
An Implementation Study of Multicast Extensions of AODV

Dinesh Dharmaraju Manish Karir John S. Baras
Center for Satellite and Hybrid Communication Networks

Department of Electrical and Computer Engineering
University of Maryland, College Park, MD 20742, USA

{dineshd, karir, baras}@isr.umd.edu

Subir Das
Telcordia Technologies,

Morristown, NJ 07960, USA
subir@research.telcordia.com

Keywords: multicast routing, MAODV, ad hoc routing,
implementation study, AODV, protocols, wireless networks

Abstract
In this paper we describe our experience of implementing
multicast extensions of AODV (MAODV). Using insight
gained from our implementation we propose some
enhancements to MAODV that enhance its stability and its
performance. We propose the use of a tree optimization
scheme based on Group Hello messages, a scheme for
merging group partitions, as well as a method to add
reliability to the multicast tree formation and maintenance,
via the use of an acknowledgement for MACT messages.
Our implementation is based on the kernel AODV
implementation from NIST. We describe details regarding
our implementation that can provide valuable insight to
future implementers of ad hoc routing protocols, and in
particular, people attempting to implement multicast routing
protocols. We also provide a brief description of some basic
validation experiments that we used to verify the
functionality and the various features of our
implementation.

1. INTRODUCTION

Wireless networks are being deployed at a very
rapid pace. In contrast with the infrastructure-based
networks that are being deployed, there is an entire category
of infrastructureless networks, which are being designed to
operate in situations where it might not be possible to have
an infrastructure. By their very nature, wireless networks
are essentially broadcast in nature. All nodes within the
transmission radius of a node can overhear every
transmission by this node. Therefore, the most efficient use
of wireless bandwidth is via the use of broadcast from a
single node. While this is the most efficient use of
bandwidth, it is not the most useful as often communication
only needs to be between two specific nodes. Unicast
transmissions on the other hand are the least efficient use of
the wireless channel. An interesting and useful compromise

 The material described in this paper is based upon work performed in
collaboration with Telcordia Technologies and sponsored by the U.S. Army
Research Laboratory under award number DAAD17-00-C-0115. The
views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U.S.
Government.

between these two extremes is the use of multicast.
 Multiple receivers who subscribe to be part of the receiver
group can receive using multicast a single transmission.
The problem of multicast routing is born out of the need of
achieving multicast capability in a scenario where all the
nodes interested in participating in the multicast group are
not within the transmission range of the sender. There
needs to be some mechanism to forward multicast traffic
through the entire multi-hop network, based on group
member information. To solve this problem in wireless
networks, several multicast protocols have been proposed
such as MAODV [1], AMROUTE [2], LAM [3], and
ODMRP [4].

Most protocols proposed for multicasting in
wireless ad hoc networks depend on some underlying
unicast protocol. Therefore, when designing a multicast
routing protocol one might be able to rely on some structure
already provided by the unicast routing protocol. One of the
strongest candidates for standardization, by the MANET
working group at the IETF, as the unicast protocol of choice
in wireless ad hoc networks is AODV. In this paper, we
describe our experience in implementing and validating the
multicast extensions of AODV (MAODV). We also
propose some modification to the protocol that enhances its
stability and reliability.

The rest of this paper is organized as follows:
Section 2 describes some selected related work in the
areas of not only multicast routing protocols but also
unicast routing protocols in wireless ad hoc networks, in
particular similar work in implementation of routing
protocols in wireless ad hoc networks. Section 3 provides a
brief overview of the MAODV protocol. Section 4
describes our implementation of the multicast extensions of
AODV in Linux, as well our proposed modifications to the
protocol. Section 5 describes some of the basic validation
experiments we have used to attempt to verify correct
operation of the MAODV protocol. In section 6 we
describe some measurements from our implementation as a
measure of its efficiency. Finally, section 7 provides our
conclusions and some directions for future work.

 2. RELATED WORK

Though several multicast routing protocols have
been proposed for ad hoc networks, ODMRP [4] is different
from others, in that it is mesh based and is independent of
the underlying unicast routing protocol. Most multicast

routing protocols however, rely on some underlying unicast
routing mechanism. These protocols take advantage of the
underlying unicast routing protocol and save on control
overhead. LAM [3] is a group shared tree protocol that does
not require timer-based messaging. LAM is tightly coupled
with the underlying unicast routing protocol TORA [5], and
relies on TORA’s unicast route finding capability.
AMROUTE [2] is a shared-tree protocol, which allows
dynamic core migration based on group membership and
network configuration.

By its very nature MAODV [1][6] is integrated
with AODV [7], which is a strong candidate for
standardization in the IETF. This makes it a good choice to
investigate issues in implementing multicast routing
protocols in ad hoc networks. There have been several
simulation studies of MAODV [1] [8] however;
implementation of a routing protocol in a real ad hoc
network can often provide details that network simulations
can skip.

Unicast versions of AODV have been widely
studied and implemented. A number of public domain
implementations for AODV are available [9][10][11][12].
MADHOC [9] is an implementation of AODV, which is
entirely based in user space. Kernel AODV [10] on the
other hand is implemented entirely in kernel space. The
implementations outlined in [11] and [12] are based partly
in user space and partly in kernel space. The advantage of
the kernel space implementations is that there is easy access
of all the packets and their headers. This makes it easier to
utilize header fields and options when making protocol
decisions. Kernel space implementations also often tend to
be more efficient as they do not have to transfer data back
and forth between user space and kernel space. However,
kernel implementations of protocols are more difficult to
implement, and are less portable, making them more
difficult to maintain. The implementation in [13] is largely
a user space implementation of AODV and MAODV but
provides only few implementation details. In this paper, we
present the kernel space implementation of MAODV and its
validation. We also propose several mechanisms to enhance
the performance of the base protocol, which was presented
in [13].

3. OVERVIEW OF MULTICAST AODV

The operation of MAODV is analogous to the
operation of AODV. Multicast routes are discovered on
demand. The multicast route request is broadcast similar to
the unicast route request, and the route reply propagates
back from the nodes that are members of the multicast
group. The MAODV Internet draft [6] and [1] describe in
detail the operation of MAODV. For completeness, we
summarize some of the basics features and operation of
AODV and MAODV below. A more detailed description
can be found in [1] [6] [7].

Every node running MAODV maintains two
routing tables. The first one is used for unicast operation of
AODV and is simply referred to as Route Table. The fields
of the routing table are as follows: Destination IP Address,
Destination Sequence Number, Hop Count to Destination,
Last Hop Count, Next Hop, Next Hop Interface, List of
Precursors, Lifetime, and Routing Flags. [6] [7] give a
detailed description of these fields and how they are used
for unicast route discovery. The second routing table is the
Multicast Routing Table. This contains the following fields:

• Multicast Group IP Address
• Multicast Group Leader IP Address
• Multicast Group Sequence Number
• Next Hops
• Hop Count to next Multicast Group Member
• Hop Count to Multicast Group Leader

Every node that is a router for a multicast group maintains a
Multicast Route Table entry for that group. In section 4.4,
we describe the additional fields that we have added to the
Multicast Route Table to facilitate implementation and
correct operation of the protocol.

For every multicast group, a bi-directional shared
tree is formed, consisting of the members of the multicast
group and the intermediary nodes. Each multicast group has
a group leader associated with it. The primary function
of the group leader is to maintain and disseminate the
multicast group sequence number. This sequence number is
used to indicate the freshness of routing information for the
multicast group.

When a node wishes to join a multicast group, it
broadcasts a RREQ message with the join flag set. When
intermediary nodes receive the RREQ, they create an entry
in their Multicast Route Table, for that group, with the Next
Hop field set to the IP address of the node from which it
received the RREQ. It also sets the downstream flag for this
Next Hop entry. If this node is a member of the multicast
tree, for this group, it will unicast a RREP back to the
originator of the RREQ. Otherwise, it rebroadcasts the
RREQ. A node that receives a RREP for a multicast group,
forwards it, and it also adds an entry in its Multicast Route
Table for that groups Next Hop list, with an IP address of
the node from which it received the RREP, and also marks
this entry with the upstream flag.

A node wishing to join the multicast group waits
for a time period of RREP_WAIT_TIME for RREPs from
different nodes. After this interval, it selects the best route
(in terms of freshness and distance from the multicast tree).
It then sends a unicast MACT message along the selected
best route. When a node receives a MACT for a particular
group, it checks to see if it is a member of the multicast tree.
If the node is already a part of the multicast tree, the Next
Hop from which the MACT was received is activated, thus
grafting the link on to the multicast tree. If it is not part of
the multicast tree, it forwards the MACT to its upstream

Next Hop, activating the upstream Next Hop, and making it
a part of the multicast tree. Processing continues in this
manner until a node that was already a part of the multicast
tree is reached and the addition of the tree branch is
complete. If the node originating the RREQ does not
receive an RREP before timing out, it broadcasts another
RREQ with Broadcast ID increased by one. The node
generates up to RREQ_RETRIES number of RREQs. If the
node doesn’t receive an RREP by this time, it assumes that
the multicast group does not already exist, becomes the
group leader for that group, and starts broadcasting periodic
Group Hello messages for the multicast group.

When a link break is detected as described in
[1][6], the node downstream of the link breakage tries to
repair the link by sending RREQs with Multicast Group
Rebuild Extension. A node, which has a lesser hop count to
the group leader and hence is closer to the group leader,
responds to the RREQ with an RREP. The node waits for
RREP_WAIT_TIME similar to what is described in the
previous paragraph and activates the appropriate route. If
the node does not receive any RREPs, it becomes a group
leader, if it is a member of the multicast group. If the node
is not a member of the multicast group, it sends a MACT
with G (group) flag set to a downstream node. The
downstream node, on the reception of a MACT with G flag
set becomes a group leader if it is a member of the multicast
group. If it is not a member of the multicast group, it sends
the MACT with G flag set to its downstream node.

When a node leaves a multicast group, if it is not a
leaf node, it continues to be on the multicast tree. If it is a
leaf node, it sends a MACT with a P (prune) flag set to its
multicast Next Hop and removes all the information for the
multicast group from its Multicast Route Table. The next
hop node on the reception of the MACT with a P flag set
deletes the Next Hop entry from its own Multicast Route
Table. If this node is itself not a member of the multicast
group, and if the pruning of the other node has made it a leaf
node, it can similarly prune itself from the tree. The tree
branch pruning terminates when either a group member or a
non-leaf node is reached.

When a multicast tree becomes disconnected due to
a network partition, and if the partitions later reconnect, a
node will receive multiple Group Hellos for the multicast
group. In this scenario, the group leader with the lower IP
address initiates the partition merge procedure. In section
4.4, we describe our additions to the partition merge
procedure.

4. IMPLEMENTATION

4.1. TESTBED DESCRIPTION

There exist several different implementations of
AODV. Therefore, we had to choose which implementation
we should use as a base for adding the multicast extensions.

We choose the AODV implementation from NIST, as it
provided the necessary performance, flexibility, and
stability. This implementation of AODV is written entirely
as a kernel module. Our implementation of MAODV is
based on NIST’s base kernel AODV version 1.5[10]. As we
used the NIST code as a starting point, our MAODV
implementation is also a dynamically loadable kernel
module that runs on Linux kernel version 2.4. The
development was done on Red Hat Linux version 7.3. We
used Linux kernel 2.4.18 for our implementation.

The development was done on a simple ad hoc
network testbed consisting of Dell C640 laptops and IBM
ThinkPad 600E laptops equipped with Orinoco Gold
802.11b wireless LAN cards. The wireless LAN cards
operate in 2.4GHz spectrum, and in ad hoc mode provide a
maximum capacity of 2Mb/s.

 4.2. SOFTWARE ARCHITECTURE

Our implementation uses netfilter hooks to
handle packets inside the kernel similar to the AODV
implementations [10][11][12]. The MAODV module opens
a UDP socket with port number 654. AODV and MAODV
control messages are sent to and received from this socket.
The module also initializes an IGMP socket for
manipulating the multicast forwarding table that is provided
by the Linux kernel. MAODV adds multicast routes to the
kernel’s multicast forwarding cache through the use of
MRT_ADD_MFC socket option on the IGMP socket and
deletes multicast routes through the use of
MRT_DEL_MFC socket option on the IGMP socket.

When a node joins a multicast group, it starts
sending IGMP_HOST_MEMBERSHIP_REPORT
messages to the IGMP_ALL_ROUTERs group (224.0.0.2).
We monitor these messages from a NF_IP_PRE_ROUTING
netfilter hook. A group_membership_table,
keeps track of all the multicast groups the node is a member
of. The IGMP_HOST_MEMBERSHIP_REPORT is then
dropped and an RREQ with join flag set is broadcasted.
When the node leaves the multicast group, it sends the
IGMP_HOST_LEAVE_MESSAGE to the
IGMP_ALL_ROUTERs group (224.0.0.2). This message is
also observed in the pre-routing netfilter hook. This
message is then dropped and necessary action is taken as
specified by the MAODV protocol [6]. During our
implementation we also corrected a software bug in the
IGMP code for Linux version 2.4, which was corrupting the
IGMP_HOST_MEMEMBERSHIP_REPORT packets.

The kernel multicast route table entries in Linux
are based on the origin, destination pair of the multicast
packet. To keep track of the sources using the node as a
multicast router, we added a source_list to the
MAODV Multicast Route Table. A node adds itself as a
default entry in the source_list. This is to make sure
that the multicast packets originating from it are always

forwarded. If the node is a valid router for a multicast
group, in the pre-routing netfilter hook, it checks to
see if the originator ID of the multicast packet that it has
received for that group is in the source_list. If it is not
already in the source_list, it adds the originator ID to
the list.

When a node wishes to send packets to a multicast
group, but does not intend to join the group, it sends RREQ
packets to the multicast tree without the join flag set [6][13].
This is detected by monitoring packets in a NF_
IP_LOCAL_OUT output netfilter hook, and checking
if a multicast data packet destined to a multicast group for
which there is no Multicast Route Table entry is generated
by the node. Any node (not necessarily a member of the
multicast tree) that has a valid multicast route to the
destination multicast tree responds with an RREP. The
node waits for a time period of RREP_WAIT_TIME and
sends a MACT to activate the route. We added a new flag
is_tree_member to the MAODV Multicast Route
Table to distinguish nodes that have a valid multicast route
to the multicast tree, but are not part of the multicast tree
 (because they do not connect multicast group members). If
a node that has its is_tree_member flag cleared doesn’t
receive a multicast packet destined to the multicast group
for ACTIVE_ROUTE_TIMEOUT [6] amount of time, the
Multicast Route Table entry for the group is deleted.
Therefore, we note that, although, the routes to the multicast
tree are soft state as in unicast AODV, the Multicast Route
Table entries are hard state on nodes that are members of the
multicast tree for the multicast group under consideration. .
 They are not removed unless a node is pruning itself from
the multicast tree.

When a node that is a part of the multicast tree
loses connectivity to its upstream Next Hop because of link
breakage, it tries to rebuild the tree as mentioned in section
3. The node sets a flag called rebuild_in_progress
that we have added to the Multicast Route Table. This
flag makes sure that the node doesn’t reply to RREQs from
another node that is trying to join the multicast group. This
is because the current node is in a transient state trying to
rebuild the tree.

 4.3. DATA PACKET CACHE

Part of our implementation also includes a Data
Packet Cache. It is necessary for any multicast routing
protocol implementation in a wireless network to implement
a similar mechanism to discard duplicate packets. Consider
the case illustrated in Figure 1. Nodes A, B and C are
within, each other’s communication range. The multicast
tree is formed as shown by the solid lines. When node A
forwards a multicast data packet, nodes B and C are able to
listen since all the nodes are in communication range of
each other. Since B and C are on the multicast tree, they too
forward the multicast data packet. Node A will receive

these transmissions from B and C and forward them again
as they are data packets for the multicast group. This leads
to a packet storm, where the nodes continuously forward
duplicate packets till the TTL expires. The correct
operation of multicast forwarding requires that Node A
should not relay these duplicate transmissions. Therefore,
there needs to be a mechanism to discard duplicate packets.
This is typical of multicasting in wireless networks.
Similar to the approaches in [6] and [8] we tackle this
problem by using a Data Packet Cache. Our
implementation caches the source IP address and ID fields
of the IP headers of the multicast data packets it sees. We
have implemented the Data Packet Cache as a hash table
using the source IP address and the ID field to generate the
hash value. Proper design of data packet buffer is crucial
because of its necessity in eliminating duplicate packets. In
the case illustrated in Figure 1, node A must cache
information about a packet until it receives the packet back
after nodes B and C forward the packet. The size of the data
packet buffer should also not be too large as the entire cache
is searched for each input data packet. If the data packet
buffer is too large, it could potentially become a bottleneck
on the data-forwarding path.

A

B C

Figure 1: Data Packet Cache Scenario

4.4. MODIFICATIONS TO MAODV

During the implementation of MAODV, we
realized that certain modifications to the protocol would
enhance the performance of the protocol. In this section, we
describe these changes.

 Tree Optimization using Group Hello Messages

The group leader for a multicast group generates
the Group Hello messages periodically once every
GROUP_HELLO_INTERVAL milliseconds. These
messages are propagated through out the connected portion
of the network. These messages could be used to
proactively maintain routes to the group leader. We added
an additional field called Group Leader Sequence Number
to the Group Hello message to enable this. A node will
update its route to the group leader if the received Group
Hello indicates a higher Group Leader Sequence Number
than its record of group leader’s sequence number indicating
a fresher route; or if the Group Leader Sequence Number is
equal to its record of the group leader sequence number and

if the Group Hello is received with a lesser Hop Count field
indicating a shorter path to the group leader. On updating
the route, the node makes the node from which it received
the Group Hello as its next hop in the route table entry to
the group leader.

A

B

C

A

B

C

B

CA

A

B

C

Join MACT

Prune MACT

Initial Multicast Tree

Nodes A and C move
into Communication Range

Multicast Tree
Reorganization

Prune MACT

Optimized Multicast Tree

T
im

e

Figure 2: Multicast Tree Optimization

Consider the case illustrated in the first portion of
Figure 2. The dashed line between any two nodes indicates
that they are within communication range of each other, and
a solid line arrow indicates that the node participate in a
multicast tree, either as group members or as forwarding
nodes. Nodes A and B are in communication range of each
other. Nodes B and C are in communication range of each
other. But, nodes A and C are out of communication range
of each other. Nodes A, B and C are part of a multicast tree
as indicated by the solid arrow lines. Nodes A and C are
members of the multicast group and node B is a forwarding
node. Node A is an upstream next hop of B, and C is a
downstream next hop of B. Now, if node C moves into the
communication range of A the multicast tree becomes
inefficient. Packets for the multicast group from node A
will continue to reach C via B, even though, A and C are in
direct communication range of each other. We propose a
modification to the MAODV base protocol that can
accommodate this scenario, and result in a more efficient
multicast tree. Our solution is as follows: When nodes A
and C move in the communication range of each other, C
will be able to hear Group Hello messages being broadcast
by A. The Group Hello messages would have the O flag set
to 0 indicating that the Group Hello has traveled along the
tree. The Hop Count field in the Group Hello message from
node A, indicates that if C joined the tree as a downstream
neighbor of A, it would be closer to the group leader and the
tree would be optimized. Therefore, node C sends a MACT
with J flag set (Join MACT) to node A grafting the link A-C

onto the multicast tree. At the same time, node C will send
a MACT with the P flag (Prune MACT) set to node B.
Since node B is only a multicast forwarder, he would prune
himself from the multicast tree as he would no longer have
any downstream nodes for the multicast tree. In this way
links A-B and B-C will be pruned from the multicast tree.
Figure 2 shows this optimization. Using this method, even
though the multicast tree may be formed non-optimally
during its construction, it will eventually become optimized
because of the procedure mentioned above.

 Partition Merge

We also wish to propose a second enhancement to
the MAODV protocol, which can significantly improve the
stability of the protocol during partition merge. We propose
that an additional merge_in_progress flag be added
to the Multicast Route Table. In the event that a multicast
tree gets partitioned due to network mobility, we can have
multiple instances of the multicast tree, each with its own
group leader. This can create problems if the network
partitions subsequently reconnect. For simplicity we
consider the example, where the network gets partitioned
into two. In this scenario, there would be two group leaders
(say GL1 and GL2 : GL1 < GL2) sending Group Hello
messages in the network. Let G1 be the portion of the tree
whose group leader is GL1 and G2 be the portion of the tree
whose group leader is GL2. When a member of G1 hears a
Group Hello from GL2, it sends a unicast RREQ with the R
flag set to GL1, indicating that two portions of the multicast
tree have reconnected. The node also sets a soft state
merge_in_progress flag to 1 indicating that the
partition merge procedure has started. This node will then
drop all subsequent Group Hello messages that reach it.
The node also updates its unicast route to GL2. We have
added the fields GL1, GL2 and GL sequence to a RREQ,
which has the R flag set. The GL sequence is set to the
sequence number of GL2. Also, the Hop Count field in the
RREQ indicates hop count to GL2. All nodes that receive
this RREQ update their route to GL2 by looking at the GL
sequence and Hop Count fields in the RREQ. They also set
the merge_in_progress flag in their Multicast Route
Tables. If the merge_in_progress flag is set, it means
that the partition merge procedure is in execution and they
need not react if they receive any more Group Hellos from
GL2. When GL1 receives the RREQ with the R and J flags
set, it unicasts an RREQ with R and J flags set to GL2. It
also sets its merge_in_progress flag to 1. While
this flag is set, it disregards any further RREQs with R flag
set that any other nodes may send. The GL sequence field
of the RREQ is set to the current destination sequence
number of GL1. On reception of the RREQ, GL2 unicasts a
RREP back to GL1, merging the two trees. GL2 also sends a
Group Hello with U flag set so that all the nodes in G2
update their group leader information. Because of the

unreliable nature of the wireless channel, any of the merge
RREQs or RREPs can get lost. If this happens, the partition
merge procedure may never complete. Therefore, we set the
merge_in_progress flag to expire in
PARTITION_MERGE_TIMER milliseconds. After this
flag expires, a node that is a member of G1 reinitiates the
merge procedure on the reception of a GRPH from GL2. If
the value for the PARTITION_MERGE_TIMER is too
small, members of G1 will keep sending RREQs with R flag
set waiting long enough for the tree merge to complete.
However, the PARTITION_MERGE_TIMER should not be
too long either, otherwise even after partition merge;
packets will continue not to be delivered to some group
members. After the two portions of the multicast tree have
merged, the tree will most likely be non-optimal. However,
as a result of the tree optimization procedure using Group
Hellos mentioned in the earlier part of the section, the tree
will gradually graft and prune different links to become
more efficient.

 Reliability of MACT Messages

During the experiments we ran, we observed that
control packets might get lost, as the wireless channel is
unreliable. If only, RREQ or RREP packets are lost, the
multicast tree may take a longer time to form or it may form
non-optimally. This is not crucial, as eventually the
multicast tree will optimize itself. However, if MACT
messages are lost, the tree may never form or may cause the
nodes to have incorrect multicast Next Hop information.
For example, if a MACT with a join flag is lost, the branch
that the MACT is trying to graft will never be added onto
the multicast tree. If a MACT with a prune flag is lost, a
node that is on the multicast tree may never realize that its
Next Hop, which was a leaf node, has pruned away and
might continue to forward multicast data packets, causing a
waste of bandwidth. If a MACT with Group Leader flag
were lost, a node, which is supposed to become a group
leader, would never realize that it is supposed to become a
group leader. Therefore, MACT messages with join, prune
and Group Leader flags need to be reliably delivered. We
have added an additional control message called
MACT_ACK. After a node sends a MACT message to its
neighbor, it waits for a MACT_ACK message from its
neighbor. If it does not receive a MACT ACK within a time
of MACT_ACK_TIMER, it resends the MACT message.
The node can send a maximum of MACT_RETRIES
number of times. The lack of reliability in these crucial tree
maintenance messages has been a critical oversight in the
initial design of the protocol. Adding reliability to these
messages ensures that the multicast tree is formed reliably.

 5. VALIDATION EXPERIMENTS

An integral part of implementing a routing protocol
is verifying its correct operation in various scenarios. We

performed validation experiments to test different features
of MAODV in different scenarios. We used the iptables
functionality in Linux to emulate different topology
scenarios. Our implementation was tested in increasingly
complex scenarios, and this provides us some degree of
reassurance and confidence in its correct operation. We
used a combination of widely used multicast application
such as vic as well as simple custom written test programs
to verify the operation of MAODV. Access to the Multicast
Routing Table is provided to user space via the proc file
system in Linux.

 5.1. TWO AND THREE NODE SCENARIOS

Even a simple two-node scenario can verify a
significant amount of MAODV operation such as correct
operation of Group Leader, RREQ, RREP, MACT,
interaction with the Linux kernel multicast forwarding table,
the proc file system, as well as multicast data forwarding.
However a three-node test topology allows us to test the
operation of the protocol in several key scenarios. Using
iptables with only three nodes we can emulate different
connectivity scenarios as well as basic mobility of the
nodes. These different scenarios are illustrated in Figure 2.
The dashed lines indicate connectivity between nodes, and
the solid arrow lines indicate the multicast tree.

Three nodes A, B and C connected as shown in the
first portion of Figure 2. Nodes A and B can see each other.
Similarly, nodes B and C can see each other. But nodes A
and C cannot see each other. In this scenario, an application
on node A joins a multicast group. It sends
RREQ_RETRIES number of RREQs for the multicast tree
and not having received any RREPs, it becomes a group
leader. Next, node C joins the multicast group. It sends out
RREQs. The RREQ is forwarded to node A via node B.
Node A, which is a member of the multicast tree, responds
to the RREQ with an RREP. Node C on receiving the
RREP waits for RREP_WAIT_TIME and then sends a
MACT towards node B, and activates the Next Hop B.
Node B sends a MACT_ACK to node C and activates its
Next Hop entries. It then sends a MACT to node A. Node
A responds with a MACT_ACK to node B and activates the
Next Hop B. The multicast tree is formed as indicated by the
solid lines in the first portion of Figure 2. This straight-line
topology verifies the correct operation of MAODV, in a
scenario where an intermediate node is not a member of the
group, but simply a multicast-forwarding node.

Next, we remove the iptables packet filtering
from both node A and C and allow node A to see packets
originating from MAC address C and vice versa. This
creates a topology where each node is in the communication
range of the other two as indicated by the dashed lines in the
second scenario in Figure 2. Node C is now able to hear the
Group Hello messages being forwarded by node A. These
have a lesser Hop Count than the previous Group Hello

messages received from node B. Node C now sends a
MACT with a join flag to node A and a MACT with prune
flag set to node B as mentioned in the section 4.4. Node B
and node A send a MACT_ACK back to node C. Also, as
node B no longer has any downstream next hop nodes in the
multicast tree it prunes itself from the multicast tree by
sending a MACT with prune flag set to node A. Node A
sends a MACT_ACK to node B, completing the prune. The
multicast tree now looks as indicated by the solid lines in
the last scenario in Figure 2.

Re-enabling the iptables packet filtering to emulate
the scenario where nodes A and C cannot communicate
directly, we can verify that the multicast tree once again
forms correctly. This verifies that node C correctly
generates a multicast RREQ with the Group Rebuild
extensions [6] as it has lost contact with its upstream Next
Hop node A.

5.2. PARTITION MERGE

Figure 3: Partition Merge

It is important to verify the correct operation of the

MAODV protocol when a partition merge occurs. We
emulate the topology as indicated in the initial scenario in
Figure 3 using iptables as described in previous
sections. We create a partitioned network, such that nodes
A and B are in one partition and nodes C and D are in a
different partition. All nodes join the same multicast group,
but due to the partition, two separate multicast trees are
formed. Node A is the group leader for one tree and node D
is the group leader for the other tree. The IP address of
node A is numerically lesser than node D. Next, we use
iptables to change the connectivity between nodes such
that nodes B and C can now communicate with each other
(two partitions coming together). Node B, can now hears
Group Hellos being sent by node D. Node B sends an
RREQ with Partition Merge extensions and the R flag set to
node A, which is its current group leader for. Node A on
receiving this then sends a unicast RREQ with Partition
Merge extensions and R and J flags set to node D which is

the group leader of the second partition. Node D now
generates an RREP with R flag set. The two partitions of
the multicast tree are now merged. This process is
illustrated in Figure 3.

C D

B

A

B

A

D

C

Initial Topology Final Toplogy

Figure 4: Control Overhead Experiment

 6. EXPERIMENTAL RESULTS

In addition to verifying the basic operation of the
MAODV protocol, we also attempted to gain some insight
into its efficiency in terms of packet forwarding. We
wanted to measure not only the control packet overhead,
that MAODV generated, but also wanted to quantify at what
rate could our implementation forward multicast traffic. We
wanted to take these measurements for the topology
outlined in Figure 4, with the nodes spatially separated by
sufficient distance to generate the topology. However, we
ran into the problem outlined in [14]. The problem is that
Hello messages do not accurately indicate connectivity for
forwarding data packets. Hello packets are broadcast
packets, which are transmitted with maximum power. So it
is possible for nodes to see Hello packets from other nodes
and think that there exists connectivity, between them,
however, when data packets are sent they do not reach the
destination nodes. Therefore, we emulate the desired
topology with iptables as mentioned in the previous
sections. The problem with this approach is that the
wireless channel bandwidth is now shared. This may have a
significant impact in any throughput measurements.

We wanted to characterize the control packet
overhead generated by MAODV. However, this is highly
dependent on the mobility scenario, and very difficult to
generalize. Therefore, we decided to measure this overhead
for a small representative example. We start the experiment
with the nodes emulating the initial topology shown in
Figure 4. Node A is chosen as the multicast source and
nodes C and D were chosen as multicast receivers. Node A

B C DA

C D

C D

Partition Merge

Partitioned Network

Multicast Tree after Partition Merge

BA

BA

T
im

e

sends packets of size 1000 bytes. Node B acts as a
forwarding node that is not a member of the multicast
group. During the course of the experiment, we change the
topology of the nodes to emulate basic mobility. The new
topology emulates the motion of node D from the vicinity of
node B to the vicinity of node C. We measured the number
of MAODV control packets received at every node and the
number of multicast data packets that were generated by
node A. Node A sends data for 370 sec. And nodes A, B
and C remain on the multicast tree for 540 sec. The average
data transmission rate was measured to be 242Kbps, and the
control overhead was 2.75 pkts/sec.

 7. CONCLUSIONS

In this paper, we presented our experiences in
implementing multicast AODV in the kernel space. We
tested and validated the protocol with the implementation.
We have also presented some modifications that can
enhance the performance of MAODV. We propose the use
of a mechanism to optimize the multicast tree as often the
tree may not be the most efficient. We propose one such
mechanism based on Group Hello messages. We also
propose a scheme to combine two disjoint instances of a
multicast tree after a partition merge has occurred. In
addition we believe that it is essential that MACT messages
of MAODV have some mechanism to guard against
corruption or loss. This can have a serious impact on the
formation and the maintenance of the multicast tree.

We are currently investigating modifications to a
users space implementation of AODV. We would like to
compare the performance of both our kernel level
implementation as well as a user space implementation that
includes some of our proposed enhancements. We are also
testing our implementation on strongARM processor based
devices such as the IPAQ and the cerfCube. Our
implementations will be made publicly available.

 ACKNOWLEDGEMENTS

The authors would like to thank Karthikeyan
Chandrashekar for helpful discussions on optimizing the
multicast tree; Dionysus Blaze, Dan Rusk and Jonathan
Polley for helping fix bugs.

REFERENCES
[1] E. Royer and C. Perkins, “Multicast Operation of the
Ad-Hoc On-demand Distance Vector Routing Protocol,”
Proceedings of Mobicom’99, Seattle, WA, pp. 207–218,
August 1999.

[2] E. Bommaiah, M. Liu, McAuley A. and R. Talpade
“AMROUTE: Ad Hoc Multicast Routing Protocol,” IETF
Internet Draft, draft-talpade-manet-amroute-00.txt (Work in
Progress), Aug 1998.

[3] L. Ji and M. Corson, “A Lightweight Adaptive Multicast
Algorithm,” Proceedings of IEEE GLOBECOM, pp. 1036–
1042, Dec 1998.

[4] M. Gerla, C.C. Chiang, S.J. Lee, “On-demand Multicast
Routing Protocol,” Proceedings of IEEE WCNC ’99, New
Orleans, LA, pp. 1298–1302, Sep 1999.

[5] V. Park and M. Corson, “A Highly Adaptive Distributed
Routing Algorithm for Mobile Wireless Networks,”
Proceedings of IEEE Conference on Computer
Communications ’97, Kobe, Japan., pp. 1405–1413, 1997.

[6] C. Perkins and E. Royer-Belding, “Multicast Ad Hoc
On-demand Distance Vector (MAODV) Routing,” IETF
Internet Draft, draft-ietf-manet-maodv-00.txt (Work in
Progress), Jul 2000.

[7] E. Royer and C. Perkins, “Ad Hoc On-demand Distance
Vector Routing Protocol,” Proceedings of the 2nd IEEE
Workshop on Mobile Computing Systems and Applications,
New Orleans, LA, pp. 90–100, Feb 1999.

[8] T. Kunz and E. Cheng, “Multicasting in Ad-Hoc
Networks: Comparing MAODV and ODMRP,”
Proceedings of the Workshop on Adhoc Communications,
Bonn, Germany, Sep 2001.

[9] F. Lilieblad, O. Mattsson, P. Nylund, D. Ouchterlony,
and A. Roxenhag, “Personal Communication”
http://fl.ssvl.kth.se/~g4/madhoc/docs/techdoc.ps.

[10] K.B. Luke., “NIST Kernel AODV Implementation.”
http://w3.antd.nist.gov/wctg/aodv_kernel/index.html

[11] E. Nordstrom “AODV-UU Implementation.”
http://user.it.uu.se/~henrikl/aodv/

[12] E. Royer and C.Perkins, “AODV-UCSB
Implementation.”
http://moment.cs.ucsb.edu/AODV/aodv.html

[13] E. Royer and C. Perkins, “An Implementation study of
the AODV Routing Protocol,” Proceedings of the IEEE
Wireless Communications and Networking Conference,
Chicago, IL, Sep 2000.

[14] H. Lundgren. and E. Nordstrom, “Coping with
Communication Gray Zones in IEEE 802.11b based Ad Hoc
Networks WOWMOM 2002,” International Workshop on
Wireless Mobile Multimedia, Sep 2002

