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Abstract— We develop a unifying analytical and optimization-
based framework for the design, operation and performance
evaluation of networks of dynamic autonomous agents. The
fundamental view is that agents in such a network are dynamic
entities that collaborate because via collaboration they can
accomplish objectives and goals much better than working alone,
or even accomplish objectives that they cannot achieve alone at
all. Yet the benefits derived from such collaboration require some
costs (e.g. communications), or equivalently, the collaboration
is subject to constraints. Understanding and quantifying this
tradeoff between the benefits vs the costs of collaboration,
leads to new methods that can be used to analyze, design and
control/operate networks of agents. Although the inspiration
for the framework comes from social and economic networks,
the fundamental ideas and in particular the methodology of
dynamic constrained coalitional games (DCCG) can unify
many concepts and algorithms for networks in various areas:
social networks, communication networks, sensor networks,
economic networks, biological networks, physics networks. We
then analyze a specific instance of such tradeoffs arising in the
design of security aware network protocols. We extend network
utility maximization (NUM) so as to encompass security metrics
such as “trust”. The trust values assigned to nodes are based
on interaction history and community-based monitoring. The
effect of these trust values on the resulting protocols is that in
routing and media access scheduling node trustworthiness is
automatically considered and used. We develop a distributed
algorithm for the joint physical-MAC-routing protocol design.
Our extension to NUM with security concerns leads to resilient
networks.

Keywords: coalitions; games; collaboration; security; network
utility; cross-layer.

I. INTRODUCTION

Dynamic networked systems are used as models for many
phenomena and situations in science and engineering: commu-
nication networks, collaborating robots, organizations, societal
systems and communities, commercial groups like merchant
associations and virtual corporations, social systems based on
the Internet (web-based social systems, economic systems like
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linked markets, biological systems like groups of dolphins or
insects or cells, networks of biological reactions as in systems
biology, wireless sensor networks, particle and other physics
networks. Discovering fundamental principles governing the
design-synthesis, control-operation, and performance evalua-
tion of dynamic networked systems represents a major re-
search challenge currently in science and engineering at large.
The recent emphasis on and significance of this challenge is
well described in the reports on Network Science [1], [2].

Autonomic networks rely on the collaboration of partici-
pating nodes for almost all their functionalities, for instance,
to route data between source and destination pairs that are
outside each other’s communication range. In the case of
packet forwarding, the fundamental user decision is between
forwarding or not forwarding data packets sent by other users.
Given the constraints (mostly related to energy) that the user
faces, there is a very real cost incurred when choosing to
forward.

In this paper we develop the fundamental view that agents in
such a network are dynamic entities that collaborate because
via collaboration they can accomplish objectives and goals
much better than working alone, or even accomplish objectives
that they cannot achieve alone at all. Yet the benefits derived
from such collaboration require some costs (or expenditures),
for example due to communications, or due to energy expen-
diture. Or in equivalent terms, the collaboration is subject to
constraints (static or dynamic). Understanding and quantifying
this tradeoff between the benefits vs the costs of collaboration,
lead to new methods that can be used to analyze, design
and control/operate networks of agents. Multiple metrics for
benefits and costs can be considered within this framework;
that is we can consider vector valued benefits and costs
of collaboration. Although the inspiration for the framework
comes from social and economic networks, it is our thesis
that the fundamental ideas and in particular the methodology
of dynamic constrained coalitional games can unify many
concepts and algorithms for networks in various areas.

We assume that users want to be connected to many other
users, directly (one-hop) or indirectly (multi-hop, through
other users). Connections (or links) can be physical (like
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a direct communication medium), or logical (or relational
or functional) (like members of a subunit in an organiza-
tion). Thus, the associated graphs (as well as neighborhoods)
representing these connections can be physical or logical.
By activating a communication link towards one of their
neighbors, they gain by having access to the users with which
that neighbor has activated her links, and so on, recursively.
In the meanwhile, activation of links introduces cost.

Different with previous work in the literature, we study
collaboration based on the notion of coalitions. The concept
of users being connected to each other, and acquiring access to
all the other users that each of them had so far access to, can
be well captured by coalitional game theory (also known as
cooperative game theory) [3], [4]). The key characteristic that
distinguishes cooperative game theory from non-cooperative
game theory is that players can negotiate collectively [5].

A question that has only relatively recently began to attract
attention ([6] is the first work in this area) is the actual way in
which the coalition is formed. The coalitional game is usually
modelled as a two-phase process. Players must first decide
whether or not to join a coalition. This is done by pairwise
games, in which both players have to agree to activate a link
between them and thus join the same coalition. In our work,
this pairwise game involves, for each node, a comparison
between the cost for activating the link towards the other node,
and the benefit from joining the coalition that the other player
is a member of. In the second step, players in one coalition
negotiate the payoff allocation based on the total payoff of the
coalition. The central problem is to study the convergence of
the iterated pairwise game and whether the dynamics result in
a stable coalition.

Optimization-based approaches have been extensively used
over the years to study resource allocation problems in
communication networks; examples are Kelly [7], and more
recently network utility maximization (NUM) [8]. Recent
advances in NUM driven cross-layer design [8] have led to
top-down development of next generation wireless network
architectures. By linking decomposition of the NUM prob-
lem to different layers of the network stack, we are able
to design protocols, based on NUM algorithms, with much
better performance over current network protocols. Cross-layer
design [9], [10] achieves high performance by joint design of
various layer protocols. Cross-layer design is more beneficial
in wireless networks because the wireless channel is a shared
medium where transmissions of users interfere with each other.
A scheduling policy has to resolve the contention between
various users attempting transmissions, which require global
information.

In recent years, network security has become extremely
important. Security in wireless networks is even more critical.
Nodes in a network are assigned “trust” values that indicate
their security status. These trust weights are developed by
observing directly the actions of nodes (i.e. reputations) and
by community-based monitoring [11], [12], [13], [14]. They
are disseminated via efficient methods so that they are timely
available to all nodes [15].

We investigate in this paper the critical tradeoff between
protocol performance and network security, by developing an
extension of NUM that incorporates security concerns. We
consider network flows that share the resources of a wireless
network. Each flow is described by its source-destination node
pair. The effect of these trust weights on the resulting protocols
is that in the scheduling problems involved (whether they are
at the MAC or the routing protocol) ‘node trustworthiness’ is
automatically considered and used. For example packets will
not be routed through suspicious nodes. Or suspicious nodes
will not be scheduled by the MAC protocol. The resulting
protocols render the network resilient.

The rest of the paper is organized as follows: Section II de-
scribes the mathematical framework within which we deal with
the concepts just discussed. The two-phase coalitional game
is defined in Sec. III. Section IV investigates the dynamics of
the iterated pairwise game including its convergence and the
network topology at the equilibrium. We discuss the stability
of the network at the equilibrium in constrained coalitional
games in Sect. V. Section VI introduces the system model for
secure protocols we consider in this paper, including the trust
values, utility function, interference model and the statement of
the optimization problem. Based on the dual function derived
from Sec. VI, the decomposition of the dual function is studied
in Sec. VIIL. Section VIII discusses the distributed scheduling
algorithm. Section IX summarizes our conclusions.

II. PROBLEM FORMULATION: WIRELESS
COMMUNICATIONS

The set of nodes in the network is N' = {1,2,...,n}.
The communication structure of the network is represented
by an undirected graph G, where a link between two nodes
implies that they are able to directly communicate; these
undirected links are also called pairwise links. For instance,
in wireless networks, reliable transmissions require that two
nodes cooperate in order to avoid collisions and interference.

Let GV represent the complete graph, where every node is
directly connected to every other node, and let the set G =
{G|G € GV} be the set of all possible graphs with nodes
N.If i and j are directly linked in G, we write ij € G. Let
G + ij denote the graph obtained by adding link 75 to the
existing graph G where ij ¢ G and G — ij denote the graph
obtained by severing link ¢j from the existing graph G where
ij € G (e, G+ij=GU{ij} and G —ij = G\ {ij}). The
set of nodes in graph G is N'(G) = {ili € G} and n(G) is
the number of nodes in G.

Once a link is added, two end nodes join the coalition
and agree to forward all the traffic from each other. Note
that indirect communication between two players requires that
there is a path connecting them. A path in G connecting i,
and i, is a set of distinct nodes {i1,%2,...,im} C N(G),
such that {ilig, iQig, . 7im—1im,} C G.

The communication structure G gives rise to a partition of
the node set into groups of nodes who can communicate with
each other. A coalition of G is a subgraph G’ C G, where
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Vi € N(G) and j € N(G'), i # j, there is a path in G’
connecting i and j, and ij € G implies ij € G'.

A. Collaboration gain

Users obtain benefits by joining a coalition. We use a simple
model here, whereby we assume that each node potentially
offers to other nodes benefits V' per time unit; e.g. number of
bits per time unit each node could provide — a function of the
link capacity. The potential benefit V' is an expected value,
which may be reduced during transmissions in the network.
Following the Jackson-Wolinsky connections model [16], the
gain of node i is defined as

wi(g) =Y Ve, (1)
j€G

where 7;; is the number of hops in the shortest path between
¢ and j (also known as the geodesic distance in graph theory),
and 0 < § < 1 is the communication depreciation rate. If
there is no path between ¢ and j, r;; = oco. Paths with smaller
number of hops induce higher gain. The depreciation can be
explained by communication reliability and efficiency due to
transmission failures or delay.

B. Collaboration cost

On the other hand, activating links is costly. For instance, the
cost for user ¢ to activate her communication link to user j can
be equal to the transmission energy (or power) necessary for
i to send data to j. Following common wireless propagation
and transmission power consumption models, we define the
cost ¢;; as

Cij = P d%, 2
where P is a parameter depending on the transmitter/receiver
antenna gain and the system loss not related to propagation, d;;
is the geometric distance (different from the geodesic distance
7;5), and « is the path loss exponent depending on the specific
propagation environment.

III. COALITION FORMATION GAME

The coalition formation is modelled as a two-phase process,
which is called coalition formation game in the literature [4].

A. Phase I: pairwise game

The pairwise game is modelled as an iterated process in
which individual nodes activate and delete links based on the
improvement that the resulting networks offers them relative
to the current network. Each user receives a payoff based on
the network configuration that is in place.

Initially the n nodes are disconnected. The nodes meet over
time and have the opportunity to form links with each other.
Time, 7', is divided into periods and is modelled as a count-
able, infinite set, 7 = {1,2,...,t,...}. Let G® represent the
network that exists at the end of period ¢. A strategy of node ¢
is a vector, defined as v; = (Vi 15+, Vijim1s Yisit1s- -2 Yin)s
where v; ; € {0,1} for each j # i. 7, ; = 1 states that node
7 wants to form a link with node j, while «y; ; = O states that
i does not. The set of all strategies of node ¢ is denoted by

I';. The set I' =1'y x --- x T'y, is the strategy space of all the
nodes. A link ¢j is formed in network G only if ~; ; = 1 and
;i = 1. A strategy profile () = (v;®, ..., ~v,®)) at time
period ¢ corresponds to the network G(*) at time ¢.

Define N;(G) = {j € N|ij € G} as the neighbor set of
node i. Furthermore, a pair of nodes are connected in network
G if there is a path between i and j, denoted as ¢ L 7. We
define C;(G) = {j e Ni & J} as the set of all nodes with
whom 7 communicates, either directly or through other nodes.
The payoff of node i from the network G is defined as

Ul(G) = wz(G) - Ci(G) = Z V(Srij_l _ Z Pd;);

JECi(G) JEN(Q)
(3)

The iterated pairwise game is repeated in each time period
t=1,2,.... Let p;; be the probability that the node pair 7j
is selected, in each time period, to play the pairwise game. If
both ¢5 and ik are selected, ¢ cannot play two games simulta-
neously. This dynamic process requires no communication or
synchronization for selecting node pairs and playing games.
Each pair of nodes tosses a coin to decide whether they need
play the game. If a node is selected to play the game, he
first checks if he plays two or more games simultaneously.
If yes, it stops all of the games and informs its neighbors.
Therefore, the dynamic pairwise game is purely distributed.
The nodes act myopically, activating a link if it makes each at
least as well off and one strictly better off, and deleting the link
if its deletion makes either player better off. Mathematically
speaking, if only node pair ¢j is selected in time period ¢, then
the network G(**1) has either
o GUY = GO — 5 if v;(GY — ij) > v;(GY) or
v; (GY —ij) > v;(GW), or

o G = G 445 if v;(GY 4 ij) > v;(G®) and
v; (G +ij) > v;(GD), or v;(GP +ij) > v;(GW)
and v;(G® +ij) > v;(GM), or

o GUtD = G if none of the above is satisfied.

If after some time period ¢, no additional links are formed
or severed, then network formation has reached a stable state.
Thus a coalition or coalitions are formed at the stable state.
Then the coalition formation game moves to the second phase,
in which users act together to achieve maximum payoffs.

B. Phase II: coalitional game

A coalition is a subset of nodes that is connected in the
subgraph induced by the active links. If two nodes of separate
coalitions join, then the two coalitions merge into one. In
this paper, we are interested in the total productivity of the
coalition formed, how it is allocated among the individual
nodes and the stability of the coalition.

Coalition formation has been widely studied in economics
and sociology in the context of coalitional games [4], [17].
In our game, some nodes are not directly connected with
each other; therefore the game we consider has to take
the communication constraints into consideration. Myerson
[18] was the first to introduce a new game associated with
communication constraints, the constrained coalitional game,
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which incorporates both the possible gains from cooperation
as modelled by the coalitional game and the restrictions on
communication reflected by the communication network.

An important concept in coalitional games is the char-
acteristic function v [19]. Since the game we study has
communication constraints, the characteristic function v is
defined on a particular network rather than on a set of nodes
in general coalition games, i.e., v : GYN = R defined on all
subsets of G with the convention: v({)) = 0. Notice that in our
work the empty set () represents a graph where there is no link
between any two nodes in the graph. Given G € GV, v(G)
is interpreted as the maximum payoff the network G can get
given the network structure.

In our case, the value of v is the maximum aggregate of the
payoffs from all nodes in the graph

v(G) =Y ui(G) “)
i€G
A payoff allocation rule x : G — R™ describes how the
value v(@), associated with each network, is distributed to the
individual nodes. z;(G) is the payoff of node i from network
G and under the characteristic function v. For a graph G’,
which is a subgraph of G, define

2(G) = (@)
i€G

The payoff allocation is feasible if x(G) < v(G) and
efficient if (G) = v(G). In our case, the payoff may not be
transferable, so the payoff allocation rule represents the payoff
that each node receives from the network, i.e., z;(G) = v;(G).
It is easy to show that such a payoff allocation rule is feasible
and efficient. We will discuss the stability of the constrained
coalitional game in detail in Sect. V.

IV. DYNAMICS OF THE ITERATED PAIRWISE GAME
A. Convergence

We are interested in the conditions under which all nodes in
the network are connected, i.e., C; = N, Vi € N. The coalition
that contains all the nodes is called the “grand coalition”. To
study convergence, we define pairwise stability.

Definition 1 A network G is pairwise stable if
o Forall ij € G, v;(G) > v;(G — ij)
and Uj(G) Z Uj(G — ’Lj),
o For all ij ¢ G, if v;(G) < v;(G +ij)
then v;(G) > v,;(G + ij) or if v;(G) < v;(G +ij)
then v;(G) > v;(G + ij).

Then we have the following result (see [20] for the proof):

Lemma 1: The iterated pairwise game converges to a pair-
wise stable network or a cycle of networks.

Since it is possible to converge to an inefficient, pairwise
stable network, some random perturbations are needed to help
the network jump out of the inefficient stable network. In
evolutionary games, mutations are introduced such that the
evolution of the game is modelled as a Markov chain, where
the states of the Markov chain are the strategy profiles ~. The

Number of Coalitions

Fig. 1. Number of coalitions vs payoff V. P = 10, = 2.

work of Harsanyi and Selten [21] and Kardori, et al, [22] show
that by letting the mutation probability go to 0 in a certain
way, the game converges to a unique Pareto equilibrium. The
mutations for network formation mean that when two nodes
agree to form a link, with a probability €, the link is not
formed, or when a link is to be deleted (one node chooses
to sever it), it is not deleted with probability e.

One of the main differences our model has compared to
other game models [23] is that the cost is not a constant, but
a function of the distance between two nodes. Therefore, the
physical locations of nodes in the network are important for
the coalition formation. We consider the network as a random
network where nodes are placed according to a uniform
Poisson point process on the [0,1] x [0,1] square with the
periodic boundary. We are mainly concerned with results
that occur with high probability as n — oco. Based on the
connectivity analysis of the continuous percolation model in
[24] and [25], we have (see [20] for the proof):

Theorem 2: The coalition formation at the stable state de-
pends on the parameters ¢ for gain and « for cost.

D) Given § =0,V = P (l52)”
establishing the grand coalition.

is a sharp threshold for

o If V is greater than the threshold, w.h.p., all nodes
collaborate with at least one of their neighbors.

e If V is less than the threshold, w.h.p., the network
is partitioned into small coalitions.

2) For 0 < ¢ < 1, the threshold is less than P %
In simulation experiments, 20 nodes are randomly placed
on a [0, 1] x [0, 1] square. Two nodes are selected to play the
pairwise game according to a fixed probability 1/n(n — 1),
where n = 20. Figure 1 shows the number of coalitions when
the network reaches the pairwise stable state. The threshold

o

2
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(a) P = 0.5 (low cost); complete graph

Fig. 2.

predicted by our analytic results does exist for different §’s.
When § = 1, the phase transition happens very sharply; a
grand coalition is formed. On the other hand, for 6 = 0, only
nodes closer to each other may form a link.

B. Topology

Three figures in Fig. 2 give the topology of a network
formed with different cost parameters. As we can observe,
when cost is low, the network forms as a complete graph. The
other extreme end is when the cost is high, which results in
a partitioned network. The most valuable topology is shown
in Fig. 2(b). This figure represents the most common scenario
in real life. Interestingly, the topology shows the small-world
property: most links are connected between neighbors with
few long-range shortcuts. Recently, there has been substan-
tial research on the small-world model in various complex
networks, such as the Internet and biological systems. Our
formation game converges to a small world topology as well.
This further proves that the small world model is an efficient
communication structure.

V. STABILITY OF COALITIONS

We have also investigated a stronger stability concept : a
core stable network [26].

Definition 2 A network G C GV is core stable, if there does
not exist any set of nodes S C A/ and G < GV such that:

o 2;(G) > 2;(G) for all i € S and there is at least one

node with strict inequality,

o ifijeGbutij¢ G, theni,jeS,

o if ij ¢ G but ij € G, then either i € S and/or j € S.
Core stability allows that a node is able to interact and
coordinate with any other node in the same coalition. This
stronger stability is very useful in real networks, where users
in the network can act together to achieve better payoffs.

VI. SYSTEM MODEL FOR SECURE PROTOCOLS
In this section, we introduce an extension of Network Utility
Maximization (NUM) [8], [7], [27], as a method to design
network protocols, from a cross-layer perspective, that take
into account security or information assurance considerations.

(b) P = 2 (middle cost); small world topology

Topology of the network with various cost parameters. V' = 1,6 = 0.2, a = 2 for all three figures.

All previous work on NUM assumes that nodes function
correctly. For instance, intermediate nodes always successfully
forward all packets, and they follow the routing and scheduling
protocols. However, nodes do not always function correctly in
reality. They may be compromised by attackers, their commu-
nications may be blocked or interfered by attackers, or they
may just simply malfunction. Wireless networks are especially
vulnerable to attacks because of the inherent properties of the
shared wireless media.

We consider a multihop wireless network with node set AV.
Let £ denote the set of links 75 such that the transmission
from node 7 to node j is possible. The interference constraints
among transmission links will be described later. The wireless
network can be described as a graph (N, £).

A. Trust

The particular concept of security we are using is “trust”.
Trust is a very critical concept not only in computer networks,
but also in various other networks that involve intelligent de-
cisions, such as social, economic and biological networks. All
the connections and communications in these networks imply
the existence of trust. Trust management is to collect, analyze
and present trust related evidence and to make assessments
and decisions regarding trust relationships between entities in a
network [28]. The collection of trust evidence and assessments
and decisions of trust are beyond the scope of this paper; see
[11], [12], [13], [14]. We assume that there are mechanisms
to efficiently evaluate the ‘trustworthiness’ of nodes in the
network. For instance, in wireless environments, monitoring
mechanisms can help detect the behaviors of neighboring
nodes and thus infer their trust values [29]. In this paper, we
assume the trust value of node 7 is fixed and denoted as v;. The
methods and algorithms extend easily to time varying values
of trust.

B. Data flows and utility functions

There are F' flows that share the network resources and each
flow f is associated with a source node sy and a destination
node dy. The set of all F' flows is denoted as F. Let xy be
the rate with which data is sent from s; to d; over possibly
multiple paths and multiple hops.

(c) P =4 (high cost); partitioned network
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1/3 data

Fig. 3. An example network with 2 routes for flow from s to d.

In our model, the flow can use different routes in the
network. Suppose the set of routes for flow f is Ry. A
route 7 € Ry is a set of nodes on the route, i, i € r
means that node ¢ is on route r. We define the trust value (or
trustworthiness) of route r as the product of the trust values
of nodes on the route, that is

Uy = H Vi
€T
Clearly, there are several different ways to assign a trust value
to a route given the trust values of the nodes on it; see
[12], [14], [13]. We have selected this particular way here
to simplify the exposition. Let p, be the portion of data of
flow f transmitted on route r. The aggregate trust value of

flow f is
gf = Z PrUp. )

rERy

For instance, Fig. 3 shows the flow f from node s to d. The
flow uses two routes. One third passes through nodes 1, 2
and 3, while the rest passes through nodes 1, 4 and 5. The
aggregate trust value of flow f is

1 2
gr = U1(§1)2U3 + 504115)- (6)

gy represents a measure of the trust (or security quality) of
all routes that serve flow f traffic. It is an average. There
are several ways to assign a trust value to the set of routes
serving a flow; see [12], [13]. We have used this particular
one for simplicity.

Naturally users prefer data to be transmitted on paths
with high trust values. To represent this user preference we
associate a utility function with each flow f, which is a
function of the data rate x; and of the trust values of the
paths that serve the traffic of flow f. There are several ways
to define such utility functions, and their dependence on rates
and trust. Here we use utility functions of the form Uy (zsgy),
which reflect the “utility” of flow f when it can successfully
transmit at data rate zy. We assume, as is usual in NUM
[8], [27], that U f() is strictly concave, nondecreasing and
continuously differentiable. For two flows with the same data
rate, the one using paths with higher aggregate trust value has

higher utility. We let £; = x;gy denote the ‘effective data
rate’ for flow f, from the perspective of security (or trust).

C. Interference model and stability

The data rate of each link depends on the transmission
power and interference from other transmissions. We let
u(H, P, BW, Ny) denote the rate a particular link transmits,
as a function of the power assigned P = [P;;,ij € L], the
gain matrix H, the noise power Ny, and the link bandwidth
BW . We assume H, BW and Ny are constants (i.e. not design
variables) so the rate function depends only on P.

We let o = {115 }ijec denote the rate vector over all links in
L. Then p = u(P). We let  denote a bounded region of | L]
dimensions, representing the set of p that can be achieved in a
given time slot due to the interference constraints [30]. Notice
that © may not be convex. We let ) := Co{Q} denote the
convex hull of €. {2 can be achieved by timesharing between
different rate vectors in §2. ) is convex, closed and bounded.

The capacity region A of the network [30] is the largest set
of rate vectors x such that x € A is a necessary condition for
network stability under any scheduling policy. We assume that
nodes keep a queue for each flow. Let uzfj denote the amount
of capacity on link ¢j that is allocated for flow f. We have
the following definition of the capacity region [30], [8].

Definition 3 The capacity region, A, of the network contains
the set of flow rates x for which there exists p that satisfies
the following [30].

1) pf; >0 forall ij € £ and for all f € F.
2) for all f € F and for all i € N, we have

SNoouli— > wli—apii=sp) >0 (D
J:(6.3)eL J:GH)eL
3 {Xpul} et
1(i = sy) is an indicator function. 1(i = s¢) = 1 if ¢ is the
source of flow f, and 1(i = s;) = 0 otherwise. The condition

2) is the flow constraint that must hold at each node, and the
condition 3) captures the interference constraints.

VII. UTILITY OPTIMIZATION AND DUAL DECOMPOSITION

Our goal is to design a scheduling mechanism such that the
flow rate z; solves the following optimization problem:

> Uy(iy) ®)
f

T €A )
(10

maximizeg

subject to
:f?f:gf‘JTf for all f e F

We refer to the above as the primal problem. Due to the
strict concavity assumption of Uy (-) and the convexity of the
capacity region, there exists a unique optimizer of the primal
problem, which we refer as &*.

In order for us to provide a distributed solution to the
problem we use the technique of dual decomposition [31],
[27]. By decomposing the optimization problem, we develop
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decentralized algorithms. Some of the optimal algorithms
require centralized information and thus are not feasible for
distributed implementation.

Notice that the variables gy and &y are coupled by the
second constraint Eqn. (10). In this work, we take the log of
variables to decouple gy and £ and log change of variables
and constants: :%’f = logdy, g7 = loggy, 2’y = logzy, and
Ut(2%) = Uy(e”s). Now the primal problem is separable.

After the log change, we decompose the primal problem by
defining Langrange multipliers )\{ and vy that are associated
with the stability constraints stated in Eqn. (9) and (10). We
get the following dual function:

N, ez'f} (11)

Zmz}x {l/fI/f —
T

+ Y max {Uf(#}) — vpds} (12)
s

L\ v,2,z,pn,9) =

+ me}xzufg} (13)
g
+ max Z > ul,(\ = M) aa
HGQ ijeEL fEF
The dual objective function is
h(Av)= sup LA\v,& x, u,g) (15)
_TEA
rr=gj-xy

For a given A and v, there are now three, decoupled,
maximization problems we can solve separately, i.e., source
rate control, routing and scheduling. By solving for these
independently, we can produce &'* (A, v), 2" (A, v), p*(\,v)
and g*(A,v). Given these values, we can then solve the
dual problem by minimizing h(A, ) over A,v. Because the
capacity region A is a convex set, there is no duality gap
between the primal and the dual. In the rest of this section,
we discuss the dual decomposition techniques in details.

The data rate of flow f is determined by the maximization
over 7’ in the problem represented by Eqn. (11) and Eqn. (12)
taken together. Note that each source node adjusts its rate using
only local information Ag‘ ; and vy, thus the source rate control
can be distributed across source nodes.

Eqn. (13) determines the route.

g’ = argmax Z vigh (16)

f
We have that the optimal routing for flow f is to always choose
the route with the highest trust value. Since the trust values
are fixed, routing can be decided off-line.
Eqgn. (14) determines the schedule.

P = argmax o Z Z u{j(Af -

ijEL fEF

a7

To maximize Eqn. (17), the term inside the second summa-
tion should take one single flow f such that (] — )\Jf) is
maximized. Therefore we have that

- D),

uf =g if f = argmaxj()\ (18)

and ufj = 0 otherwise. The schedule of link rates in Eqn. (18)
is the same as the back-pressure scheduler introduced by
Tassiulas [32]. Notice that the maximization in Eqn. (18) is
performed over ), which requires centralized knowledge. In
the next section, we propose a distributed algorithm which
optimizes the network utility.

VIII. DISTRIBUTED ALGORITHM

The scheduling sub-problem discussed in the last section re-
quires global knowledge on the rate vector, which becomes the
bottleneck for solutions in wireless networks. In this section,
we develop a distributed implementation of the maximization
problem. We assume that time is divided into slots. At each
time slot, source nodes choose the flow data rate and the
scheduling policy selects data to be forwarded on each link.

The source node of each flow uses its local multiplier and
the utility function associated with that flow to update the flow
rate in an iterative manner. One example of the rate controller
is directly derived from Eqn. (11) and Eqn. (12):

et +1] =
et +1] =

i}, a9
0)

argmax,, {v[tz} — A, [fle”
— vy [ﬂi}}

The subgradient of h(A,v) is given by

argmax;, {Uf (%)

oh w1 (s

o = 2 M2l mi—eTli=s), @D
7 jujeL jijeL

oh .

oy 9§+l — & (22)

We can then use the following subgradient method to solve
the dual problem.

Mie+1) = M -88 | Y wlH-
jujeL
N
Yool —eti=sp) | b, 23)
JujeLl
velt+ 11 = {vs[t] - B[] + <[t — 24 18) } T2

where B[t],t = 1,2,... is a sequence of positive step sizes.
;[ gy[tl, #%[t] and 2';[t] are defined as earlier with time
slot t. According to Theorem 2.3 in [33], we know that there is
no duality gap, the iterations converge to an @', which solves
the maximization problem, and such a z’ is the unique optimal
solution.

Notice that the scheduling problem of Eqn. (17) requires
global information. In this work, we consider the solution to
the scheduling problem that is coupled to the power control
problem, as in Lin and Shroff [34]. The link transmission
powers determine an explicit form for the allowable rate
region Q). The scheduling problem is posed as an optimization
problem, whose solution gives us the transmission powers. At
optimality, each node should transmit at full power or shut
off, and also should transmit to at most one neighbor - the
solution is thus distributed.
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IX. CONCLUSIONS

In this paper, we studied autonomic networks, which rely
on the collaboration of participating nodes. There are funda-
mental tradeoffs between the benefit from collaboration and
the required cost for collaboration. This conflict naturally led
us to game-theoretic methods.

We developed constrained coalitional games as a promising
methodology to analyze such fundamental tradeoffs. These are
two-phase coalition formation games. In the first phase, users
play pairwise games to decide whether to form or sever a
link between them based on their payoffs. This phase leads
to coalition formation. In the second phase, users in the same
coalition interact to maximize the total payoff. We investigated
the convergence of the iterated pairwise games and derived
conditions for forming a grand coalition. The network topol-
ogy of the resulting coalition was also investigated. We also
studied the stability of the formed coalition in the sense of
core stability.

We next investigated an important application of such trade-
offs by introducing security considerations in the cross layer
design of network protocols via network utility maximization.
The specific concept of security we used is “trust”. Users get
higher utility by transmitting data through nodes of higher
trust values. Thus, trust weights are used as parameters in
the optimization problem. Through decomposition of the dual,
we showed that the trustworthiness of nodes is automatically
considered in the routing and scheduling problems. We also
developed a decentralized algorithms that achieves utility
maximization. The resulting trust aware protocols are resilient
to network errors and attacks.
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