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Abstract— It has been observed that adding a few long range
edges to certain graph topologies can significantly increase
the rate of convergence for consensus algorithms. A notable
example is the class of ring-structured Watts-Strogatz small
world graphs. Building on probabilistic methods for analyzing
‘small-world phenomena’, developed in our earlier work, we
provide here a probabilistic framework for analyzing this
effect. We investigate what graph characteristics lead to such
a significant improvement and develop bounds to analyze
consensus problems on randomly varying graphs.

I. INTRODUCTION

Consensus problems have become an area of increasing

research focus in recent years (e.g. see [2], [23], [17],

[11] and the references therein). Many applications including

distributed estimation [29], [4], motion coordination [21] and

load balancing in multiple processes [6] have been analyzed

in this framework. While the convergence properties of the

consensus algorithms are fairly well understood now, the

problem of understanding the impact of topology on the

convergence rate needs further study. In this paper, we

propose and analyze probabilistic models and methods as

a first step towards this end. In particular, we study con-

vergence over small world graphs which have recently been

shown experimentally to exhibit high convergence rates [22],

[15]. Earlier results demonstrating such convergence speed-

up in consensus over small world topologies were presented

in [18], which treated the seemingly unrelated problem of

convergence of dynamic trust (and mistrust) propagation in

infrastructure-less networks, like mobile ad hoc networks.

Building on the methods and results of [1] we provide a

possible probabilistic interpretation of the large increase in

the rates of convergence seen in such graphs.

The paper is organized as follows. Beginning with a brief

background of the problem formulation in the next section,

we move on to a description of the probabilistic framework

in Section III. In Section IV, we build on the probabilistic

methods and results of [1] and we apply the combined results

to small world graphs. In Section V we demonstrate the

broader utility of these methods and tools by applying them

on some other classes of dynamic iterative problems on
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random graphs. Due to space limitation we omit the proofs

here. The detailed proofs can be found at [16]

II. BACKGROUND AND MOTIVATION

Consider n nodes that aim to reach consensus over a

scalar value. Denote the value held by the i-th node at time

k as xi(k). Also denote by x(k) the n-dimensional vector

obtained by stacking the values of all the nodes in a column

vector. The interconnection topology of the nodes can be

described by a graph, with an edge present between two

nodes if and only if they can exchange information. We

assume undirected edges, unless noted otherwise. Denote the

neighbor set of node i at time k by Ni(k).
At every time step k, each node i updates its value

according to the equation

xi(k + 1) =
∑

j∈Ni(k)∪i

wij(k)xj(k) (1)

where wij(k) refers to the weight assigned by the node

i to the value of node j and
∑

j∈Ni(k)∪i wij = 1, ∀i.
Denote the interconnection graph at time k by G(k). We can

associate a matrix F (k) with this graph as follows

Fij(k) =

{

wij(k) j ∈ Ni(k) ∪ i

0 otherwise.
(2)

The system thus evolves according to the discrete time

equation

x(k + 1) = F (k)x(k), x(0) = x0. (3)

We will denote F (.) as the consensus matrix. Various con-

sensus algorithms can be obtained by choosing the matrix

F (k) appropriately, see, e.g., [11] for a good overview. In

this paper we will use the important class of weight matrices

F (k) = I − hL(k),

where h is a small positive parameter and L(k) corresponds

to the Laplacian of the graph G(k) [23] for the presentation

of our results in this paper1. We will also assume h < 1
2dmax

where dmax is the maximum degree corresponding to any

node in the graph. This assumption causes the F matri-

ces to be symmetric -resulting in average consensus upon

convergence- with nonnegative eigenvalues and simplifies the

analysis.

Convergence of consensus algorithms have been exten-

sively studied and different sufficient conditions have been

1It may be noted, however, that extension of the results to other choices
of the matrix F can readily be done.
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proposed (see [11] and the references therein). The problem

is in fact identical to the problem of convergence of the

products of nonhomogeneous matrices [13]

Desai and Rao [8] explicitly show that the rate of conver-

gence is a function of graph topology as well as the weights

on the edges. In the case of a static graph topology (i.e.,

F (k) = F for all time k), it can be shown (see, e.g., [26])

that the convergence of the consensus protocol is geometric,

with relative rate equal to the second largest eigenvalue

modulus (SLEM). We can thus compare convergence on two

graphs by comparing the spectral gap of the graphs, defined

as S.G. = 1− SLEM(G). For the more general case when

the topology varies with time, Blondel et al [2] showed that

the joint spectral radius of a set of matrices derived from the

F matrices determines the convergence speed.

Since agents usually have energy constraints, the number

of agents with which they can communicate and the long-

range interconnections that they can maintain is limited. Thus

it is important to investigate convergence over ‘efficient’

graph topologies. In particular, there has been interest in

studying the convergence rates on ‘small world’ graphs.

Olfati-Saber [22] did a simulation study on small world

graphs with continuous time consensus protocols, which

showed a marked improvement in the rate of convergence.

Further experimental evidence has been presented in our

earlier work [18], [15]. However analytical verification of

this result is largely lacking. In [27], the authors used some

results by Durrett [9] on the mixing time of Markov Chains

on small world graphs and provided some high probability

bounds on the rate of convergence. In the earlier paper [1]

Baras and Hovareshti developed a new method for inves-

tigating the effects of small world topologies by building

on the probabilistic models of Higham [14], that established

an equivalent representation of small world topologies as

rare transitions among non-neighboring states in the Markov

chain associated with a graph. In this model and associated

method, small but nonzero positive weights were assigned

to the entries of F corresponding to the nodes that are not

neighbors [1]. It was observed that for very small perturba-

tion of the values of the weights, there was a marked increase

in the rate of convergence. By performing a quantitative

analysis of the eigenvalues of the resulting matrices and

by employing an appropriate parametrization of these small

positive weights, a complete characterization was given as to

when small world phenomena (manifested by convergence

speed-up) will occur. In [14] small world phenomena were

analyzed using these slightly randomly perturbed Markov

chains and a ‘mean field’ approach for the Markov random

field associated with the Markov chain. In [1], exploiting the

circulant nature of the matrices involved in these dynamic

iterative algorithms, in the φ-model of Watts and Strogatz

[28] (i.e. adding ‘short cuts’ on top of a ring lattice) rigorous

results on the speed-up were obtained.

The above interpretation promotes a probabilistic view-

point towards understanding and quantifying small world

effects on consensus convergence rates: one can allow time-

varying topologies, in which every node nominally commu-

nicates according to a pre-defined topology, corresponding

to the original graph from which a small world network is

obtained. The probabilistic interpretation of the small world

topology via perturbations of the associated Markov chain,

is that with a small probability the node communicates with

non-adjacent nodes at every time step. Thus the model may

also be looked at as switching between multiple topologies

to increase the convergence rate. In such an interpretation,

communication with remote nodes is done with a very small

probability to conserve the node power. Over the course of

writing this paper, we also encountered some recent work

on a class of regular expander graphs -known as Ramanujan

graphs- which show excellent spectral properties but are

usually difficult to construct. An exposition on these graphs

in a related framework can be found in [24] and [20].

Before explaining these models in detail, we need a frame-

work for studying consensus problems with probabilistic

switching between topologies. We develop this framework

in the next section.

III. PROBABILISTIC FRAMEWORK

Consider the same framework as described above. How-

ever the graph G(k) can now be chosen from a finite set

G = {G1,G2, · · · ,Gm}.
In this paper, we concentrate on the case when this choice

is done in an independent and identically distributed (i.i.d.)

manner, with the graph Gi being chosen at any time step

k with a probability pi. More complicated models, when

this choice can be carried out according to a Markov chain,

can readily be analyzed (See, e.g., Proposition 3.1). Denote

the consensus matrix corresponding to the graph Gi by Fi

and denote the set of Fi’s by F. Since the state x(k) now

evolves stochastically, the convergence of the node values to

the average consensus value occurs in a probabilistic fashion.

Conditions for convergence of such schemes have been

derived, e.g., in [27], [12], [10] for probabilistic or almost-

sure convergence and in [4] for second moment convergence.

The rate of convergence was also studied in [4].

In this paper, we are interested in second moment con-

vergence, i.e., the convergence of the covariance of the state

vector x(k) to its final value 11T µ2, where µ is the average

of the initial values xi(0). This is equivalent to studying the

convergence of the vector x(k) to its final value µ1. This

can be established using the Lyapunov function V (x(k)) =
1
n
[
∑

i6=j E(||xi(k) − xj(k)||2)] = E[xT (k)L̂x(k)], where

L̂ = (I− 11T

n
) can be viewed as the Laplacian of the complete

graph. L̂ is a projection, i.e., L̂2 = L̂.

We have the following result about the conditions for

convergence and the rate of convergence. The results about

the i.i.d. case have been presented before in [4].

Proposition 3.1: Consider the consensus algorithms of

Section II, with the consensus matrix being chosen from the

set F either in an i.i.d. or according to a Markov chain with

transition probability matrix Q.

1) For the i.i.d. case, the system converges in the second

moment sense if

ρ

(

E[F ⊗ F ] − 1

n2
11

T

)

< 1,
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where ρ(.) denotes the spectral radius and ⊗ denotes

the Kronecker product. Further, the rate of convergence

is governed by ρ
(

E[F ⊗ F ] − 1
n2 11

T
)

or the SLEM

of the matrix E[F ⊗ F ].
2) For the Markovian case, the system converges in the

second moment sense if

ρ

(

(QT ⊗ I) (diag(E[Fi ⊗ Fi])) −
1

n2
11

T

)

< 1,

where diag(Ai) denotes a block diagonal matrix with

blocks Ai. Further, the rate of convergence is governed

by ρ
(

(QT ⊗ I) (diag(E[Fi ⊗ Fi])) − 1
n2 11

T
)

or the

SLEM of the matrix (QT ⊗ I) (diag(E[Fi ⊗ Fi])).
The result given above characterizes the rate of conver-

gence. The calculation of this rate is difficult for arbitrary

graphs. Therefore, we will concentrate on graphs with certain

degree of symmetry for further analytic results and insights.

Moreover, calculating the Kronecker product requires n2×n2

matrix operations for n agents. Because of the presence of

the expectation operator, even for symmetric graphs, the

eigenvalue calculations can quickly become complicated.

This complexity has also been recognized, e.g., [4] where

instead other metrics are used as a proxy for such eigen-

values. In contrast, we continue to focus on the SLEM of

these matrices by calculating lower and upper bounds, which

yield insightful results as shown in the next two sections. The

following proposition provides such bounds.

Proposition 3.2: Denote A = E[F ⊗ F ], where F = I −
hL. Also denote the average value of the Laplacian E[L] by

L̄. Finally, let λi be the ith largest eigenvalue of a Laplacian

matrix L,2. i.e.

λ1(L̄) ≥ λ2(L̄) ≥ ... ≥ λn(L̄).

Then,

1−hλn−1(L̄) ≤ λ2(A) ≤ 1−hλn−1(L̄)+h2λ1(E[L⊗L]).
The result given by proposition (3.2) indicates that for

finding bounds on the convergence rate of probabilistic

consensus algorithms on a set of matrices F, we should

1) Find the exact value or bounds for λn−1(E[L]),
2) Find the exact value or bounds for λ1(E[L ⊗ L]).

As the examples in the next section will show λn−1(E[L])
can be computed for many different classes of graphs. To

find bounds on λ1(E[L ⊗ L]), we use the fact that all the

matrices L that we consider are symmetric and positive semi-

definite. For such matrices, the spectral radius λ1(.) is a

convex function. Thus, Jensen’s inequality can be applied

to obtain

λ1(E[L ⊗ L]) ≤ E(λ1([L ⊗ L])) = E[(λ1(L))2].

Since all the eigenvalues of a graph Laplacian are bounded

by twice the maximum degree of the graph, we obtain

λ1(E[L ⊗ L]) ≤ 4E[d2
max].

2Usually the ith smallest eigenvalue of the Laplacian is denoted by λi

in the literature. We have not followed the convention, to be consistent with
our choice of ordering of eigenvalues of the weight matrices F .

As mentioned, the upper bound on the spectral gap is

hλn−1(L̄). We may need to change the amount of h when

we use the switching scheme to remain consistent with the

change in the degree of graph nodes due to switching. This

change is however not very significant, when the switching

probability is low enough, as seen in the examples of the next

sections. We develop a necessary condition for a graph to

improve convergence rate as a result of uniform probabilistic

switching.

Consider a given graph G(V,E), with Laplacian L0. Let

its complement graph be denoted by Gc = (V,Ec), where

Ec = {e|e /∈ E}. Consider a uniform switching in which

all the edges of Ec can be used with a small probability

0 < ǫ < 1. Then the expected Laplacian is:

L̄ = L0 + ǫLc
0

Notice that L0+Lc
0 = nI−11

T , and that the vector λn(L̄) =
1 is an eigenvector of Lc

0 with the corresponding eigenvalue

0. Taking a set of orthogonal eigenvectors, it can be easily

verified that for 1 ≤ i ≤ n − 1, λi(L
c
0) = n − λn−i(L0).

Therefore, we have the following result:

Corollary 3.3: A necessary condition for getting sig-

nificant rate improvement by uniform switching is that

λ1(L0) ≪ n, where λ1(L0) is the spectral radius of L0.

IV. SMALL WORLD GRAPHS

We now return to our analysis of small world graphs. We

consider the nominal graph to be a ring and the so-called φ-

model as in [1] based on the models of [28]. Similar models

have been considered in [22], [27]. To model the existence

of a few long range links, we assume that, at each time,

each agent can establish a link with non-adjacent nodes with

a small probability ǫ. We analyze the effect of such low-

probability long range links, on the convergence rate. In

particular, we assume that ǫ ∝ n−α where as before n is

the number of nodes and α is a natural number.

The consensus matrix of the nominal ring graph is:

I − hLfix =









1 − 2h h 0 ... h
h 1 − 2h h ... 0
. . . . .
h 0 ... h 1 − 2h









.

Thus the spectral gap of the nominal graph is:

S.G.(fixed) = 1 − λ2(F0) = 2h(1 − cos(
2π

n
)).

Now we analyze the effect of the additional links. To

calculate the expected Laplacian matrix, we realize that

L̄ij =



















2 + (n − 3)ǫ i = j

−1 |i − j| = 1

−1 (i, j) = (1, n) or (i, j) = (n, 1)

−ǫ otherwise.

This graph has a circulant structure. Thus,

λn−1(L̄) = 2 + (n − 3)ǫ − 2(1 − ǫ) cos(2π/n)
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Using Proposition 3.2 we thus obtain the following bounds

when long range links are added with a small probability ǫ.

λ2(E[(I − hL) ⊗ (I − hL)]) ∈

[1 − h(2 + (n − 3)ǫ − 2(1 − ǫ) cos(
2π

n
)),

1 − h(2 + (n − 3)ǫ − 2(1 − ǫ) cos(
2π

n
)) + 4h2E[d2

max]].

The spectral graph for this case evaluates to

S.G.(Switching) ∈

[h(2 + (n − 3)ǫ − 2(1 − ǫ) cos(
2π

n
)) − 4h2E[d2

max],

h(2 + (n − 3)ǫ − 2(1 − ǫ) cos(
2π

n
))]

For ǫ = n−α and α = 1, 2, 3, ... we can use a Chernoff

bound argument similar to that outlined in Lemma 3 of [27]

to show that in the limit of large n, dmax < log n almost

surely. Note that dmax can never exceed n.

We are now ready to compare the spectral gaps of the

nominal topology and of the one with long range links. We

assume h ∝ n−1 in keeping with our assumption relating h
to the maximum degree. We note the following observations,

which are similar in form to some of the results in [1].

1) As the number of nodes n increases, the spectral gap

for the fixed graph varies as n−3.

2) The upper bound for the spectral gap for the graph

with large range links evaluates to

h[n1−α − n−α + 2π2n−2 − 2n−α−2] = O(n−α).

Thus, for α ≥ 3 the dominant term is also the n−3

term. Thus even if we consider the upper bound,

the presence of long range links cannot increase the

spectral gap if the links are added with too small a

probability.

3) The lower bound on the spectral gap of the case with

long range links, for large n is approximately

h[n1−α − n−α + 2π2n−2 − 2n−α−2] − (log n)2

n2
.

For α = 1, this bound evaluates to O(n−1), which is an

order of magnitude better than the nominal ring case.

This shows the huge impact of long range links, even

if they are added with a vanishingly small probability.

4) If we take α = 2 then the lower bound is not tight

enough to make any statement about the comparison

of the two regimes.

From the above observations, we can conclude that long

range links can improve the convergence rate of the con-

sensus protocols enormously. As we increase the probability,

we get a sharp increase in the convergence rate at α = 2.

This improvement in performance can be viewed as the

consequence of the onset of small world phenomena.

Similar expressions for rings in higher dimensions can be

obtained. For general graphs, it may not be possible to prove

the increase in rate due to extra edges analytically. However,

some graphs of practical concern can be well-approximated

by rings, as the number of agents increases. As an example,
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Fig. 1. Spectral gap for a ring and a line topology.
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Fig. 2. Upper and lower bounds for spectral gap for a ring and a line
topology.

Figure 1 shows the spectral gap for a ring and a line topology.

Spectral gaps are quite similar for a fairly small number of

agents. Similarly, Figure 2 shows the lower and upper bounds

for the spectral gap when edges are added with α = 1. It can

be seen that the bounds for the ring and the line topologies

match for a fairly small number of agents. Also, the bounds

seem quite tight, at least for this example.

V. SOME OTHER SCENARIOS

The present framework, methods and tools can be used to

analyze performance of the average consensus protocol when

probabilistic switching occurs due to any reason such as far-

ilures in communication. In this section, we demonstrate this

using various simple scenarios. The effect of communication

failures and constraints on consensus has also been recently

studied in [5] and [25].

A. Topology Switch due to Changing Neighbors

Consider n agents placed on a ring with n empty slots.

Being on a ring constrains each node’s neighbors to the

agent to its left and the agent to its right. We consider

a protocol in which at every time step an agent chooses

two neighbors randomly. This can be viewed as a variation

of the Gossip Algorithm proposed in [4], [10]. We model

the selection of neighbors by assuming that at every time
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step, each agent chooses a slot at random and with equal

probability among all the possibilities. Moreover, every slot

contains only one node at each time. This is equivalent to

the assumption that at each time agents randomly choose

their neighbors bi-directionally, while constraining the total

number of neighbors to two.

We wish to compare the rate of convergence of this scheme

with the nominal case in which there is a fixed ring topology.

For the fixed ring topology G0, the consensus matrix is again

circulant and the spectral gap is equal to

S.G.(fixed) = 2h[1 − cos(
2π

n
)] = 4h sin2(

π

n
).

For large n this is approximately 4π2h
n2 and varies as n−2.

For the case when topology switch occurs, we need to

compute the expected value of the Laplacian matrix. We

use the fact that L̄ii equals the expected number of agent

i’s neighbors, which is 2 in this case. Moreover, for the

non-diagonal terms, −L̄ij is equal to the probability that the

agents i and j are neighbors. Therefore, L̄ has the structure

L̄ =











2 − 2
n−1 · · · − 2

n−1

− 2
n−1 2 · · · − 2

n−1
...

...
. . .

...

− 2
n−1 − 2

n−1 · · · 2











. (4)

By exploiting the circulant structure, it is seen that

λn−1(L̄) = 2 + 2
n−1 . Therefore,

λ2(I − hL̄) = 1 − 2h − 2h

n − 1
.

Finally, to calculate the upper bound, notice that the degree

of each node is 2 with probability 1. Thus, using Proposi-

tion 3.2, the bounds on the spectral gap are

h(2 +
2

n − 1
) − 16h2 ≤ S.G.(switching) ≤ h(2 +

2

n − 1
)

Thus, it can be seen that

S.G.(fixed)

S.G.(switching)
≤ 4h sin2(π

n
)

2h + 2h
n−1 − 16h2

For the limit of large n, assuming a constant h < 1
8 , the

numerator varies as n−2 whereas the denominator varies

as n−1. Thus, the ratio approaches zero with increasing n.

This shows that even the lower bound of the spectral gap of

the switching case shows order of magnitude improvement

compared to the spectral gap of the fixed topology.

This remarkable increase in rate of convergence by switch-

ing may yield the conjecture that switching to far away

neighbors always increases the rate. This conjecture, as stated

above, is, however, false, as shown in the next subsection.

B. Erdos-Renyi Random graphs

In this sub-section we consider a case where switching to

distant neighbors does not increase the rate of convergence.

This case also yields the rate of convergence for the class

of random graphs known as Erdos-Renyi random graphs.

Consider n nodes to be present. Suppose that a link exists

between any two nodes with probability q ∈ (0, 1]. The ex-

istence of a link between any two nodes is therefore random

and independent of the other connections. We compare the

convergence rates between two cases.

1) Fixed random graph: The links are selected randomly

at time 0 and the graph stays constant after that.

2) Switched random graph: The link selection is done at

every time step. We assume that the selection is done

independently with respect to time. Thus, the random

graph at each time is independent of the choice of the

random graph at other time instants.

For the fixed random graph case, we use a high probability

bound due to Fiedler, reported in [19], [12] on the second

smallest eigenvalue of the Laplacian of a random graph. For

the limit of large n and for ǫ ∈ (0, 2), we obtain

lim
n→∞

Pr{qn −
√

(2 + ǫ)q(1 − q)n log n <

λn−1(L(G(n, q))) < qn −
√

(2 − ǫ)q(1 − q)n log n} = 1.

Therefore if a fixed random topology is used at all times,

then, with high probability

1 − hqn + h
√

(2 − ǫ)q(1 − q)n log n < λ2[I − hLfixed] <

1 − hqn + h
√

(2 + ǫ)q(1 − q)n log n.

For the switched random graph case, we calculate the

bounds given by Proposition 3.2. The expected value of the

Laplacian matrix is given by

L̄ = q









n − 1 −1 ... −1
−1 n − 1 ... −1
. . ... .

−1 −1 ... n − 1









This is again circulant and thus λn−1(L̄) = qn. Using

Proposition 3.2, we obtain the lower bound as

λ2(E[(I − hL) ⊗ (I − hL)]) > 1 − hnq.

One interesting regime to consider is when q = Θ( log n
n

).
In this regime, with high probability, a random graph is

connected [3]. For a given large n, taking q = k log n
n

with

k ≥ 2, yields

S.G.(fixed) < hqn − h
√

(2 + ǫ)q(1 − q)n log

∼ (k −
√

2k)h log n

On the other hand for the switching case we have:

S.G.(Switching) > hnq = kh log(n)

Both bounds are of the same order. This indicates that there

is no large improvement in the rate of convergence through

switching. We conjecture that for switching to help increase

the convergence rate, it is not enough to connect long range

neighbors. Instead, it seems that the expected diameter of the

graph through switching should be much smaller than that

of the fixed graph, for switching to be useful.
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C. IID Link Losses due to Communication Failures

Another important case that can lead to unintended switch-

ing between topologies is when the communication links can

be modelled according to an analog erasure model. In this

model, at each time step, a link is functional with a certain

probability. We assume that the failures for any particular

link occur independently across time and with respect to

other link failures. Moreover, we assume that the link failures

are bi-directional. Finally, for ease of presentation, we also

assume here that each link fails with the same probability p
at any time step.

We illustrate the use of our results on a 1-D lattice with

a periodic boundary condition, i.e., a ring. The spectral gap

of a ring when no link losses occur is given by

S.G.(fixed) = 2h(1 − cos
2π

n
).

If link losses occur, the average Laplacian L̄ is given by

Lij =



















2(1 − p) i = j

−(1 − p) |i − j| = 1

−(1 − p) (i, j) = (1, n) or (i, j) = (n, 1)

0 otherwise.

Thus, the second smallest eigenvalue is given by

λn−1(L̄) = 2(1 − p)(1 − cos
2π

n
).

Finally, the spectral gap due to link losses decreases at least

by
S.G.(fixed)

S.G.(losses)
≥ 1

1 − p
.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we used and built further the probabilistic

framework developed in [1] for studying the effects of

small world topologies and of switching, on the convergence

rate of consensus algorithms. We obtained bounds for the

convergence rate and provided a probabilistic interpretation

for the increase in rate of convergence provided by small

world graphs. We also showed how the models, methods and

tools developed could be used for analyzing other situations

in which probabilistic switching occurs.

This work represents a step towards a full understanding

of probabilistic switching in consensus and other distributed

algorithms. A full understanding of the variation of perfor-

mance metrics such as rate of convergence with intentional

or unintentional variations in the topology of the agents will

be very useful. As an immediate next step, the tightness

of the bounds presented needs to be characterized. From

a long term perspective, it will be interesting to relate the

spectral gap of the relevant time-varying graphs to that of

some suitable ‘mean’ graph that is time-invariant.
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