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Abstract

Since process models are typically not known exactly in real problems, it is important to estimate the process parameters before one
applies the optimal control to a process. In this paper, the Dasgupta–Huang optimal bounding ellipsoid (DHOBE) algorithm is employed
to estimate process parameters in semiconductor process run-to-run (RtR) control. At each iteration, the DHOBE algorithm returns an
outer bounding ellipsoid of the likely process parameter set. If the vector center of the ellipsoid is taken as the estimate of the process
parameter vector, then a model-reference controller results; if the vector within the ellipsoid that produces the worst expected cost is taken
as the process parameter estimate, then a worst-case controller results. These two methods are compared with other RtR control schemes:
the exponentially weighted moving average (EWMA) method and the optimizing adaptive quality controller (OAQC). Simulation results
show that the performance of the model-reference RtR controller based on the DHOBE algorithm is comparable to or better than that of
the other two RtR controllers in some speci:c examples of semiconductor processes.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In industries such as semiconductor manufacturing,
limitations and costs impose a need for adjusting process
parameters on a run-to-run (RtR) basis. This need has orig-
inated a collection of techniques called RtR control (Baras
& Patel, 1996; Sachs, Hu, & Ingolfsson, 1995; Boning,
Moyne, & Smith, 1995; Castillo & Yeh, 1998; Hankinson,
Vincent, Irani, & Khargonekar, 1997; Ingolfsson & Sachs,
1993; Ning, 1996; Deng, 1999). RtR control is a form of
discrete-time process control in which the product recipe
with respect to a particular equipment process is modi:ed
ex situ, i.e. between equipment “runs”, so as to com-
pensate for the eHects of process drifts, large shifts, and
other disturbances to keep the outputs at the prescribed
target values. A drift disturbance, which may be produced
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by the equipment aging, change of environment or other
factors, causes a slow and constant change of the outputs of
a process. DiHerent from a drift disturbance, a shift distur-
bance (step disturbance) causes a large change of the outputs
of a process in a few runs. It may be produced by the failure
of a component, change of the operator or other reasons.
Generally, a RtR controller is designed in the following

way. First, it computes an optimal control based on the ini-
tial process model. The initial process model can be derived
from former oH-line experiments such as using the response
surface model (RSM) method. The controller does not mod-
ify the recipe during a run. At the end of the current run,
the controller updates the process model based on the new
measurements. Finally, at the beginning of the next run, it
adjusts the recipe according to the updated process model.
A typical block diagram of a RtR controller is illustrated
in Fig. 1. The reason why it generates the new recipe from
the post-process measurements on a run-to-run basis is, on
one hand, lack of on-line sensors for the process. On the
other hand, frequent changes of inputs to the process may
increase the variability of the process’s output (Sachs et al.,
1995). Sometimes, a deadband is utilized in order to make
the model changes less frequent.
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Fig. 1. Structure of a RtR controller.

Currently, there are three main RtR control schemes
available: 1 The exponentially weighted moving aver-
age (EWMA) method, the least-squares estimation (LSE)
method and the set-valued RtR controller.

1. The EWMAmethod (Sachs et al., 1995) is widely used
in RtR control for its simplicity and eOciency to compensate
for smooth drifts and other small disturbances. The EWMA
method uses a linear (aOne) model to approximate a pro-
cess and only updates the oHset term in the model. There
are many modi:cations to the EWMA controller. For ex-
ample, a deadband may be added to the EWMA controller
to further reduce the variation of the process output (Sachs
et al., 1995). Statistical methods can be combined with the
EWMA controller to identify the existence of a shift and
estimate the shift’s magnitude. Then a rapid mode can be
applied by adjusting the model parameters quickly (Sachs
et al., 1995). The weight of the EWMA controller is an im-
portant factor that aHects its performance. In (Smith & Bon-
ing, 1997), the authors use a neural network to adjust the
weight of the EWMA controller. The neural network has
to be trained oH-line before it is deployed. A double expo-
nential forecasting :lter, which has two EWMA modules,
is also developed to predict and remove drifts in a process
(Butler & Stefani, 1994).
2. The LSE method. Typical examples are the optimiz-

ing adaptive quality controller (OAQC) (Castillo & Yeh,

1 There are also some other RtR control methods such as the proba-
bilistic approach (Hamby, Kabamba, & Khargonekar, 1998) and the ma-
chine learning approach Ning, 1996. They are not so eHective and will
not be introduced in this paper.

1998) and the Kalman :lter based approach (Palmer, Ren,
& Spanos, 1996). The OAQC uses a second-order model to
approximate a process. It may have better performance than
the EWMA controller in controlling a non-linear process. All
the coeOcients of the model in the OAQC can be adjusted
from run to run (Castillo & Yeh, 1998). The Kalman :lter
based approach uses a linear model to describe a process.
DiHerent from an EWMA controller, the Kalman :lter based
method can adaptively adjust both the slope and the intercept
terms (Palmmer et al., 1996). Therefore, the LSE method
based RtR controllers may have stronger tracking ability
than the EWMA controller.
3. The set-valued RtR control method (Baras & Patel,

1996). Due to measurement errors and environment noises,
it is diOcult to :nd an exact process model. The location
of the likely process model parameters for the next opti-
mization run form a set. We could be quite certain that
the parameter vector is somewhere in this set. Due to dis-
turbances, the exact model parameters are unknown. An
outer-bounding ellipsoid is usually used to approximate the
set of likely parameter values; the ellipsoid is used for its
simplicity. In (Baras & Patel, 1996), they apply the optimal
volume ellipsoid (OVE) algorithm (Cheung, Yurkovich, &
Passino, 1991) to :nd the bounding ellipsoid. In this paper,
we are going to apply a more general ellipsoid algorithm,
the Dasgupta–Huang optimal bounded ellipsoid (DHOBE)
algorithm (Dasgupta & Huang, 1987) to approximate the
likely model parameter set. The DHOBE algorithm updates
the parameter estimates only when the new measurements
contain new information. This reduces signi:cantly the com-
putational load for the set-valued RtR control method to
estimate the process model parameters. The DHOBE algo-
rithm was improved in (Rao & Huang, 1993) by introduc-
ing a rescue procedure. When the process undergoes abrupt
shifts and modeling errors, the rescue procedure improves
the performance of the algorithm and accordingly that of the
controller. Therefore, a DHOBE-algorithm-based controller
may work well for large step disturbances and model er-
rors, which may be hard for other control methods to com-
pensate for. Moreover, the DHOBE-algorithm-based con-
troller can use a nth-order polynomial model to approximate
a process and adjust all the coeOcients adaptively. Hence,
it may even have stronger tracking performance than the
LSE-method-based controllers.
At each iteration, the DHOBE algorithm returns an outer

bounding ellipsoid that contains the true parameter vector
with high probability. If the vector center of the ellipsoid is
taken as the estimate of the parameter vector, the explicit
model update is implemented and leads to a model-reference
method. If we search for the worst expected output that may
be produced by a vector within the ellipsoid and then mini-
mize the worst-case cost, a set-valued worst-case controller
is obtained.
The DHOBE algorithm and the design of the corre-

sponding controllers will be introduced in Section 2. The
DHOBE-algorithm-based controllers will be compared with
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the EWMA controller and the OAQC in Section 3. Section 4
includes our conclusions from our experiments/simulations.

2. The RtR controller based on the DHOBE algorithm

The DHOBE algorithm is employed to obtain the ellipsoid
that bounds the likely process model parameter set.

2.1. The DHOBE algorithm

Assume that a multi-input and single-output process has
the following model:

yt = �∗Tt ut + �t ; (1)

where t ∈R is the discrete time index, t=1; 2; : : : ; yt ∈R is
the scalar output of the process, �∗t ∈RN is the true process
parameter vector and ut ∈U ⊂ RN is the input vector. U is
the control space. �t ∈R is the noise term. Assume that �t
is bounded by a :nite number �∈R+, i.e., |�t |6 �. 2
Suppose that at time instant t − 1, the membership set of

the process model parameters is bounded by the ellipsoid
Et−1. The ellipsoid is de:ned by its center �t−1 ∈RN , its
orientation matrix Pt−1 ∈RN×N and its size (the uncertainty
parameter) r2t−1 ∈R+

Et−1 = {�∈RN : [�− �t−1]TP−1
t−1[�− �t−1]6 r2t−1}: (2)

At the next time instant t, we have available a new ob-
servation of the process output yt . Then we can utilize it to
obtain the set St in which the process parameters will reside
under the constraint of the noise as follows:

St = {�∈RN : [yt − � Tut]26 �2}: (3)

St will intersect with Et−1, which enables us to iteratively
enclose the intersection of the two sets by a new ellipsoid
Et as follows (Rao & Huang, 1993):

Et = {�∈RN : (1− �t)[�− �t−1]TP−1
t−1[�− �t−1]

+ �t[yt − � Tut]2

6 (1− �t)r2t−1 + �t�2}; (4)

where the updating gain �t (06 �t6 1) is introduced. We
can also consider (1 − �t) as the forgetting factor. �t is
chosen so as to minimize r2t in order to decrease the size of
the ellipsoid from run to run. The iteration of the DHOBE
algorithm is shown in Fig. 2(a). The DHOBE algorithm can
be generalized as follows:
Step 1: Given an observed output yt and the input vector

ut , compute the error residual �t by

�t = yt − uTt �t−1: (5)

2 In practice, the noise bound may be unknown. How to select the noise
bound for a speci:c application will be introduced later in this paper.
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Fig. 2. (a) Iteration of the bounding ellipsoid, where Et is found to include
the intersection Et−1 ∩ St (Dasgupta & Huang, 1987). (b) The DHOBE
algorithm rescue procedure. The size of Et−1 will be enlarged so that
the intersection of St and the enlarged ellipsoid Et−1 is not empty. This
rescue procedure will migrate the center of the ellipsoid towards the real
parameter vector �∗t .

Step 2: If

r2t−1 + �
2
t 6 �

2; (6)

then the noise is thought negligible and the bounding ellip-
soid is not updated; otherwise, go to Step 3.
Step 3: Compute two intermediate scalar variables:
Step 3a:

Gt = uTt Pt−1ut : (7)

Step 3b:

�t = (�2 − r2t−1)=�2t : (8)

Step 4: Compute the updating factor �t

�t =min(�max; �t); (9)

where

�t =




�max if �2t = 0;

(1− �t)=2 if Gt = 1;

1−
√
Gt=1+�k (Gt−1)
1−Gt if �k(Gt − 1)¿− 1;

�max if �k(Gt − 1)6− 1

(10)
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and �max is a design parameter smaller than one, since
�t = 1 implies that Pt will be singular (Dasgupta & Huang,
1987). This step returns a �t such that r2t (�t)6 r

2
t (�) for all

�∈ [0; �max], which means that the size r2t of the ellipsoid
Et will be minimized by �t .
Step 5: Update the parameter uncertainty factor by

(Dasgupta & Huang, 1987)

r2t := (1− �t)r2t−1 + �t�2 −
�t(1− �t)�2t
1− �t + �tGt : (11)

Step 6: This is the rescue procedure developed by Rao
and Huang (1993). It is particularly necessary when the pro-
cess parameters change abruptly in a few steps. In this case,
the intersection of Et−1 and St may be empty as illustrated in
Fig. 2(b). If the intersection is empty, then r2t becomes neg-
ative which indicates that there is no bounding ellipsoid. At
this moment, the rescue procedure is engaged to enlarge the
size of Et−1 so that the intersection of St and the enlarged
ellipsoid Et−1 is not empty. This rescue procedure will mi-
grate the center of the ellipsoid towards the real parameter
vector �∗t .
When r2t ¿ 0, proceed to Step 7; otherwise, compute

�=



�2t + �

2 − 2�|�t | if �t �= �max;

�max

[
�2t

1−�max +�maxGt −
�2

1−�max

]
if �t=�max:

(12)

Reset the uncertainty parameter for time instant t − 1

r2t−1 := � + �; (13)

then return to Step 3b. Here � is called “inTation parameter”.
It is user-speci:ed and usually set as 1 (McCarthy & Wells,
1997).
Step 7: Update the ellipsoid parameters

Pt :=
1

1− �t

[
Pt−1 − �tPt−1utu

T
t Pt−1

1− �t + �tGt

]
(14)

�t := �t−1 + �tPtut�t : (15)

At the beginning of the DHOBE algorithm, we let P0 = I
and give a large value to r0 (e.g., r20=100) to include the real
model parameters. If there are l outputs in a process, then
correspondingly there are l feasible parameter sets. Hence,
l ellipsoids should be used to estimate the process param-
eters. By employing the DHOBE algorithm, we can design
the model-reference RtR controller or the worst-case RtR
controller.

2.2. The model-reference RtR controller based on the
DHOBE algorithm

In the model-reference RtR controller, the vector center of
the ellipsoid is used as the estimate of the process parameter
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Fig. 3. Block diagram for the DHOBE algorithm based model-reference
RtR controller.

vector. The recipe is generated by minimizing the squared
error between the model’s predicted outputs and the target
values. We will call the resulting controller DHOBE-MR.
The block diagram of the DHOBE-MR controller is shown
in Fig. 3.
At the beginning, the following parameters related to the

internal process model need to be set:

• The initial model parameters, which might be obtained
from oH-line experiments.

• The target values of the process outputs.
• The constraints of the inputs.
• The initial recipe to minimize the cost function.

We also need to set the following controller parameters:

• The noise bound �.
• The updating factor’s upperbound �max.
• The inTation parameter � (normally set to 1).
• The ellipsoid’s orientation matrix P0 at the beginning
(normally set to unit matrix I).

• The ellipsoid’s initial size r20 that can be set to be a large
number to contain the real parameters.
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The noise bound and the upper bound of the updating factor
can be obtained from oH-line experiments and past experi-
ences. From Step 2 of the DHOBE algorithm, it is easy to
see that when the noise bound is large enough, the process
model will not be updated until the process’s output signi:-
cantly deviates from the target. Large deviations are not de-
sired in semiconductor manufacturing. If � is chosen smaller
than the actual bound, the bounding ellipsoid may not con-
tain the real parameters and then the rescue procedure will
be triggered. In our simulations, the process noise and mea-
surement noise are combined into a noise with standard de-
viation �w. We take 3�w as the noise bound and it is found
that this bound is appropriate enough for the simulated cir-
cumstances. The rescue step included in the DHOBE algo-
rithm is intended to return the process parameters within the
bounding ellipsoid, in the rare occasions when the distur-
bances place the parameters outside the bounding ellipsoid.
The setting of the maximum value of the updating factor
(�max) is also important. It controls the rate of convergence
of the algorithm. If it is very small, convergence of the al-
gorithm is slow. If it is too large, the size of the ellipsoid
(r2) may change so rapidly that the ellipsoid’s boundary ex-
cludes the real process parameter (�∗t ). If �

∗
t ends up too far

outside the ellipsoid, then the intersection of St and Et−1 is
empty and the rescue procedure is invoked. The re-inTated
ellipsoid may miss �∗t again at the next update cycle, result-
ing in a non-converging oscillation of the ellipsoid. In the
experiments, we use 0.4 as the maximum value. The control
results are usually satisfactory with the given parameters.
After obtaining the process model for the current run, the

recipe can be calculated by minimizing a prede:ned cost
function. For a multi-input single-output system, the cost
function is given by g(u) = (T − �Tt u)2, where T ∈R is
the target, �t ∈Rn is the parameter vector and u∈Rn is the
input vector. The recipe is obtained by minimizing the cost
function

ut = argmin
u∈U

g(u): (16)

When there are multiple responses, the cost function may
take the form

g(u) = (T − �Tt u)TW (T − �Tt u); (17)

where �t ∈Rn×l is the parameter matrix, l is the dimension
of the output vector, and T ∈Rl is the target value vector.
W is a positive de:nite diagonal weight matrix. The value of
each element in W represents the priority of each response.
The most important output is assigned the largest weight.
The recipe is again obtained byminimizing the cost function.
If the change of recipe incurs large costs, then this factor

can also be taken into consideration:

g(u) = {w1(T − � Tu)TW (T − � Tu)
+w2(u− ut−1)T!(u− ut−1)}; (18)

where ! is a positive de:nite diagonal weight matrix. If
the cost for changing a certain input is high, then we can
assign a large weight to that particular input. w1¿ 0 and
w2¿ 0 are weight terms also. In general, the control space
U is convex. Therefore, we are facing a standard convex
constrained optimization problem (with the speci:cation as
above, this is a quadratic programming problem, which can
be solved very fast by standard algorithms and commercially
available software). Because our focus is on the process
model estimation, the optimization part of the controller will
not be introduced in detail in this paper.
After the inputs are adjusted accordingly, they are kept

constant during the current run. At the end of the present run,
we measure the output of the process. The residual error is
calculated, and if necessary, the process model is updated.

2.3. The worst-case RtR controller based on the DHOBE
algorithm

DiHerent from the DHOBE-MR controller, the worst-case
controller searches for the recipe to minimize the worst-case
cost (Baras & Patel, 1996). Consider a MIMO system with
n inputs and l outputs. Then we need l ellipsoids to estimate
the models for the outputs. Suppose that the noise bound for
the ith output is �i. At run t, the ith ellipsoid generated by
the DHOBE algorithm has the vector center � ∗

i; t , orientation
Pi; t and size r2i; t . The optimization problem is given by

min
u∈U

max
y t6y6 Uy t

f(y); (19)

where f(y) is the cost function with respect to the output
vector y, and Uy t and y t are the upper bound vector and
lower bound vector, respectively. The elements of Uy t and
y t can be obtained via

y i; t = � ∗T
i; t u−

√
uTPi; tr2i; tu− �i; (20)

Uy i; t = � ∗T
i; t u+

√
uTPi; tr2i; tu+ �i: (21)

In order to simplify the calculation, we impose the restric-
tion that the cost function f(y) is convex with respect to y
(e.g., typically we use as f(y) a quadratic function of the
deviation of the output vector y from the target value vector
T ). Therefore, the maximum cost will be achieved at one of
the vertices of the box de:ned by Uy t and y t (Baras & Patel,
1996).
Compared with the model-reference approach, the

worst-case approach is much more complex, since we have
to solve a min–max problem. We will call the corresponding
controller DHOBE-SV.

3. Simulations

In our simulations, we assume that the disturbances are
unknown. The controllers’ function is to adjust the process
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value is :xed at 1700. The drift value is equal to −17 (unknown to the controllers) for each run and the variance of Gaussian noise is equal to 665.64
(unknown to the controllers).

models and compensate for those disturbances by post-
measurements.
The DHOBE-algorithm-based controllers were compared

with the EWMA controller (Sachs et al., 1995) and the
OAQC (Castillo & Yeh, 1998). We performed 20 indepen-
dent simulations for each scenario considered. Because our
objective is to maintain the process outputs on targets, the
main performance metric is RMSD(yi−Ti), the square root
mean square deviation of the process’s ith output from its
target value. 3 The smaller its value, the better. In the rest
of the paper, we will use the notation RMSD for simplicity.

3.1. Comparison of the DHOBE-MR and DHOBE-SV
controllers with the EWMA controller

The underlying process model is obtained from a chemi-
cal mechanical planarization (CMP) process (Ning, 1996),
where the units are dropped for simplicity:

yt =−1382:60 + [50:18;−6:65; 163:4; 8:45]uTt
+wt + �t; (22)

where wt is a normally distributed random variable with
variance 665.64 and � = −17 is the drift value, which are
assumed to be unknown to the controllers. The output tar-
get value is :xed at 1700. The controllers’ objective is

3 In (Castillo & Yeh, 1998), the authors use the notation MSD(yi−Ti)
for this performance metric.

to maintain the output yt as close to the target value as
possible.
First, we assumed that we had perfect knowledge of the

process model parameters at the beginning. The controllers
were fully tuned to compensate for the disturbances based
on post-measurements. 4 One of the 20 simulations is shown
in Fig. 4. The weight of the EWMA controller in the :g-
ure is 0.6 (weight value was selected by optimizing perfor-
mance over the weight range from 0.1 to 0.9, see the :rst
row in Table 1(a)). The three straight lines are the +3�, tar-
get and −3� lines, respectively. The uncontrolled process
diverges due to the drifts. All the controlled processes stay
within the 3� area most of the time. Because the weight of
the EWMA controller plays an important role in its perfor-
mance, we tested diHerent weights for the EWMA controller.
The RMSDs of the EWMA controller for diHerent weights
are listed in the :rst row of Table 1 (a). The RMSDs of the
DHOBE-MR controller and the DHOBE-SV controller are
listed in Table 1(b). From the table, one can see that the
EWMA controller with the weights 0.6 and 0.7 gives slightly
smaller RMSD than the DHOBE-MR controller for the un-
known drift case. The RMSD of the DHOBE-SV controller
is much larger than that of the DHOBE-MR controller in this
case. The large RMSD of the DHOBE-SV controller may be
due to the fact that this controller generates the recipe that

4 By adding an appropriate deadband to each controller, we may further
reduce the RMSD produced by the controller. In our simulations, no
deadband was used for anyone of the controllers.
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Table 1
RMSDs of the EWMA controller with diHerent weights under various disturbances. (b) RMSDs of the DHOBE-MR controller and the DHOBE-SV
controller under various disturbances.

(a) RMDs of the EWMA

Weight 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Drift 135.39 82.03 61.48 52.62 47.03 45.38 45.39 49.95 67.78
Shift 322.55 214.33 172.94 152.50 141.85 136.46 140.31 155.31 168.09
Model error 164.52 134.80 122.81 124.41 130.97 148.46 191.55 364.00 1040.67

(b) RMDs of the DHOBE-MR and DHOBE-SV controllers
Noises DHOBE-MR DHOBE-SV
Drift 46.80 72.28
Shift 113.3 152.2
Model error 84.04 117.12
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Fig. 5. Comparison of the EWMA controller, DHOBE-MR controller and the DHOBE-SV controller under shift, drift and Gaussian noise. The response
target value is :xed at 1700. The drift value is equal to −17 (unknown to the controllers) for each run and the variance of Gaussian noise is equal to
665.64 (unknown to the controllers). The step disturbance occurs at run 10 by changing the values of the ‘real’ process parameters.

minimizes the worst-case cost, whilst this worst case rarely
happens in practice. In other words, this controller is very
pessimistic or very conservative.
Next, a shift disturbance was added to the underlying pro-

cess (i.e., the disturbances included unknown drift, unknown
shift and unknown Gaussian noise). The occurrence of the
shift and its magnitude were unknown to the controller a
priori. One of the 20 simulation runs is shown in Fig. 5. The
weight of the EWMA controller selected in this :gure is 0.6,
based on the RMSD values in the second row of Table 1(a),
which clearly show this weight to be the best performing
weight. The RMSDs of the DHOBE-MR and DHOBE-SV
controllers are provided in Table 1(b). From these exper-
imental data, one can see that the DHOBE-MR controller

gives the smallest RMSD among the three controllers in this
case. The EWMA controller with weights 0.5, 0.6 and 0.7
results in smaller RMSDs than the DHOBE-SV controller. 5

In real life, the underlying process model is unknown. To
address this model uncertainty, in the following simulations
we performed, the initial process model parameters used
by the controllers were set at 80% of the true parameter
values of the underlying process. This large model error

5 One may be able to improve the performance of the EWMA controller
by adding a rapid mode. This mode requires statistical methods to detect
the magnitude of the shift and adjust the process model rapidly. Because
there was no standard procedure on how to adjust the model, we did not
apply the rapid mode in the experiments.
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Fig. 6. Comparison of the EWMA controller, DHOBE-MR controller and the DHOBE-SV controller under unknown model error, drift and Gaussian
noise. The response target value is :xed at 1700. The drift value is equal to −17 (unknown to the controllers) for each run and the variance of Gaussian
noise is equal to 665.64 (unknown to the controllers).

should cause the output of the process to change abruptly at
the beginning of the simulation. This was indeed observed,
as shown in Fig. 6. The weight of the EWMA controller
is 0.3 in this :gure based on the performance evaluation
results in the third row of Table 1(a). The disturbances in-
cluded unknown model error, unknown drift and unknown
Gaussian noise. The experimental performance data for
the DHOBE-MR and DHOBE-SV controllers are shown in
Table 1(b). One can see that the DHOBE-MR controller
results in the smallest RMSD in the model-error case and
the DHOBE-SV controller also gives smaller RMSD than
the EWMA controller with all possible weights we tested.
In summary, when there are large model errors or large

step disturbances, the DHOBE-MR controller may perform
better than the EWMA controller with the best performing
weight. The RMSD of the DHOBE-MR controller is 17%
smaller in the shift case or 32% smaller in the model-error
case than that of the EWMA controller with the best weight
we tested. When the disturbances are small drifts and/or
other small noises, the EWMA controller with a proper
weight may perform slightly better than the DHOBE-MR
controller. In the examples we run, we observed this in two
out of nine experiments in the drift case, and the diHerence
was less than 3%. The DHOBE-MR controller generally
outperforms the DHOBE-SV controller, which is more con-
servative in its adjustment of the recipe. Therefore, when
applying the DHOBE algorithm, we recommend the use of
the model-reference version of the controller.

3.2. Comparison of the DHOBE-MR controller with the
OAQC

Detailed descriptions of the OAQC can be found in
(Castillo & Yeh, 1998). To make the comparison between
the DHOBE-MR controller and the OAQC fair, we used
the exact experimental conditions as described in (Castillo
& Yeh, 1998). 6

(1) Process model considered as “real”. The underlying
“real” process is given by (Castillo & Yeh, 1998):

y1 = 1563:5 + 159:3u1 − 38:2u2 + 178:9u3 + 24:9u4
− 67:2u1u2 − 46:2u21 − 19:2u22 − 28:9u23
− 12u1t′ + 116u4t′ − 50:4t′ + 20:4t′2 + '1; t ; (23)

y2 = 254 + 32:6u1 + 113:2u2 + 32:6u3 + 37:1u4

− 36:8u1u2 + 57:3u4t′ − 2:42t′ + '2; t ; (24)

where t′ = (t − 53)=53; '1; t ∼ N (0; 602); '2; t ∼ N (0; 302),
and y1 is the removal rate; its target value is 2000, y2 is the
with-in wafer non-uniformity; its target value is 100, u1 is
the platen speed, u2 is the back pressure, u3 is the polishing
downforce, u4 is the pro:le.

6 Because the parameters of the OAQC are unknown, we could not
replicate the OAQC results of (Castillo & Yeh, 1998) in our simulations.
Instead, the simulation data of the OAQC performance were used as
appeared in (Castillo & Yeh, 1998).
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Fig. 7. A CMP process controlled by the DHOBE-MR controller. The outputs are the removal rate and the non-uniformity respectively. (a) Scenario 1:
A quadratic model was used to approximate the underlying process. (b) Scenario 2: A linear model was used to approximate the underlying process.
(c) Scenario 3: A step disturbance with magnitude −100 happened to response 1 at run 20; another step disturbance with magnitude 50 happened to
response 2 at run 30.

The model is rather complex as it includes both quadratic
and two factor interaction terms. The inputs u1; u2; u3 and
u4 are scaled to :t in the range [ − 1; 1]. The target values
for y1 and y2 may be unrealistic (Castillo & Yeh, 1998).
These values are set in order to evaluate the performance
of the algorithm. For y1, the larger the value, the better the
performance; and for y2, the smaller the value, the better
the performance.
Following (Castillo & Yeh, 1998) to approximate the un-

derlying non-linear process, we used exactly the same two
reduced models as in (Castillo & Yeh, 1998), a quadratic
form model and a linear form model, respectively. These
reduced models provide us with an opportunity to test the
controllers’ robustness to model errors for non-linear pro-
cesses.
(2) Approximate the underlying process—a quadratic

model (scenario 1). The ‘real’ process model of Eqs. (23)
and (24) was unknown to the DHOBE-MR controller. As in
(Castillo & Yeh, 1998), the following quadratic model was

used to approximate the ‘real’ process:

y1 = 1600 + 150u1 − 40u2 + 180u3 + 25u4 − 30u21
− 20u22 − 25u23 − 60u1u2 − 0:9t (25)

and

y2 = 250 + 30u1 + 100u2 + 20u3 + 35u4

− 30u1u2 + 0:05t: (26)

As is easily seen, the approximate model is diHerent from
the underlying process model, which means that there exists
a model error at the beginning of the control experiment.
Moreover, the noises in Eqs. (23) and (24) were unknown
to the DHOBE-MR controller, so that the controller had
to compensate for such disturbances by post-measurements.
Our simulation results of the process (simulated by Eqs.
(23) and (24)) controlled by the DHOBE-MR controller
(designed using the reduced model of Eqs. (25) and (26))
are shown in Fig. 7(a). The two dashed lines in the plot
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Table 2
Performance measure (RMSDs) of the OAQC and the DHOBE-MR controller for the three scenarios. The response target values for y1 and y2 are equal
to 2000 and 100, respectively. (The data for the OAQC are from Castillo and Yeh (1998).)

Scenario Method Uy 1 Uy 2 Sy1 Sy2 RMSD1 RMSD2

1 OAQC 1719.7 168.4 70.4 40.1 288.9 79.2
1 DHOBE-MR 1754.7 157.3 84.5 35.0 259.7 67.5
2 OAQC 1718.2 165.7 72.1 42.0 291.0 78.2
2 DHOBE-MR 1781.9 165.0 84.5 36.1 234.2 74.8
3 OAQC 1661.2 189.2 89.2 43.5 350.2 99.2
3 DHOBE-MR 1741.4 189.1 108.7 35.6 280.8 96.0

are the outputs of the uncontrolled process. The solid lines
in the plot with symbols (i.e., circles or squares) depict the
controlled outputs. One can see that the controlled process
outputs (the removal rate and the non-uniformity) are closer
to the targets than the uncontrolled outputs during the entire
simulation run.
(3)Approximate the underlying process—a linear model

(Scenario 2). In this scenario, following Castillo and Yeh
(1998), we used a linear model to :t the underlying process

y1 = 1600 + 150u1 − 40u2 + 180u3 + 25u4 − 0:9t; (27)

y2 = 250 + 30u1 + 100u2 + 30u3 + 35u4 + 0:05t: (28)

As the underlying process is approximated well by the linear
model (based on the results of (Castillo & Yeh, 1998) and
our own simulations), the DHOBE-MR controller based on
this model also performs well (Fig. 7(b)).
(4) A quadratic model with step disturbances (Scenario

3). In this simulation, following Castillo and Yeh (1998),
two shifts (step disturbances) were fed into the underly-
ing process. The quadratic initial model was used and the
constraints were the same as before. The shift for the :rst
response y1 happened at t = 20 with magnitude −100. At
t=30, another shift occurred with magnitude 50 for y2. 7 Our
simulation results are shown in Fig. 7(c). The DHOBE-MR
controller performs well in this case also.
(5) Performance analysis. The :nal results with regard

to the statistical variance analysis are listed in Table 2. 8 The
following data are also listed in Table 2 for the convenience
of comparison.

• Uy i: the mean of the sampling values from the ith output
of the ‘real’ process.

• Syi : the standard deviation of the ith output of the ‘real’
process. The smaller its value, the better.

Table 2 shows that the mean values of the process re-
sponses (outputs) controlled by the DHOBE-MR controller

7 The magnitudes of these shifts were too small to be discerned with the
other noises in (Castillo & Yeh, 1998). However, to make the comparison
fair, we used the same values as in (Castillo & Yeh, 1998).
8 The data on the OAQC performance provided here follow precisely

the results in (Castillo & Yeh, 1998).

are closer to the target values than those of the OAQC. The
RMSDs of the outputs controlled by the DHOBE-MR con-
troller are smaller than those of the OAQC. Only the stan-
dard deviations of response 1 controlled by the DHOBE-MR
controller are larger than those of the OAQC. But standard
deviation is not the performance metric of interest. There-
fore, the DHOBE-MR controller performs slightly better
than the OAQC in all scenarios. For more comparisons of the
DHOBE-algorithm-based RtR controllers with the OAQC,
we refer the reader to (Deng, 1999).

4. Conclusions

In this paper, the DHOBE algorithm is used to estimate
process model parameters. Depending on how we apply
the DHOBE algorithm leads to diHerent control schemes.
If the vector center of the ellipsoid is taken as the estimate
of the parameter vector, then it leads to the DHOBE-MR
controller. If we instead search for the recipe to minimize
the largest expected cost within the feasible set, then the
DHOBE-SV controller results. Applying the DHOBE algo-
rithm reduces signi:cantly the computational cost for the
set-valued method to estimate the process model. The res-
cue procedure of the DHOBE algorithm ensures that under
large disturbances, the controller will return the process out-
puts to targets quickly. The DHOBE-MR controller is sim-
pler and less conservative than the DHOBE-SV controller,
which tries to minimize the worst-case cost. Simulation
results show that the DHOBE-MR controller generally out-
performs the DHOBE-SV controller. Therefore, we recom-
mend to use the DHOBE-MR controller in applications.
Compared with the EWMA controller and the OAQC,

the DHOBE-MR controller has comparative or even bet-
ter performance under various conditions in our simula-
tions. The major advantage of the DHOBE-MR controller
may be its ability to compensate for large model errors and
shifts. Finally, the noise bound is usually unknown in real
life. Therefore, we usually need to :nd the proper noise
bound by oH-line experiments. There is an adaptive algo-
rithm to :nd the noise bound on-line for the DHOBE algo-
rithm (Deller, Nayeri, & Odeh, 1993). We will integrate it
into the DHOBE-MR controller in the near future.



C. Zhang et al. / Automatica 39 (2003) 35–45 45

References

Baras, S. J., & Patel, S. N. (1996). Designing response surface
model-based run-by-run controllers: A worst case approach. IEEE
Transactions on Components Packaging and Manufacturing
Technology, Part C, Manufacturing, 19(2), 98–104.

Boning, D., Moyne, W., & Smith, T. (1995). Run by run control
of chemical-mechanical polishing. 1995 IEEE/CPMT International
Electronics Manufacturing Technology Symposium (pp. 81–87).

Butler, S. W., & Stefani, J. A. (1994). Supervisory run-to-run control of
polysilicon gate etch using in situ ellipsometry. IEEE Transactions
on Semiconductor Manufacturing, 7(2), 193–201.

Castillo, E. D., & Yeh, Y. J. (1998). An adaptive run-to-run optimizing
controller for linear and nonlinear semiconductor processes. IEEE
Transactions on Semiconductor Manufacturing, 11(2), 285–295.

Cheung, F. M., Yurkovich, S., & Passino, M. K. (1991). An optimal
volume ellipsoid algorithm for parameter set estimation. Proceedings
of the 30th conference on decision and control.

Dasgupta, S., & Huang, F. Y. (1987). Asymptotically convergent modi:ed
recursive least-squares with data-dependent updating and forgetting
factor for systems with bounded noise. IEEE Transactions on
Information Theory, IT-33(3), 383–392.

Deller, J. R., Nayeri, M., & Odeh, S. F. (1993). Least-square identi:cation
with error bounds for real-time signal processing and control.
Proceedings of the IEEE, 81(6), 815–849.

Deng, H. (1999). Run to run controller for semiconductor manufacturing.
Master Thesis, University of Maryland, College Park.

Hamby, E. S., Kabamba, P. T., & Khargonekar, P. (1998). A probabilistic
approach to run-to-run control. IEEE Transactions on Semiconductor
Manufacturing, 11(4), 654–669.

Hankinson, M., Vincent, T., Irani, K., & Khargonekar, P. (1997).
Integrated real-time and run-to-run control of etch depth in reactive
etching. IEEE Transactions on Semiconductor Manufacturing, 10,
121–130.

Ingolfsson, A., & Sachs, E. (1993). Stability and sensitivity of an EWMA
controller. Journal of Quality Technology, 25, 271–287.

McCarthy, G. S., & Wells, B. R. (1997). Model order reduction for
optimal bounding ellipsoid channel models. IEEE Transactions on
Magnetics, 33(4), 2552–2568.

Ning, Z. (1996). A comparative analysis of run-to-run control algorithms
in the semiconductor manufacturing industry. 1996 IEEE/SEMI
Advanced Semiconductor Manufacturing Conference (pp. 375–381).

Palmer, E., Ren, W., & Spanos, C. J. (1996). Control of photoresist
properties: A Kalman :lter based approach. IEEE Transactions on
Semiconductor Manufacturing, 9(2), 208–214.

Rao, K. A., & Huang, Y. (1993). Tracking characteristics of an
OBE parameter-estimation algorithm. IEEE Transactions on Signal
Processing, 41(3), 1140–1148.

Sachs, E., Hu, A., & Ingolfsson, A. (1995). Run by run process
control: Combining SPC and feedback control. IEEE Transactions on
Semiconduct. Manufacturing, 8, 26–43.

Smith, T. H., & Boning, D. S. (1997). A self-tuning EWMA controller
utilizing arti:cial neural network function approximation techniques.
IEEE Transactions on Semiconductor Manufacturing, 20(2),
121–132.

Chang Zhang received the B.Eng. degree
from Dept. of Automation and the BS degree
from Dept. of Business Management in Ts-
inghua University, Beijing, China, in 1994.
In 1997, he received the M.Eng. degree from
Dept. of Automation, Tsinghua University.
He obtained MS degree from Electrical and
Computer Engineering department, Univer-
sity of Maryland, College Park, USA in
1999. Currently, he is a Ph.D. candidate and
research assistant at University of Maryland,
College Park, USA. His research interests

include optimization of large-scale communication and control systems,
process control and robust control, reinforcement learning, and signal
processing.

Hao Deng obtained his BS degree from
the Automation Department of Tianjin Uni-
versity, Tianjin, PR China in 1991. After-
wards he worked for Honeywell China Inc
as an Engineer. From 1997, he began study-
ing towards the MS degree in Electrical and
Computer Engineering Department of Uni-
versity of Maryland at College Park, Mary-
land, USA. At the same time, he worked
as a research assistant for the “Run by Run
Control for Semiconductor Manufacturing”
project. He received his MS degree in 1999

from University of Maryland at College Park with a thesis on the same
subject. Currently, he is a control system engineer in Bechtel Power
Corporation, USA.

John S. Baras was born in Piraeus, Greece,
on March 13, 1948. He received the B.S.
in Electrical Engineering with highest
distinction from the National Technical
University of Athens, Greece, in 1970. He
received the M.S. and Ph.D. degrees in
Applied Mathematics from Harvard Uni-
versity, Cambridge, MA, in 1971 and 1973,
respectively. Since 1973 he has been with
the Electrical and Computer Engineering
Department, and the Applied Mathematics
Faculty, at the University of Maryland,
College Park, where he is currently a

Professor holding a permanent joint appointment with the ISR. He is
also an AOliate Professor of Computer Science. From 1985 to 1991 he
was the Founding Director of the Institute for Systems Research. On
February 1990 he was appointed to the Lockheed Martin Chair in Sys-
tems Engineering. Since 1991 he has been the Director of the Center
for Satellite and Hybrid Communication Networks, a NASA Center for
the Commercial Development of Space, which he co-founded. Dr. Baras
has held visiting research scholar positions with Stanford, MIT, Harvard
University, the Institute National de Reserche en Informatique et en Au-
tomatique, and the University of California Berkeley.
He has numerous publications in control and communication systems,

and is the co-editor of Recent Progress in Stochastic Calculus, Springer,
1990. Dr. Baras holds two patents and has four patent applications
pending. Professor Baras’ research interests include satellite and hybrid
communication networks, integrated network management systems, fast
Internet services via hybrid, satellite and wireless networks, network
security, stochastic systems, robust control of nonlinear systems, real-time
parallel architectures for nonlinear signal processing, intelligent control
systems, expert and symbolic systems for control and communication sys-
tems synthesis, distributed parameter systems, planning and optimization,
real-time architectures for intelligent control, speech and image under-
standing, biomimetic algorithms and systems for signal processing and
sensor networks, intelligent manufacturing of smart materials, integrated
product-process design.
Among his awards are: 1978, 1983 and 1993 Naval Research Labora-

tory Research (Alan Berman) Publication Awards; the 1980 Outstanding
Paper Award of the IEEE Control Systems Society; 1991 and 1994 Out-
standing Invention of the Year Awards from the University of Maryland;
Outstanding Paper Award, “ATM in Hybrid Networks”, at Design Super-
Con 1996; 1996, MIPS Research Award of Excellence for Outstanding
Contributions in Advancing Maryland Industry; 1998, the Mancur Olson
Research Achievement Award, from the University of Maryland College
Park.
Professor Baras is a Fellow of the IEEE. He has consulted extensively

with industry and government on various automation and telecommunica-
tion problems. He has served in: Board of Governors of the IEEE Control
Systems Society; IEEE Engineering R& D Committee; Aerospace Indus-
tries Association advisory committee on advanced sensors; IEEE Fellow
evaluation committee. He is currently serving on the editorial boards of
Mathematics of Control, Signals, and Systems, of Systems and Control:
Foundations and Applications, of IMA J. of Mathematical Control and
Information, of Systems Automation-Research and Applications.


	Run-to-run control methods based on the DHOBE algorithm
	Introduction
	The RtR controller based on the DHOBE algorithm
	The DHOBE algorithm
	The model-reference RtR controller based on the DHOBE algorithm
	The worst-case RtR controller based on the DHOBE algorithm

	Simulations
	Comparison of the DHOBE-MR and DHOBE-SV controllers with the EWMA controller
	Comparison of the DHOBE-MR controller with the OAQC

	Conclusions
	References


