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On the Convergence of the Inverses of
Toeplitz Matrices and Its Applications

Feng-Wen SunMember, IEEEYimin Jiang Member, IEEEand John S. Bara&ellow, IEEE

Abstract—Many issues in signal processing involve the inverses Toeplitz, though it was shown in [3] and [4] that such an in-

of Toeplitz matrices. One widely used technique is to replace verse can be decomposed into multiplication and summation of
Toeplitz matrices with their associated circulant matrices, based Toeplitz matrices

on the well-known fact that Toeplitz matrices asymptotically . . .
converge to their associated circulant matrices in the weak sense. One technique to tackle the problem is to exploit the rela-

This often leads to considerable simplification. However, it is well tion between Toeplitz matrices and their associated circulant
known that such a weak convergence cannot be strengthened into matrices. Ann, x n matrix is called acirculant matrix if its
strong convergence. Itis this fact that severely limits the usefulness (4, )th entry is only a function ofi — j) mod n. In partic-

of the close relation between Toeplitz matrices and circulant 5, ‘o the family of Toeplitz matrices defined by the sequence
matrices. Observing that communication receiver design often ¢ family of thei iated circulant matri be d
needs to seek optimality in regard to a data sequence transmitted { i}, afamily o (_alr assoc_:la e C|r_cu ant matrices can be de-
within finite duration, we define the finite-term strong convergence fined through the discrete-time Fourier transform (DTFT) of the

regarding two families of matrices. We present a condition under sequencét;}.Let F(\) denote the DTFT of¢;}, i.e.,
which the inverses of a Toeplitz matrix converges in the strong

sense to a circulant matrix for finite-term quadratic forms. This > ik
builds a critical link in the application of the convergence theorems F(A) = Z tre I
for the inverses of Toeplitz matrices since the weak convergence k=—o0

generally finds its usefulness in issues associated with minimum

mean squared error and the finite-term strong convergence Note thatF () is real due to the Hermitian constraint. L&f,
is useful in issues associated with the maximum-likelihood or denote the unitary matrix defined as

maximum a posterioriprinciples.

. ) . . 1 1 1
Index Terms—Circulant matrix, maximum a posteriori, max- ' '
imum likelihood, strong convergence, Toeplitz matrix. 1 1 e—i(27/n) e e—1(27(n—=1)/n)
U,=—
|. INTRODUCTION | e—iC@rn=1/n) .. g=i@r(n-1)(n—1)/n)
FAMILY of Toeplitz matricesT’,, is defined by a sequence 1)
of complex numberdt¢;;i = ..., —1,0, 1, ...} such

that the entry ofl’,, at theith row andjth column is equal to andD,, denote the diagonal matrix with thith diagonal entry

ti—j,i.e., T, = {t;_;}. We restrict our discussion to the casequal toy; , = F(2wi/n), i.e.,

thatt_; = t7, wheret? is the complex conjugate of. With this

restriction.T’,, becomes Hermitian. Toeplitz Hermitian matrices D,, = diag{po,n, t1,n, -+ n-1,n}- (2)

play a pivotal role in signal processing. In fact, what s really rel- .

evant is the inverse of such a matrix rather than the matrix itsélrf1e matrix

for many applications. For instance,tif represents the auto-

correlation of a stationary random process, the inver$®, ok

associated with the joint probability density functionro€on-

secutive samples of the random procesdillering problems,

such an INVErse appears in the Wlener—_Hopf equatu_)n [, [Zlivith C,, often leads to very useful and dramatic simplification
One of the difficulties in analyzing the inverse matrices arls?cs),

. . o the problems at hand. This is due to the fact that the inverse
from the fact that the inverse of a Toeplitz matrix is no longer . o . .
of a circulant matrix is still circulant, which can be diagonal-

ized by the discrete Fourier transform (DFT). The DFT-based
eigendecomposition af',, usually provides additional insight
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The best known convergence is the weak convergence, whichWhen the strong convergence is of interest, it is worth men-

is based on the weak norm defined forsarx n matrix A = tioning that Baxter [16], [17] showed that all the entries of any

{a;j} as fixedrow of ', * uniformly converge under the Paley—Wiener
condition. The standard spectral factorization theorem can be

n—1 n—1 used to give a closed-form formula for the entries of the con-
n—1 Z Z lai;]? . (4) verged inverse matrix. Actually, Baxter's results can be used to

i=0 j=0 show thatT",, ! can converge to a circulant matrix in the strong

) sense only when each of tlg,’s is an identity matrix.
It can be shown that the Toeplitz matff, converges td’, In [12], it is shown that the inverse oftadirectionalinfinite-

in the weak sense as long ()| is bounded [S], [6}: Note  gimension Toeplitz matri’,, with its (i, j)th entry equal to
thatT’, converging toC’, may not necessarily mean tHBf, " ;; - has a circulant inverse. Bidirectional infinity means that
converges t&@;, " evenifT,, ~ does exist. A sufficient condition and;j range from—oo to co. Note that the result in [12] does

for the weak convergence of the inverse is that the strong N indicate in any way whether the finite-dimension matrices
of T',” andC,," is uniformly bounded [6]. The strong norm forp—1 conyerge to the infinite-dimension matrices. This result is

a Hermitian matrixA can be defined as often mistakenly quoted as the theoretical basis for replacing the
oH Ax inverse of a Toeplitz matrix with a circulant matrix for quadratic
41 = max | 257 forms.

The association between a Toeplitz matrix and a circulant ma-
where the maximum is over all the vectors of the same dimetix was also exploited for iterative computation of the inverse
sion asA. The strong norm is also called thpectrum nornfior  of the original Toeplitz matrix, where a circulant matrix is used
a Hermitian matrix. In [7], the weak convergence was extendgd a preconditioner to reduce the computation load and improve
to a different family of circulant matrice€',, for the case that the stability of the numerical algorithms [18]-[20]. For precon-
tx = t_r, whereC),, depends only om;, k = 0, ..., n — 1 ditioning, the major issues include the selection of the precondi-
rather than the entire sequence. Specifically, the diagonal @ning circulant matrix and the distribution of the eigenvalues
tries of D,,, a diagonal matrix, are taken as thosdofT',U,’  of the preconditioned matri€ T (T is a Toeplitz matrixC
and agairC,, = UL D, U,,. In this case, théi, j)th entry of isits preconditioner). In order to speed up the convergence of an

C,, equals [7] iterative algorithm, it is desirable to make the eigenvalues of the
i — j| preconditioned matrix cluster around a single value. For detalils,
g + J [tn,‘i,ﬂ — t|i,j|] . see [18] and the references therein. As pointed out by Chan and
n

Ng [18], the circulant approximation in preconditioningnist
When the conditiort, = ¢_; does not hold, a different family to replace the Toeplitz matrix with a circulant matrix in the sub-
of C,, with the (i, j)th entry equal td_;_;| +t,_|;_; can be sequent computation, and the preconditioning does not alter the
defined [6]. It can be shown th&t, converges ta,, andC,, solution to the Toeplitz systems.
in the weak sense. The convergence can be readily extended tBhe objective of this paper is to extend the convergence the-
the inverse of these matrices [6], [7]. orems to a form of strong convergence such that a large class
Examining the definition of the weak norm in (4), we carf communication receiver design problems involving the max-
see that the weak convergence is in the mean sense due tarthen-likelihood (ML) and maximuna posteriori(MAP) prin-
division factor1/n. Indeed, several successful applications afiples can benefit from the relation between Toeplitz matrices
the weak approximation theory relate to the evaluation of tlaad circulant matrices.
mean of some quantities, such as source coding and filteringdesigners of communication systems often seek optimality
problems based on the minimum mean squared error (MMSHB) a data sequence transmitted within finite duration, such
criterion, or computing the mean of a quadratic form associated a finite-length training sequence for synchronization, or a
with a random process [6]-[9]. finite-length spreading sequence for spread spectrum. Based
However, the usefulness of all these convergence theoreomsthis observation, in Section Il, we introduce the definition
is severely limited due to the fact that many applications actaf thefinite-term strong convergencegarding two families of
ally involve quadratic forms df;l. Even ifT;1 converges to matrices. We demonstrate that the design schemes based on the
C;l in the weak sense, substitutiﬁ@g1 with C’;l may not ML and MAP principles can benefit from such a convergence.
yield correct results since the convergence of a quadratic fofithe finite-term strong convergence separates the length of the
can only be guaranteed if the convergence is in the strong sertissnsmission window from that of the observation window.
Note that in the literature, replacing the inverse of a ToepliBy increasing the observation window, the receiver design
matrix with a circulant matrix in evaluating quadratic forms asapproaches the optimal solution when the noise incurred in
sociated with likelihood functions or Wiener filtering problemshe system is correlated. Therefore, we can often obtain a
has been widely used [10]-[15]. However, such an approximaesed-form formula for the optimal receiver design through
tion was used in the cited references without theoretical basisibstituting Toeplitz matrices with their associated circulant
It may potentially lead to erroneous results. matrices when the condition of the finite-term strong con-
lin[5], C., is defined through the inverse DFT, i.e., thie diagonal entry of vergencg Is.met' Such a convergence builds a C”tlca.l link in
D, is equal taF(—2xi/n) andU., is replaced by . The current notation th€ application of the convergence theorems for the inverses
is more consistent with engineering conventions. of Toeplitz matrices since the well-known weak convergence
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generally finds its usefulness in issues associated with tiseto detect the user dafa, and/or estimate the parametd?s
MMSE criterion and the finite-term strong convergence isased on the observatign We further assume that the signal
useful in issues associated with the ML and MAP rules. I5(I,, P) has afinite number of nonzero terms. The finite-length
Section 1ll, we further present a condition under which thassumption is valid for many receiver design problems in dig-
inverse of Toeplitz matrices converges to a circulant matrix ital communications. Actually, communication signals are al-
the finite-term strong sense. In Section 1V, we demonstratenays both time and bandwidth limited in an engineering sense.
typical application of the finite-term strong convergence bljor instance, the number of nonzero terms can be equal to the
deriving a novel timing/phase estimator which does not requilength of a training sequence for data-aided synchronization,
an integer number of samples per symbol. This can significantdy the length of a spread sequence for spread spectrum sys-
reduce the sampling rate requirement for high-speed modéms, etc. Due to the correlation of the noise, optimal receiving

design. Section V concludes the paper. schemes require that the observation window be larger than the
signal transmission window. Therefore, the observation vector
[I. FINITE-TERM STRONG CONVERGENCE y typically is longer than the transmitted data for optimal per-

formance, i.e.$(I,, P) can be modeled as the formin (6). Note
that it is unlikely to transmit an isolated data segment in engi-
leering practice. For instance, a training sequence is typically
followed by user data, and a spreading sequence is followed
z=(0,...,0,z_r, ..., T9, ..., 71, 0, ..., 0) by another spreading sequence. However, it is a common prac-
whereL does not increase with, the dimension of the vector, fice 10 analyze and design a communication system based on
We denote such a quadratic form adirite-term quadratic On€-Shot observation of the designated data since it can often
form. The finite-term strong convergence for two families ofv0id unnecessary complication of the following or preceding
Hermitian matrices is defined as follows. data which are not used in the receiver design. Separating the
observation window and the transmission window can largely
Deﬁnition 1: Fortwo families Of Hermitian matrice&n and enhance the usefu|ness Of the Convergence theorem to be pre_

Consider the quadratic formHT,jl:c with z having only
a finite number of nonzero terms, without loss of generalit
assuming in the middle of the vector, i.e.,

B, consider the quadratic form sented. In[10], [14], [15], besides ignoring the condition for the
(A — Bn)z|| 5y convergence, the authors assume that only for long transmission
1 l|lz|] ’ ®) is it possible to replace the Toeplitz matrices with their associ-

A ated circulant matrices.
where||z|| = vz is the vector norm for a vectar, the max-  Fgliowing the Gaussian distribution assumption, the likeli-

imum is over all then-dimension vectors of the form hood function ofs(I,,, P) can be written as
z=(0,...,0,x_1,..., 20, ..., 21,0,...,0). (6)

, f(yls(Lu, P))
If (5) converges to zero for any giveh asn — oo, we say
that A,, converges taB,, in the finite-term strong sense. The = Cexp <_l (y — s(I, p))HTgl(y — s(1,, p))) (8)
following well-known equation for a Hermitian matrik estab- 2 '

lishes the link between the quadratic form and the spectral NojiRereT  is the autocovariance matrix of the noise prochiss
n

[6] which is Toeplitz and Hermitian, and is a constant indepen-
27 Az | Az|| dent of the transmitte_d signa[. The ML algor'ithm is_ to fir‘_\d the
max| =y |~ X Il = |Au| I, and P that maximize the likelihood function. It is difficult
to evaluate (8) because the inverse maﬁh}(l is hard to obtain
where| /| is the largest absolute eigenvaluef analytically. Replacindl’; " with its associated circulant ma-

B)é C, ! naturally leads into the frequency-domain approach

used in solving linear filtering and coding problems based on t ce a circulant matr|>§ can be_ elgendecqmposed by the DFT.
MMSE criterion [7], [9]. However, they are not very useful for e weak norm approximation is not a sgfﬂment tool to warrant
designing the ML and MAP algorithms that are widely adopt %UCh a_replacement because the transmitted sigha) P) can
in digital receivers. We shall show that the finite-term stror?Be arbitrary. 1 1. -
convergence can play a pivotal role in design schemes based Oﬁssume thal,~ converges t&," in the finite-term strong
the ML or MAP principles. Sense, 1.e.,

The received signals in many digital communication systems lim ||T;13(Iu. P)|| = lim ||C”1s(Iu. P)|. 9)
can be modeled by a desired signal carrying user data and trans- ~ n—o° ’ n—oo " ’
mission parameters embedded in a Gaussian noise [10], i.e.

As pointed out earlier, the weak convergence theorems cant

Let us examine the condition for replacifi,' with ;" in

y=sI,, P)+N (7) (8).The exponent of (8) consists of the following four terms:
wherey is the received signal vector of length s(I,,, P) is YTty
the transmitted signal vectof,, is the user data vectoP is Hp—1
>0 9 . T, 's(I,., P)
the synchronization and channel paramet&fds the channel P
noise vector, which is a zero-mean and correlated wide-sense s(I., P)"T,y

stationary Gaussian process. The objective of receiver design s(I,, p)HT;{g(Im P).
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The convergence of Furthermore(I,, — TnC;I)w7,U is upper-bounded by
-1
lim 8(I,, P)HT's(I,, P)=lim s(I,, P C's(I,, P) |0 =TuCy )u,l
) < max 1|Rf(n—w./ 2rr(s 4+ 1)/n)
follows directly from the assumed convergence (9). The conver- 0<s<n—12
gence oy T, 's(I,,, P) ands(I,, P)2T; "y for normalized — Ry(n —w, 2rs/n)|

received vectoy follows from the fact that

1
+ (x5 |Rs(w+1, 2r(s+1)/n)

ly™ (T — € 1)s(Lu. P)|| < IylINT," — C1H)s(Lu, P)I.
—Rs(w+1, 2ws/n)|

The termy™ T'; 'y may not converge tg” C;, 'y sincey cannot

be modeled as a finite-term vector due to the noise. However, + <0<rsﬂ<3g<1 |Rf(w+1, 2ms/n)|

this does not affect the derivation of the ML (or MAP) solution T

sincey does not mcIude_ the usefl_iJL anci]lf’ terms. This means + max [Ry(n—w, 2us/n)|
that we can replace this term wigf’ C;, "y regardless of the 0<s<n-1

convergence. Ther_eforei,lthg finitfzit_erm strong convergence is 1270(w — v +1/2) /n mod 2x|n + 2
sufficient for replacindl’,, - with C,,~ in (8) for a large obser- : o .
vation window. _

Note that we did not impose any condition on the transmitted ~ Proof: See the Appendix. g

signal s(.,, P) as long as it has a finite number of nonzero | o4 2: | etz be of the form defined in (6). Further assume

terms. Since the optimal solution calls for a long observatiqp, every entry of the middI2L + 1 columns off,, — T, C"
window, this implies that the solution obtained by increasing o nded by, i.e. v

the observation window and using circulant matrices will yield
the true optimal ML or MAP solutions. B= max |(I, —TnC;" ).
In the next section, we will present a condition for the inverses lv—n/2|<L

of T(_)epllt_z matr_lc_es to converge to their associated cwculag;c]d there are at most/ rows of I, — TnC',_Ll containing
matrices in the finite-term strong sense.

nonzero entries, then

(13)

I1l. A CONDITION FOR THE CONVERGENCE ||(T;1 _ 051),,;” < ||T;1||« /(2L + 1)M B||z|| (14)

For presenting the finite-term strong convergence theore
the concept of @artial DTFT is helpful in shortening the nota-
tion. For any integetw, the partial DTFT of the sequende, }

is defined as T = he| < 1T - (L, — T.C e

v%ereHT;lH is the spectral norm of the matrix.
Proof: The following inequality:

PF(w, \) = i toe™ I (10) reduces the proof to show that
k=w (I, — T.C;Hz|| < /(2L + 1) M B|z.

which is based on the observation tfaE (w, A) is actually the ) i )
DTFTOf{..., 0, tw, tws1, -..}. Note thatP F(—oco, A) is the Let the matrix@,, be obtained by setting all the columns of

’ —1 .
DTFT of {t;},i.e., PF(—o0, A) = F(). We further denote the I» = TnC, " 10 zero except the middIel, + 1 columns, then
ratio of the partial DTFT to the DTFT aBf(w, \), i.e., Q.z= (I, —T,C\)z

A PF(w,A) _ PF(w,A) for anyz of the form
Riw M= ooy~ 7oy - @

(07 ceey 0./ L _Ly--rs Oy -3 TL, 07 ceey 0)
Since the difference betweeRi,' and C,' is equal to
T, '(I, — T,C;"), wherel, is the n-dimension identity

n

Therefore, if we can show that for amy

matrix, we start with the evaluation of the matifix — T',,C,, . 1Q,,z|| < /(2L + 1)M Bz (15)

The following lemma expresses the entrie{bf — T,,C,") T

by means of the partial DTFT. the lemma will follow. Inequality (15) implies that

Lemma 1: The (w, v)th entry ofI,, — T',,C, " is equal to 1Q.|l < V2L + )M B
n—1 i i H i
. 1 (e v)e/m where||Q,, || = max{v/): \ is an eigenvalue o' Q,,} is the

(In=TnC. w0 = n Z e??7( e/ (Rp(w+1, 2ms/n) spectrum norm. Since the nonzero entrie€f are bounded

s=0 by B, the nonzero entries c@an are bound byM B2. The

+Rs(n —w, 2rs/n)*). (12) matrix QY Q,, has at mos2L + 1 nonzero entries for any row
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or column. This shows that the largest eigenvalu@fffQ, is  Similarly, based on the definition d8,(w), it follows that
bounded by(2L + 1)M B2. Thus,

S kel S [+ S ] S it
Q.1 < V@L+ DM B. &, M 2l 2 2 i
_ 1B (w)] < min_|[F(\)]?
This completes the proof of the lemma. O A€E[0,27]
Lemma 3: For a continuou® ¢(w, A), if both theR s (w, ) 9 i 1|
anddR ¢(w, \)/d\ are bounded, then o l=o : i 1t
L < jFo0p 2
|(In - TnCn )w,v| A€[0,27] k=w
< W(BZ(W+1):Bz(n—w))+(Bl(w+1)_|_31(n_w)) whctjere the second inequality follows the fact that = |¢_y|
an
|27 (w — v + n/2)/n mod 27|n + 2 (16) - - - -
2n S7Iktel >0l =D Ikl > ]
where k=w l=—00 k=w l=—00
oo w—1
A
By(w) £ max [Ry(w, )| =3 (et - lllinl)
and k=w l=—(w—1)
By(w) £ max |dR (w, A)/dA|. o w-l
Proof: For anyw € [0, n — 1], there exists a k=w I=—(w-1)
Ao € [27s/n, 2m(s +1)/n] Theorem 1:Let T, be a family of Toeplitz Hermitian ma-
h that trices associated with the sequekicg, and# () be the DTFT
such tha of {t;}. If |F(A)| # 0for A € [0, 2x] andy 5> ___ [kitx| < oo,
—1 —1 - ..
IR f(w, 2n(s + 1)/n) — Ry(w, 2ms/n)| T, " converges t@,, " in the f|n_|te-term strong sense.
Furthermore, for a vectar with the form defined in (6), the
_ | 2w dRf(w, ) < max dRy(w,A)| 27 (17) Ouadratic form is bounded by
nodh |y, A A ) X
N T - el _ 20
The inequality of (16) follows (13) and (17). O Tz <O (1/vn). (20)

Lemma 4: If the sequencét; } satisfies the following condi- .
tions: Proof: Since all the rows of,, — T,,C,, " are in general

nonzero, the\/ in Lemma 2 becomes and

o < /@ T

max |(I, —TnO';l)w,vl. (21)

oo

2 Il <o T, — ¢,

k=—o00

and its DTFTF(X) # 0, VA € [0, 2x], then

[l]]

oo lv—n/2|<L
Bi(w) <C > |ty (18)
f—w It is known that all the eigenvalues (defined &s,, s €
and [0, n —1]) of T, are betweem: ; andM; [5, p. 64], wheren s
> is the greatest lower bound &f(\) and M is the least upper
Bo(w) <Dy [kt (19 bound of F()), respectively, i.e.,
k=w
whereC, D are constants. my < Ton < My.
Proof: Under the condition that
oo SinceF () is continuous and nonzere;; and M; have the
Z |ktr] < oo same sign, and all the eigenvaluedlbf are bounded by
k=—oc0

: . . . > mi
the DTFT of{t;} is continuous [6]. Therefore, there is a min- 7, n| 2 min{jmyl, |My[} > 0

imum for F(\) over [0, 2x]. Based on the assumption of th%vhich means thafT~"||, the strong norm of"-, is bounded
lemma, this minimum is nonzero. Clearly by 1/ min{|m,]. |M;|} < 0. Now we turn ton '

oo

Pf(w,)\)’ 1
Bi(w)| = max < — . trl|. _ —1
[Br(w)] = mg ’ F\) minyg( 2] [F (V)] g' | pmax_ In =T ), ol-
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Combining Lemma 3, Lemma 4, artd — n/2| < L, we can
easily see that

oo oo

LAY |ktk|)

k=w+1 k=n—w

|(In _Tnor_Ll)w,'U| S % . (

oo oo

+O(k=%:+1|tk|+ > |tk|>

k=n—w

|27rw /n mod 27t |n+ 27 L+ 2
2n

(22)

which follows that

|27r(w — v + n/2)/n mod 2x|n = |27 (w — ) /n mod 27 |n
< |2rw/n mod 27|n + 27 L

wherel = v — n/2 and—L < | < L. Note that(z mod 2)
takes value withirj—=, 7). Furthermore

(23)

|27w /n mod 27|n < 27 - min{w, n — w}

and

(e} oo

SIS |tk|)

k=w+1 k=n—w

min{w, n — w} (

(oo}

> It

k=n—w

<w Y |tkl+ (0 —w)

k=w+1

(24)

With the assumption thgf,~ ___ |ktx| converges

oo o0
w Yt <Y [kte] < oo

k=w k=w

Combining (22)—(24), we can see that

|(In — Tncgl)w,v| < O(1/n). (25)

max
jv=—n/2|<L

Substituting (25) into (21) completes the proof.

185

limiting the nonzero terms tey, t1, t—1 andt; = t*,. Itis
easy to derive the closed-form formula of the inverse matrices.
Therefore, these theorems can be examined.

Let d,, be the determinant df’,,. It can be shown that the
entry at theuth row andvth column ofT; * is equal to

t?ivdvdnflfu

(=1)v" y u>w (27)
tv_ududn— —v
(—1)“71)%7 u <uv. (28)

It can be readily seen that the determindptof T, satisfies
the recursive relation

dy = todp_1 — t1t_1dp_s (29)

with the initial conditiondy = 1, d; = to. Solving the differ-
ence equation (29), we have
d _ )\;L-l—l _ )\?4—1
" Ao — Aq
where); and ), are the solutions of the equation
z? — tox + t1t_1 = 0.

Note that as long as; # Ay, T, is nonsingular for any.

We consider the casg < 2|t1]. In this case); and\; are
complex conjugates with the same magnitude equith foLet
A1 = |t1]e?? and )y = |t1]e=7?. We further limitd/(27) to be
an irrational number. Under this conditian?+1)? £ ¢—(»+1)¢
for anyn > 0. This guarantees th&t, is nonsingular. With
these notations, (27) can be rewritten as

ysinf(v + D] sin[(n — u)d]
|t1|sin 6 sin[(n + 1)6]

(_1)u—'uej((u—'u)61

_ycos[(n —u—v—1)0] —cos[(n —u+v+1)6]

= (-1)" 2|t1|sin @ sin[(n + 1)0]

i ((w=)81)

(30)

whered, is the phase of;. For fixedn andu — v, the denom-

If the sequencdt;} is of finite order, the convergence rateinator and the last term of the nominator are constants. In other

can be strengthened.

Theorem 2:Let T',, be a family of Toeplitz Hermitian ma-
trices associated with the sequenge} of finite order, i.e.,
t; = 0for |i| > W [6, p. 23], and letF(\) be the DTFT of
{t:}. If |[F(\)] # 0for A € [0, 27], T, converges taC;,"
in the finite-term strong sense. Furthermore, for a vegtoith
the form defined in (6), the quadratic form is bounded by

(T, " —
]

C, el

n

(26)

Proof: Note thatPF(w, \) is equal to zero fotv > W.
WhenW < w < n—W, (12) shows thatl,, — T',,C}, ") w. » iS

words, (30) varies only withos[(n — u — v — 1)6]. It can be
shown thafcos(nf);n =1, 2, ...} are dense over the interval
(=1, 1) forirrationald/(27). This means thatos[(n —u —v —
1)0] oscillates withu, v. Taking the diagonal entries as an ex-
ample, withu = v, cos[(n — 2v — 1)6] oscillates withv for
any fixedn. It is generally true for any fixed — v. Fig. 1illus-
trates this oscillation of the diagonal entrieél?ij‘1 withtg = 1,
t_1 = t; = V2, andn = 200. The oscillation indicates that
T;l cannot converge to a Toeplitz matrix in any sense. Note
that the DTFT of the sequende;} has zero within0, 2x] if
and only ifty < 2|¢1], i.e., which violates the condition of the
weak norm convergence theorem presented in [6].

Now we consider the cagg > 2|¢1|. Under this condition,

equal to zero. Therefore, in (21)/(2L + 1)n can be replaced )\; and), are real, assumk, > \;. Without loss of generality,
by /(2L + 1)2W . The nonzero entries df, — T,,C;,' canbe let n be even. Thév, v)th (v € [0, n — 1]) diagonal entry of
bounded exactly the same way as in Theorem 1. O T;l is equal to

Example: In order to illustrate the theorems derived here,

dvdnflfv
let us consider a family of finite-order Toeplitz matricBs by

dn
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Inverse of Toeplitz Matrix: Oscillation Case
0.3 T T T T T T T T T

n

|
o
-

1
I
o

Diagonal entries of T!

|

o

w
T

0.6 L ! ! 1 ! 1 ! L 1
0 20 40 60 80 100 120 140 160 180 200

Index, to =1, t_1=t1.—.1 .4142, and n=200

Fig. 1. Diagonal entries &F;* in the oscillation casét, < 2|t:|) withto = 1,¢_, = ¢, = /2, andn = 200.

whose ratio to thén /2, n/2)th entry is According to the property of the strong norm for a Hermitian
matrix A
A d'udn—l—v
Yo,n = R IA]] > |aijl, 0<i4,j<n-1 (33)
a7 a )V A\ whereq,; is an arbitrary entry af, which implies thail’,j1 does
_ 1= (E) - (A_) + (A_) (31) not converge to a Toeplitz or circulant matrix in the strong sense.
N A2 (a2 a0\ However, the central entries @, do converge to those of
1- (A_z) - (A_) + A_) a circulant matrix, which makes the finite-term quadratic form
_ converge.
with the (n/2, n/2)th entry equal to
1 IV. APPLICATION
Ao — A\ Substituting the inverse of a Toeplitz matrix by a circulant

matrix has been widely used in the literature and yielded many
useful results, e.g., [10]-[15]. The theorems derived in this
paper fill the gap in these applications and avoid potential erro-
neous results that ignore the conditions of the convergence. The

asn — oo. Because\, > Ay, itis easy to see that for large
and intermediate (i.e., v is close ton/2), (31) converges t
asn — oo. However, for they on the boundary (i.ey is close

to0orn —1) convergence rate of the finite-term quadratic for@(1/+/n)
vl or O(1/n)) also provides an upper bound on the residue error,
1- (%) ) v is close ta) giving system designers guidance for the accuracy of the
Jim oy, = - (32)  approximation.
1- (%) , v is close ton — 1. In this section, we further illustrate the idea presented in Sec-

tion 11, i.e., the finite-term strong convergence allows us to de-
This means that the middle segment of the diagonal entriesrive the ML or MAP algorithms and analyze the performance
T, ' converges tol/(\» — A1), however, the entries on thefor finite-length signals. As we pointed out earlier, the DFT
boundary are always smaller thafi(A2 — \1). Fig. 2 shows associated with the eigendecomposition of a circulant matrix
the diagonal entries (T;l withtg = 1,7_y = t; = 0.35,and leads naturally to the frequency-domain analysis, which is also a
n = 200. In other words, the entries on the boundary of the irgood approximation of the Karhunen—Loeve expansion [7] that
verse matrix do not converge to the entries of a circulant matrokecorrelates a random process. The most basic communication
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Inverse of Toeplitz Matrix: Convergence Case
1.5 T T 1 T T T T T T

n —

~
—
)

Diagonal entries of !
w

1.2} 1

1 L 1 1 1 1 | 1 1
0 20 40 60 80 100 120 140 160 180 200
Index, ty=1.1,=t,=035, and n=200

Fig. 2. Diagonal entries dF';;* in the convergence cage, > 2|t:|) witht, = 1,¢_; = t; = 0.35, andn = 200.

channel model is the additive white Gaussian noise (AWGN§ the sampling period is the symbol period witl" = R, Ty,

model. Even for an AWGN channel, due to the prefiltering im € [0, T') and¢ € [—7, 7) are the symbol timing offset and

the receiver front end, the noise procééss no longer white carrier phase offset, respectively. We further assume that the

when multiple samples per symbol period are used for receisampling rate is not lower than the Nyquist sampling rate. Note

front-end design. In order to simplify the analysis, it was oftethat R, does not need to be an integer. The )th entry of the

simply assumed that the noise is white, or is prewhitened. Hoadtocovariance matri’,, is

ever, the white noise assumption is often oversimplified and No

the prewhitening operation may lead to large intersymbol inter- thi=— r((k = 1Ts)

ference and needs the statistics of the noise process. The DFT ) ] ]

eigendecomposition decorrelates the noise process in the fig~ the noise proces¥ is colored due to the matched filter.

quency domain without the knowledge of the noise proce@??ause_ of the correlation of the noise, the length of the obser-

which is based on the circulant matrix approximation. This &tion windown should be longer than the length of the trans-

especially useful in designing robust estimation algorithms [13]1itted signal for optimal reception. Following the ML rule, the
The sequel illustrates this methodology by applying the frIL estimates ofr and¢ are the arguments that maximize the

guency-domain approach to design the data-aided ML joint cikelihood function, i.e.,

rier phase and symbol timing offsets estimator. Using the thep- . 1 Hrn1

rems to compute the performance limits (e.g., the Cramer—Rab ¢) = argn}f’;,x{_§ [—y T, s(l., P)

lower bound) for parameter estimations in colored Gaussian

noise can been found in [22]. — s(I,, P)IT, 'y + s(I,, P)2T; "s(I,, P)} } (35)
Following the signal model defined in (7), we assume that

the entries ofs(I,,, P) are the digital samples of the desired The pulse shaper(kT.) usually decreases faster than

(i.e., no noise) receiver matched filter output, whasie (i ¢ O(1/Ik[?), .9, the raised cosine pulse hagT,) <
[—n/2, n/2 — 1]) entry is equal to O(1/|k[?). Therefore, the condition of the finite-term strong

convergence theory is met for the positive-defirilfg. Re-

K/2—-1 . 1 1 . . . ) .
” placingT’,,” with C}, " defined in (3), we obtain th&h diagonal
sk Es Z A (KT, —mT —rT)e’®  (34) entry of D,, equal to

m=—K/2

wherer(t) is the pulse-shaping function, e.g., the raised-co- 7, (27i/K) = No Z R( 2mi 27”“) (36)
sine function,{a,,} is the training sequence of lengti, 7, 2T, =~ KT, T
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where F..()) is the DTFT of {r(kT)}, R(X) is the Fourier which provides atime-domainimplementation. In fact, the time-
transform ofr(¢). domain estimator (43) is derived in [10, p. 297] using a different
After some arithmetic, we obtain method that is only applicable to the case that the sampling rate

(%./ (Z;) = arg max

wheref(-) is the real part,

and

Define u(7) as

u(T)

/21 is a multiple of the symbol rate [10]. In order to satisfy the
VE, Rl Y F <27Tm> Nyquist sampling condition, the sampling rate of the time-do-
Y main estimator has to be at least two samples per symbol pe-
riod even for a signaling with 20% excessive bandwidth. The
ormR.\* frequency-domain estimator proposed here can reduce the sam-
- A (—) eI 2rrmEs [n=9) (37) pling rate to be the exact Nyquist sampling rate (iL.e2 symbol
" rate), which reduces the sampling speed by more than 40%. For
high-speed broad-band modem design, increasing the sampling
rate can be extremely difficult and costly.

7,0 n
¢ 0 m=—n/2

n/2-1
é — Ak
= Z yre™ V. CONCLUSION
k=-n/2
This paper closes a critical link in the application of the
K/2-1 convergence theorems for the inverses of Toeplitz matrices:
AN a Z ape Ik, strengthening the well-known weak convergence theorem into
k= —F/2 the strong sense convergence for finite-term quadratic forms.

We showed that this convergence is conditional. Prior literature
essentially ignores the possibility of erroneous results by
1 n/2—1 — ormR.\* simply applying the weak convergence to compute quadratic
- Z Fy ( > ,4< 5) eJ2rTmRs/n - forms. We further showed that the strong sense convergence
n n theorem can naturally lead to frequency-domain solutions due
(38) to the fact that the eigendecomposition of Toeplitz matrices

IID

m=—n/2

The two-dimension maximization can be downsized to a onean be approximated by the DFT. Demonstrating the applica-
dimension search tion of the convergence theorem, we derived a novel timing

(7, ¢) = arg max {IM(T)PR (e‘j (¢_arg(”(7)))) } - (39)

Therefore, the ML estimate of is

and carrier phase offsets estimator. This estimator takes the
frequency-domain approach. For applying the estimator, we do
not require the sampling rate to be an integer multiple of the
symbol rate. This can significantly reduce the sampling rate
r = argmax |u(7)| (40) requirement for high-speed modems. Due to the pivotal role
T of the inverses of Toeplitz matrices for a stationary random

and the ML estimate of is process, the strong sense convergence theorem presented in

b= arg (11 (7)) . (41) this paper can be applied to a wide range of detection and
estimation problems. In a separate paper, by applying the

The inverse DFT of F,(2rm/n)e’2 ™ f:/" with m € finite-term strong convergence theorem, we derive the true
[-n/2, n/2 — 1] is equal to Cramer—Rao lower bound for data-aided synchronization [22].

y(KTs +7T), ke [-n/2,n/2-1]
APPENDIX

where y(t) is the continuous time signal output of the
matched filter, and the inverse DFT of(2rmR,/n), m € aA. Proof of Lemma 1
[-n/2, n/2 — 1] is equal to

Proof: Following the definition ofC,, in (3), the(k, I)th

K/zz:_l p—in(k—mR,) _ gin(k—mR,) entry of C! is equal to
am _ pi2n(k—mR;)/n
meK/2 n(1 — ei2n( )/m) B |t o
ke[-n/2,n/2—1]. (42) (Co D=~ w0 (44)
s=0
In the case thak, is an integer, (42) becomes
K/2—-1 then the(w, v)th entry ofT,,C;," is equal to
Z am[k — mRg], ke[-n/2, n/2—1] 1
:—K/2 (T'nC )w v

n—1

whered[k] = 1if k = 0 andé[k] = 0 if else. Based on Par- 1 i Z L 2w (m—u)s/n
= 2

seval's relation, whem, is an integerp(r) is equal to

s=0
K/2—-1

p(r)= > y(mT+7T)a}, 43)

=—K/2 s=0

-1
M—l j2w(w—v)s/n Z tw —_]27r(w m e/n (45)

SIH
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Based on the definition qis, , Now consider the following summation obtained by replacing
- sin (51) with2|s/2]:
Z tke—jZWks/n

h=—oo - Zx )-2]s/2] /n)ei2mw=vs/n - (52)
we have ]
The terms of (52) with even indexare equal to those of (51). It
— y —j2m(w—m)s/n can be readily verified that the difference between (51) and (52)
Z:O —m€ is equal to
w—n ) [ee] ] 1 [(n—2)/2]
R D T A S T = Y (X(w, (2m) - (25 + 1)/n) — X(w, (27) - 25/n))
k= oo k=w+1 [ ——
= s, n—PF(n—w, 2ws/n)* —PF(w+1, 2ws/n) (46) AW @st)/n (53

where the second equality follows the Hermitian assumptidrus, the difference can be upper-bounded by
t* = t_y. Substituti 46) into (45), btain that
5 % Substituting (46) into (45), we obtain tha e L, (20)- (54 1)/n) = X(aw, (21) - s/n)]. (54)

n—1 0<s<n—1
1 ) | -
— > e (g — PF(w 1, 2ms/n) For even and odd, (52) is, respectively, equal to
n ;
= 1 n/2—1
— PF(n —w, 2ms/n)*) LN X(w, dmsfn)el2mw02/n (1 4 ginto=0/n) (s5)
n
s=0
— _ -1 j2mw(w—)s/n and
= 8[w—] ZM ¢ (PF(w +1, 2ms/n) 1 (n—1)/2-1
— X 4 j2m(w—v)2s/n 1 j2m(w—v)/n
+ PF(n —w, 2rws/n)*). (47) n ;} (w, 4ms/n)e (1+e )
The second equality follows N 1 X, (21 1)) =0/ )
n

w="7v

n—1
1 Z p—i2m(w—v)s/n _ 8[w — v] A { 1, _ By using the following inequality:
n 0, otherwise

|1 —el®| = |eﬂ'm/2 — ¢’*/?| = |2sin(z/2)| < |& mod 2|
Therefore the first term of (47) corresponds to an |dent|fy ma-

of I, — T,LC';1 can be expressed as [, m), we Obta'” that
|1 + ej?ﬂ(w—q})/'n,| — |1 _ ej27'r(u;—11+n/2)/n|
—1 27 (w—v)s/n
(I-T.C," Z s, n€’ (PF(wtl, 2ms/n) <|27(w—v+n/2)/n mod 2r|. (57)

+PF(n —w, 2rs/n)*). (48) Substituting (57) into (55), (55) can be upper-bounded by

1
Actually, PF(w, 27s/n)u; 3, represents the ratio of the partial 5; | _max  |X(w, 2ms/n)| - [2m(w — v +n/2)/n mod 2.

DTFT to the DTFT, i.e., 2 0sesn (58)
Similarly, (56) can be upper-bounded by
PF(w, 27r3/n)u;1n = % . (49) n—1
(V) A=2ms/n 5 o nax |X (w, 27s/n)| - |27(w — v 4+ n/2)/n mod 27|
n <s<n-—
For convenience, le¥ (w, A) denote the following: 1
APFw+1,))  PF(n—w\)* o odmax [ X (w, 2ms/n)|
X(w, \) = (50)
F(A) F(A) = max |X(w, 27s/n)]

0<s<n-—1
thus, (50) is equal to o
[2m(w —v+n/2)/n mod 27|(n — 1) 4 2
X(w, \)=Re(w+1, \) + Re(n—w, \)*. on ’
Both (58) and (59) are smaller than

|27 (w—v+n/2)/n mod 27|n+2

(59)

With this notation, (48) can be written as

) = — [ Juax | X (w, 2ms/n)] - >

- _ 127 (w—v)s/n <s<n— n

I,-T.C, )uw,vo= - E_ X(w, 27s/n)e’ (51) (60)
s=0 Therefore(I,, — TnC';I)U,, » is upper-bounded by the summa-

which proves (12). tion of (54) and (60). O
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