms which come up in the

literature of Stochastic Approximation. We show that these

equations can be regarded as a standard discretization of a

system of Ordinary Differential Equations (ODEs) and show

that the special form of the ODE admits only one locally

asymptotically stable stationary solution which corresponds

to routing through a neighbor who has the minimal estimated

cost to go. The analysis is along the lines of [3] and [10].

Consider that there are r robots present. We provide the

analysis for the case in which the source node is an arbitrary

node i and the destination is node k. To avoid redundant

notation and make the demonstration easier, we omit i and

k from the formerly defined pij(k) of equations (5) and

(6) and use the notation pj(n) to denote the probability of

routing an incoming data packet at node i and destined for

k via the neighbor j at time n. The argument n here denotes

the iteration time. Similarly, we use the notation Qj(n) to

denote node i’s estimate of the average cost to go towards the

destination k via the route through neighbor robot j at time n.

Let D(n) denote the decision of node i at time n based on its

information up to time n−1. Therefore D(n) ∈ {1, 2, ..., r},

and D(n) = j1 means that at time n, robot i has decided to

route via its neighbor, robot j1.

Using these notations, the time update of the linear rule

((5) and (6)) can be stated as:

pj(n + 1) = pj(n)− ǫ′I{D(n+1)=j}Qj(n + 1)(1− pj(n))

+
∑

l 6=j

ǫ′I{D(n+1)=l}Ql(n + 1)(1 − pl(n)), (8)

An important point to mention is that in steady state, the

random sequences {Qj(n)}r
j=1 converge to a set of fixed val-

ues {qj}
r
j=1, which are the estimates of cost to go via routing

through different nodes. Therefore {P (n),D(n), Q(n)} in

which P (n) = [p1(n)...pr(n)]′, is a Markov process and at

each time, P stochastically determine the evolution of the

system.

If D(n + 1) = j is the neighbor selected to be reinforced

at time n+1, then equation (8) can be written in vector form

as:

P (n + 1) = P (n) − ǫ′Qj(n + 1)(ej − P (n)), (9)

in which ej is the unit vector in Rr with 1 in the j th entry.

Therefore if {D(n + t)}r
t=1 = {jt}

r
t=1, then we can write:

P (n + M) = P (n)− ǫ′
M∑

t=1

Qjt
(n + t)(ejt

−P (n + t))

(10)

If ǫ′ > 0 is small enough, P can be considered constant on

the interval n, n + 1, ..., n + M . Therefore equation (10) can

be approximated by:

P (n + M) ≈ P (n) − Mǫ′
∑M

t=1 Qjt
(n + t)(ejt

− P (n))

M
,

(11)

If M is large enough, then using the law of large number

we can write:

P (n + M) ≈

P (n) − Mǫ′E[Q(n)(eD(n) − P (n))|P (n) = P ]. (12)

The above equation is a discrete time approximation of the

following coupled system of ordinary differential equations

(ODEs):

dpm

dt
= −[qmpm(1 − pm) +

∑

t6=m

qtpt(−pm)] =

pm

∑

t

(qt − qm)pt,

m = 1, 2, ..., r (13)

If the steady state values of estimated costs through different

neighbors, qj are all different, then these sets of ODEs have

n distinct equilibrium points, e1, e2, ..., er. Furthermore, if j⋆

is the node whose steady state cost estimate q⋆ is minimum

among all the neighbors, then by using a Lyapunov function

of the form

V (P ) = (1 − pj⋆)2 +
∑

t6=j⋆

p2
t , (14)

it can be shown that the only locally asymptotically stable

equilibrium is ej⋆ . This corresponds to routing through the

neighbor with minimal estimated cost distance from the

destination.

For the second learning rule given by equation (7), note

that the Qj values iterate independently of pj . Also, notice

that the pj’s as given by (7) are continuous functions of

the Qj . Therefore, under the assumption that the random se-

quence Qj(n) converges to qj , the sequence pj(n) converges

to

pj =
e−

qj
β

∑
l e

−
ql
β

, ∀j, (15)

The equilibrium behavior of the algorithm can be tuned

by the constant parameter β. In fact the constant β is a

temperature-like parameter which controls how the proba-

bilities of route selection are reinforced. Very small values

of β correspond to routing through the neighbor with min-

imum cost to go, whereas very high β allows for uniform

randomization among the possible routes.

IV. SIMULATION RESULTS AND DISCUSSION

We consider a simplified simulation setup where we study

the convergence behavior of our algorithms. In our simula-

tions we assume that time is divided into slots of fixed length

over which transmission of HELLO messages takes place. At
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Fig. 1. The topology
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Fig. 2. The tree solution for our first (L-R-I) scheme

the beginning of a time slot HELLO message transmission

starts and the transmission is completed by the end of the

slot period. The transmission of the message over the link

(i, j) is successful with probability vij , and is unsuccessful

(in which case the message is lost) with probability 1− vij .

We consider a synchronous version of our update scheme

where at the end of a slot the quantities dij , Qij(k), and

Ji(k) are simultaneously updated at every node i (for every

link (i, j)) in the network. Depending on whether the packet

was successfully transmitted or was lost, the link cost dij is

updated using the estimator (1) or (2). Simultaneously, also

the quantities Qij(k) and Ji(k) are updated at every node

using equations (3) and (4).

The topology that we consider is illustrated in Figure 1,

where the numbers beside the links give the probabilities vij

of the links being UP. We analyse the convergence behavior

of the two schemes on this topology. For both the schemes

we start with arbitrary values of the initial link costs dij ,

and the quantities Qij(k), Ji(k), and the initial routing

probabilities pij(k).

We first consider the L-R-I scheme. We set N to be 90.

(Note that larger values of N help to differentiate the costs in

links that are close in probability). We set ǫ at 0.01 and ǫ′ at

0.00001. The algorithm converges and gives as a solution the
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Fig. 3. The plots of the values of Q12, Q13 and Q14 for the first scheme

tree shown in Figure 2. The tree is rooted at the destination

node 8 and from every node the path to the destination node

is the most reliable one. Figures 3 and 4 give the plots of

Q12, Q13 and Q14 and the plots of the probabilities p12,

p13, and p14, respectively (we suppress the allusion to the

destination node, which we have mentioned is node 8 here).

Our simulations (Figures 3 and 4) also show that the problem

with this scheme is that it takes a large number of iterations

for the scheme to converge. This shows some limitations of

the scheme, that we couldn’t quite anticipate beforehand.

Furthermore, we need to keep ǫ′ quite small in order to

ensure that the scheme converges (this is what causes the

slow convergence). Also, we have noticed in the course of

our simulations that the convergence behavior is somewhat

sensitive to initial conditions and to variations in the link

probabilities. We shall see below that our second probability

update algorithm has better convergence properties and hence

can be a better candidate for potential deployment.

For our second scheme, we set N to be 10 and β to be 20.

We set ǫ to be 0.01. The algorithm converges and gives us the

routing probabilities at every node. Figures 5 and 6 give the

plots of Q12, Q13 and Q14 and the plots of the probabilities

p12, p13, and p14, respectively. We notice that the algorithm

converges in fewer iterations than the L-R-I based algorithm.

The parameter ǫ controls the speed of convergence of the

algorithm, and can be tuned for particular scenarios to ensure

good convergence speeds. Keeping ǫ too large makes the Q-

value estimates (and hence the routing probabilities) to have a

large variance at steady state, whereas too small an ǫ reduces

the convergence speed of the algorithm.

V. CONCLUSIONS

In this paper we have provided a policy-based routing

scheme for a multi-robot wireless network. The scheme

employs the HELLO messages to exchange information be-

tween the wireless nodes of the path and the link costs. This

information is then used to update the routing tables (con-

sisting of routing probabilities for the outgoing links) at the

nodes. We have analyzed our probabilistic update schemes

and shown through simulations in a simplified set-up that
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the probabilistic update schemes direct information packets

along paths with low costs. An interesting and challenging

extension of our approach would be to integrate routing with

path planning. The idea is that path planning could be used to

steer robots into positions relative to each other that improves

the connectivity and consequently, routing performance of

the network. The routing component could provide feedback

signals to the path planning component, which could then act

to change the relative positions of the nodes. An interesting

scenario could be one in which the path planning component

moves a set of nodes, that can’t communicate because of

obstacles, to a new position where they can have a ‘line-of-

sight’ to each other.

Our scheme can be extended to more general Mobile Ad

hoc Network scenarios where cost metrics involving packet

delays in the network queues are considered. In wireless

networks where bulk data is transferred from source nodes

to destination nodes in the network an important cost metric

to consider is the actual packet queueing delay, which sig-

nificantly impacts performance. An estimation of the delays

can be undertaken by the methods we have described in this

paper. However, the analysis of routing probability update

schemes in such scenarios becomes very challenging because

there is an inherent feedback effect between the routing

probabilities and the packet delays in the network queues

(see [8]).

REFERENCES

[1] C. Aguero, V. Matellan, P. de-las-Heras-Quiros, and J. M. Canas,
“PERA : Ad-Hoc Routing Protocol for Mobile Robots”, Proc. 11-th

Intl. Conf. on Adv. Robotics, pp. 694 − 702; 2003.
[2] N. Bean and A. Costa, “An Analytical Modeling Approach for

Network Routing Algorithms that use “Ant-like” Mobile Agents”,
Computer Networks, Vol. 49, pp. 243 − 268; 2005.

[3] A. Benveniste, M. Metivier, and P. Priouret, Adaptive Algorithms and

Stochastic Approximations, Applications of Mathematics, Springer-
Verlag; 1990.

[4] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming,
Athena Scientific, Belmont, MA, USA; 1996.

[5] E. Bonabeau, M. Dorigo and G. Theraulaz, Swarm Intelligence : From

Natural to Artificial Systems, Santa Fe Institute Studies in the Sciences
of Complexity, Oxford University Press; 1999.

[6] J. Budenske, J. Bonney, A. Ahamad, R. Ramanujan, D. F. Hougen and
N. Papanikolopoulos, “Nomadic Routing Applications for Wireless
Networking in a Team of Miniature Robots”, IEEE International

Conference on Systems, Man and Cybernetics, pp. 3306−3311; 2000.
[7] L. P. Kaelbling, M. L. Littman and A. W. Moore, “Reinforcement

Learning : A Survey”, Journal of Artificial Intelligence Research, Vol.
4, pp. 237 − 285; 1996.

[8] P. Purkayastha and J. S. Baras, “Convergence Results for Ant Routing
Algorithms via Stochastic Approximation and Optimization”, Proceed-

ings 2007 IEEE Conference on Decision and Control; 2007.
[9] R. Ramanujan, S. Takella, J. Bonney and K. Thurber, “Simulation

of Routing Protocols for Autonomous Wireless Local Networks”,
Proceedings of MILCOM; 1998.

[10] M. A. L. Thathachar and P. S. Sastry, Networks of Learning Automata

: Techniques for Online Stochastic Optimization, Kluwer Academic
Publishers, Norwell, MA, USA; 2004.

975


