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Abstract 
In this paper we describe our experience of implementing 
multicast extensions of AODV (MAODV).  Using insight 
gained from our implementation we propose some 
enhancements to MAODV that enhance its stability and its 
performance.  We propose the use of a tree optimization 
scheme based on Group Hello messages, a scheme for 
merging group partitions, as well as a method to add 
reliability to the multicast tree formation and maintenance, 
via the use of an acknowledgement for MACT messages. 
Our implementation is based on the kernel AODV 
implementation from NIST.  We describe details regarding 
our implementation that can provide valuable insight to 
future implementers of ad hoc routing protocols, and in 
particular, people attempting to implement multicast routing 
protocols.  We also provide a brief description of some basic 
validation experiments that we used to verify the 
functionality and the various features of our 
implementation.  
 
1. INTRODUCTION 

Wireless networks are being deployed at a very 
rapid pace.  In contrast with the infrastructure-based 
networks that are being deployed, there is an entire category 
of infrastructureless networks, which are being designed to 
operate in situations where it might not be possible to have 
an infrastructure.  By their very nature, wireless networks 
are essentially broadcast in nature.  All nodes within the 
transmission radius of a node can overhear every 
transmission by this node.  Therefore, the most efficient use 
of wireless bandwidth is via the use of broadcast from a 
single node.  While this is the most efficient use of 
bandwidth, it is not the most useful as often communication 
only needs to be between two specific nodes.  Unicast 
transmissions on the other hand are the least efficient use of 
the wireless channel.  An interesting and useful compromise 
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between these two extremes is the use of multicast. 
 Multiple receivers who subscribe to be part of the receiver 
group can receive using multicast a single transmission.  
The problem of multicast routing is born out of the need of 
achieving multicast capability in a scenario where all the 
nodes interested in participating in the multicast group are 
not within the transmission range of the sender.  There 
needs to be some mechanism to forward multicast traffic 
through the entire multi-hop network, based on group 
member information.  To solve this problem in wireless 
networks, several multicast protocols have been proposed 
such as MAODV [1], AMROUTE [2], LAM [3], and 
ODMRP [4].   

Most protocols proposed for multicasting in 
wireless ad hoc networks depend on some underlying 
unicast protocol.  Therefore, when designing a multicast 
routing protocol one might be able to rely on some structure 
already provided by the unicast routing protocol.  One of the 
strongest candidates for standardization, by the MANET 
working group at the IETF, as the unicast protocol of choice 
in wireless ad hoc networks is AODV. In this paper, we 
describe our experience in implementing and validating the 
multicast extensions of AODV (MAODV).  We also 
propose some modification to the protocol that enhances its 
stability and reliability.   

The rest of this paper is organized as follows: 
Section 2 describes some selected related work in the 
areas of not only multicast routing protocols but also 
unicast routing protocols in wireless ad hoc networks, in 
particular similar work in implementation of routing 
protocols in wireless ad hoc networks.  Section 3 provides a 
brief overview of the MAODV protocol.  Section 4 
describes our implementation of the multicast extensions of 
AODV in Linux, as well our proposed modifications to the 
protocol.  Section 5 describes some of the basic validation 
experiments we have used to attempt to verify correct 
operation of the MAODV protocol.  In section 6 we 
describe some measurements from our implementation as a 
measure of its efficiency. Finally, section 7 provides our 
conclusions and some directions for future work.  
 
 2. RELATED WORK 

Though several multicast routing protocols have 
been proposed for ad hoc networks, ODMRP [4] is different 
from others, in that it is mesh based and is independent of 
the underlying unicast routing protocol.  Most multicast 



routing protocols however, rely on some underlying unicast 
routing mechanism.  These protocols take advantage of the 
underlying unicast routing protocol and save on control 
overhead.  LAM [3] is a group shared tree protocol that does 
not require timer-based messaging.  LAM is tightly coupled 
with the underlying unicast routing protocol TORA [5], and 
relies on TORA’s unicast route finding capability.  
AMROUTE [2] is a shared-tree protocol, which allows 
dynamic core migration based on group membership and 
network configuration.   

By its very nature MAODV [1][6] is integrated 
with AODV [7], which is a strong candidate for 
standardization in the IETF.  This makes it a good choice to 
investigate issues in implementing multicast routing 
protocols in ad hoc networks.  There have been several 
simulation studies of MAODV [1] [8] however; 
implementation of a routing protocol in a real ad hoc 
network can often provide details that network simulations 
can skip.   

Unicast versions of AODV have been widely 
studied and implemented.  A number of public domain 
implementations for AODV are available [9][10][11][12].  
MADHOC [9] is an implementation of AODV, which is 
entirely based in user space.  Kernel AODV [10] on the 
other hand is implemented entirely in kernel space.  The 
implementations outlined in [11] and [12] are based partly 
in user space and partly in kernel space.  The advantage of 
the kernel space implementations is that there is easy access 
of all the packets and their headers.  This makes it easier to 
utilize header fields and options when making protocol 
decisions.  Kernel space implementations also often tend to 
be more efficient as they do not have to transfer data back 
and forth between user space and kernel space.  However, 
kernel implementations of protocols are more difficult to 
implement, and are less portable, making them more 
difficult to maintain.  The implementation in [13] is largely 
a user space implementation of AODV and MAODV but 
provides only few implementation details.  In this paper, we 
present the kernel space implementation of MAODV and its 
validation.  We also propose several mechanisms to enhance 
the performance of the base protocol, which was presented 
in [13]. 
 
3. OVERVIEW OF MULTICAST AODV 

The operation of MAODV is analogous to the 
operation of AODV.  Multicast routes are discovered on 
demand.  The multicast route request is broadcast similar to 
the unicast route request, and the route reply propagates 
back from the nodes that are members of the multicast 
group.  The MAODV Internet draft [6] and [1] describe in 
detail the operation of MAODV.  For completeness, we 
summarize some of the basics features and operation of 
AODV and MAODV below.   A more detailed description 
can be found in [1] [6] [7]. 

Every node running MAODV maintains two 
routing tables. The first one is used for unicast operation of 
AODV and is simply referred to as Route Table.  The fields 
of the routing table are as follows:  Destination IP Address, 
Destination Sequence Number, Hop Count to Destination, 
Last Hop Count, Next Hop, Next Hop Interface, List of 
Precursors, Lifetime, and Routing Flags.  [6] [7] give a 
detailed description of these fields and how they are used 
for unicast route discovery.  The second routing table is the 
Multicast Routing Table.  This contains the following fields:  

• Multicast Group IP Address   
• Multicast Group Leader IP Address   
• Multicast Group Sequence Number   
• Next Hops   
• Hop Count to next Multicast Group Member  
• Hop Count to Multicast Group Leader   

Every node that is a router for a multicast group maintains a 
Multicast Route Table entry for that group. In section 4.4, 
we describe the additional fields that we have added to the 
Multicast Route Table to facilitate implementation and 
correct operation of the protocol.   

For every multicast group, a bi-directional shared 
tree is formed, consisting of the members of the multicast 
group and the intermediary nodes. Each multicast group has 
a group leader associated with it.  The primary function 
of the group leader is to maintain and disseminate the 
multicast group sequence number. This sequence number is 
used to indicate the freshness of routing information for the 
multicast group.   

When a node wishes to join a multicast group, it 
broadcasts a RREQ message with the join flag set.  When 
intermediary nodes receive the RREQ, they create an entry 
in their Multicast Route Table, for that group, with the Next 
Hop field set to the IP address of the node from which it 
received the RREQ.  It also sets the downstream flag for this 
Next Hop entry.  If this node is a member of the multicast 
tree, for this group, it will unicast a RREP back to the 
originator of the RREQ.  Otherwise, it rebroadcasts the 
RREQ.  A node that receives a RREP for a multicast group, 
forwards it, and it also adds an entry in its Multicast Route 
Table for that groups Next Hop list, with an IP address of 
the node from which it received the RREP, and also marks 
this entry with the upstream flag.   

A node wishing to join the multicast group waits 
for a time period of RREP_WAIT_TIME for RREPs from 
different nodes. After this interval, it selects the best route 
(in terms of freshness and distance from the multicast tree).  
It then sends a unicast MACT message along the selected 
best route.  When a node receives a MACT for a particular 
group, it checks to see if it is a member of the multicast tree.  
If the node is already a part of the multicast tree, the Next 
Hop from which the MACT was received is activated, thus 
grafting the link on to the multicast tree.  If it is not part of 
the multicast tree, it forwards the MACT to its upstream 



Next Hop, activating the upstream Next Hop, and making it 
a part of the multicast tree.  Processing continues in this 
manner until a node that was already a part of the multicast 
tree is reached and the addition of the tree branch is 
complete.  If the node originating the RREQ does not 
receive an RREP before timing out, it broadcasts another 
RREQ with Broadcast ID increased by one. The node 
generates up to RREQ_RETRIES number of RREQs.  If the 
node doesn’t receive an RREP by this time, it assumes that 
the multicast group does not already exist, becomes the 
group leader for that group, and starts broadcasting periodic 
Group Hello messages for the multicast group.   

When a link break is detected as described in 
[1][6], the node downstream of the link breakage tries to 
repair the link by sending RREQs with Multicast Group 
Rebuild Extension.  A node, which has a lesser hop count to 
the group leader and hence is closer to the group leader, 
responds to the RREQ with an RREP.  The node waits for 
RREP_WAIT_TIME similar to what is described in the 
previous paragraph and activates the appropriate route.  If 
the node does not receive any RREPs, it becomes a group 
leader, if it is a member of the multicast group.  If the node 
is not a member of the multicast group, it sends a MACT 
with G (group) flag set to a downstream node.  The 
downstream node, on the reception of a MACT with G flag 
set becomes a group leader if it is a member of the multicast 
group.  If it is not a member of the multicast group, it sends 
the MACT with G flag set to its downstream node.   

When a node leaves a multicast group, if it is not a 
leaf node, it continues to be on the multicast tree.  If it is a 
leaf node, it sends a MACT with a P (prune) flag set to its 
multicast Next Hop and removes all the information for the 
multicast group from its Multicast Route Table.  The next 
hop node on the reception of the MACT with a P flag set 
deletes the Next Hop entry from its own Multicast Route 
Table.  If this node is itself not a member of the multicast 
group, and if the pruning of the other node has made it a leaf 
node, it can similarly prune itself from the tree. The tree 
branch pruning terminates when either a group member or a 
non-leaf node is reached.   

When a multicast tree becomes disconnected due to 
a network partition, and if the partitions later reconnect, a 
node will receive multiple Group Hellos for the multicast 
group. In this scenario, the group leader with the lower IP 
address initiates the partition merge procedure. In section 
4.4, we describe our additions to the partition merge 
procedure. 
 
4. IMPLEMENTATION 
 
4.1. TESTBED DESCRIPTION 

There exist several different implementations of 
AODV.  Therefore, we had to choose which implementation 
we should use as a base for adding the multicast extensions.  

We choose the AODV implementation from NIST, as it 
provided the necessary performance, flexibility, and 
stability.  This implementation of AODV is written entirely 
as a kernel module.  Our implementation of MAODV is 
based on NIST’s base kernel AODV version 1.5[10].  As we 
used the NIST code as a starting point, our MAODV 
implementation is also a dynamically loadable kernel 
module that runs on Linux kernel version 2.4.  The 
development was done on Red Hat Linux version 7.3. We 
used Linux kernel 2.4.18 for our implementation.   

The development was done on a simple ad hoc 
network testbed consisting of Dell C640 laptops and IBM 
ThinkPad 600E laptops equipped with Orinoco Gold 
802.11b wireless LAN cards.  The wireless LAN cards 
operate in 2.4GHz spectrum, and in ad hoc mode provide a 
maximum capacity of 2Mb/s.   
 
 4.2. SOFTWARE ARCHITECTURE 

Our implementation uses netfilter hooks to 
handle packets inside the kernel similar to the AODV 
implementations  [10][11][12]. The MAODV module opens 
a UDP socket with port number 654. AODV and MAODV 
control messages are sent to and received from this socket.  
The module also initializes an IGMP socket for 
manipulating the multicast forwarding table that is provided 
by the Linux kernel.  MAODV adds multicast routes to the 
kernel’s multicast forwarding cache through the use of 
MRT_ADD_MFC socket option on the IGMP socket and 
deletes multicast routes through the use of 
MRT_DEL_MFC socket option on the IGMP socket.   

When a node joins a multicast group, it starts 
sending IGMP_HOST_MEMBERSHIP_REPORT 
messages to the IGMP_ALL_ROUTERs group (224.0.0.2).  
We monitor these messages from a NF_IP_PRE_ROUTING 
netfilter hook. A group_membership_table, 
keeps track of all the multicast groups the node is a member 
of.  The IGMP_HOST_MEMBERSHIP_REPORT is then 
dropped and an RREQ with join flag set is broadcasted.  
When the node leaves the multicast group, it sends the 
IGMP_HOST_LEAVE_MESSAGE to the 
IGMP_ALL_ROUTERs group (224.0.0.2). This message is 
also observed in the pre-routing netfilter hook.  This 
message is then dropped and necessary action is taken as 
specified by the MAODV protocol [6].  During our 
implementation we also corrected a software bug in the 
IGMP code for Linux version 2.4, which was corrupting the 
IGMP_HOST_MEMEMBERSHIP_REPORT packets.  

The kernel multicast route table entries in Linux 
are based on the origin, destination pair of the multicast 
packet.  To keep track of the sources using the node as a 
multicast router, we added a source_list to the 
MAODV Multicast Route Table. A node adds itself as a 
default entry in the source_list. This is to make sure 
that the multicast packets originating from it are always 



forwarded.  If the node is a valid router for a multicast 
group, in the pre-routing netfilter hook, it checks to 
see if the originator ID of the multicast packet that it has 
received for that group is in the source_list. If it is not 
already in the source_list, it adds the originator ID to 
the list.   

When a node wishes to send packets to a multicast 
group, but does not intend to join the group, it sends RREQ 
packets to the multicast tree without the join flag set [6][13].  
This is detected by monitoring packets in a NF_ 
IP_LOCAL_OUT output netfilter hook, and checking 
if a multicast data packet destined to a multicast group for 
which there is no Multicast Route Table entry is generated 
by the node.  Any node (not necessarily a member of the 
multicast tree) that has a valid multicast route to the 
destination multicast tree responds with an RREP.  The 
node waits for a time period of RREP_WAIT_TIME and 
sends a MACT to activate the route. We added a new flag 
is_tree_member to the MAODV Multicast Route 
Table to distinguish nodes that have a valid multicast route 
to the multicast tree, but are not part of the multicast tree 
 (because they do not connect multicast group members).  If 
a node that has its is_tree_member flag cleared doesn’t 
receive a multicast packet destined to the multicast group 
for ACTIVE_ROUTE_TIMEOUT [6] amount of time, the 
Multicast Route Table entry for the group is deleted.  
Therefore, we note that, although, the routes to the multicast 
tree are soft state as in unicast AODV, the Multicast Route 
Table entries are hard state on nodes that are members of the 
multicast tree for the multicast group under consideration.  . 
 They are not removed unless a node is pruning itself from 
the multicast tree.   

When a node that is a part of the multicast tree 
loses connectivity to its upstream Next Hop because of link 
breakage, it tries to rebuild the tree as mentioned in section 
3.  The node sets a flag called rebuild_in_progress 
that we have added to the Multicast Route Table. This 
flag makes sure that the node doesn’t reply to RREQs from 
another node that is trying to join the multicast group. This 
is because the current node is in a transient state trying to 
rebuild the tree.  
 
 4.3. DATA PACKET CACHE 

Part of our implementation also includes a Data 
Packet Cache.  It is necessary for any multicast routing 
protocol implementation in a wireless network to implement 
a similar mechanism to discard duplicate packets.  Consider 
the case illustrated in Figure 1.  Nodes A, B and C are 
within, each other’s communication range. The multicast 
tree is formed as shown by the solid lines. When node A 
forwards a multicast data packet, nodes B and C are able to 
listen since all the nodes are in communication range of 
each other.  Since B and C are on the multicast tree, they too 
forward the multicast data packet.  Node A will receive 

these transmissions from B and C and forward them again 
as they are data packets for the multicast group.  This leads 
to a packet storm, where the nodes continuously forward 
duplicate packets till the TTL expires.  The correct 
operation of multicast forwarding requires that Node A 
should not relay these duplicate transmissions.  Therefore, 
there needs to be a mechanism to discard duplicate packets. 
This is typical of multicasting in wireless networks.   
Similar to the approaches in [6] and [8] we tackle this 
problem by using a Data Packet Cache.  Our 
implementation caches the source IP address and ID fields 
of the IP headers of the multicast data packets it sees.  We 
have implemented the Data Packet Cache as a hash table 
using the source IP address and the ID field to generate the 
hash value. Proper design of data packet buffer is crucial 
because of its necessity in eliminating duplicate packets.  In 
the case illustrated in Figure 1, node A must cache 
information about a packet until it receives the packet back 
after nodes B and C forward the packet.  The size of the data 
packet buffer should also not be too large as the entire cache 
is searched for each input data packet.  If the data packet 
buffer is too large, it could potentially become a bottleneck 
on the data-forwarding path. 
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Figure 1: Data Packet Cache Scenario 

 
4.4. MODIFICATIONS TO MAODV 

During the implementation of MAODV, we 
realized that certain modifications to the protocol would 
enhance the performance of the protocol.  In this section, we 
describe these changes.   
 
     Tree Optimization using Group Hello Messages   

The group leader for a multicast group generates 
the Group Hello messages periodically once every 
GROUP_HELLO_INTERVAL milliseconds.  These 
messages are propagated through out the connected portion 
of the network.  These messages could be used to 
proactively maintain routes to the group leader.  We added 
an additional field called Group Leader Sequence Number 
to the Group Hello message to enable this.  A node will 
update its route to the group leader if the received Group 
Hello indicates a higher Group Leader Sequence Number 
than its record of group leader’s sequence number indicating 
a fresher route; or if the Group Leader Sequence Number is 
equal to its record of the group leader sequence number and 



if the Group Hello is received with a lesser Hop Count field 
indicating a shorter path to the group leader.  On updating 
the route, the node makes the node from which it received 
the Group Hello as its next hop in the route table entry to 
the group leader.   
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Figure 2: Multicast Tree Optimization 

Consider the case illustrated in the first portion of 
Figure 2.  The dashed line between any two nodes indicates 
that they are within communication range of each other, and 
a solid line arrow indicates that the node participate in a 
multicast tree, either as group members or as forwarding 
nodes.  Nodes A and B are in communication range of each 
other.  Nodes B and C are in communication range of each 
other.  But, nodes A and C are out of communication range 
of each other.  Nodes A, B and C are part of a multicast tree 
as indicated by the solid arrow lines.  Nodes A and C are 
members of the multicast group and node B is a forwarding 
node.  Node A is an upstream next hop of B, and C is a 
downstream next hop of B.  Now, if node C moves into the 
communication range of A the multicast tree becomes 
inefficient.  Packets for the multicast group from node A 
will continue to reach C via B, even though, A and C are in 
direct communication range of each other.  We propose a 
modification to the MAODV base protocol that can 
accommodate this scenario, and result in a more efficient 
multicast tree.  Our solution is as follows: When nodes A 
and C move in the communication range of each other, C 
will be able to hear Group Hello messages being broadcast 
by A.  The Group Hello messages would have the O flag set 
to 0 indicating that the Group Hello has traveled along the 
tree.  The Hop Count field in the Group Hello message from 
node A, indicates that if C joined the tree as a downstream 
neighbor of A, it would be closer to the group leader and the 
tree would be optimized.  Therefore, node C sends a MACT 
with J flag set (Join MACT) to node A grafting the link A-C 

onto the multicast tree.  At the same time, node C will send 
a MACT with the P flag (Prune MACT) set to node B.  
Since node B is only a multicast forwarder, he would prune 
himself from the multicast tree as he would no longer have 
any downstream nodes for the multicast tree.  In this way 
links A-B and B-C will be pruned from the multicast tree. 
Figure 2 shows this optimization.  Using this method, even 
though the multicast tree may be formed non-optimally 
during its construction, it will eventually become optimized 
because of the procedure mentioned above.   
 
     Partition Merge 

We also wish to propose a second enhancement to 
the MAODV protocol, which can significantly improve the 
stability of the protocol during partition merge.  We propose 
that an additional merge_in_progress flag be added 
to the Multicast Route Table.  In the event that a multicast 
tree gets partitioned due to network mobility, we can have 
multiple instances of the multicast tree, each with its own 
group leader.  This can create problems if the network 
partitions subsequently reconnect.  For simplicity we 
consider the example, where the network gets partitioned 
into two.  In this scenario, there would be two group leaders 
(say GL1 and GL2 : GL1 < GL2) sending Group Hello 
messages in the network.  Let G1 be the portion of the tree 
whose group leader is GL1 and G2 be the portion of the tree 
whose group leader is GL2.  When a member of G1 hears a 
Group Hello from GL2, it sends a unicast RREQ with the R 
flag set to GL1, indicating that two portions of the multicast 
tree have reconnected.  The node also sets a soft state 
merge_in_progress flag to 1 indicating that the 
partition merge procedure has started.  This node will then 
drop all subsequent Group Hello messages that reach it.  
The node also updates its unicast route to GL2.  We have 
added the fields GL1, GL2 and GL sequence to a RREQ, 
which has the R flag set.  The GL sequence is set to the 
sequence number of GL2.  Also, the Hop Count field in the 
RREQ indicates hop count to GL2.  All nodes that receive 
this RREQ update their route to GL2 by looking at the GL 
sequence and Hop Count fields in the RREQ.  They also set 
the merge_in_progress flag in their Multicast Route 
Tables.  If the merge_in_progress flag is set, it means 
that the partition merge procedure is in execution and they 
need not react if they receive any more Group Hellos from 
GL2.  When GL1 receives the RREQ with the R and J flags 
set, it unicasts an RREQ with R and J flags set to GL2.  It 
also sets its merge_in_progress flag to 1.  While 
this flag is set, it disregards any further RREQs with R flag 
set that any other nodes may send.  The GL sequence field 
of the RREQ is set to the current destination sequence 
number of GL1. On reception of the RREQ, GL2 unicasts a 
RREP back to GL1, merging the two trees.  GL2 also sends a 
Group Hello with U flag set so that all the nodes in G2 
update their group leader information.  Because of the 



unreliable nature of the wireless channel, any of the merge 
RREQs or RREPs can get lost.  If this happens, the partition 
merge procedure may never complete.  Therefore, we set the 
merge_in_progress flag to expire in 
PARTITION_MERGE_TIMER milliseconds.  After this 
flag expires, a node that is a member of G1 reinitiates the 
merge procedure on the reception of a GRPH from GL2.  If 
the value for the PARTITION_MERGE_TIMER is too 
small, members of G1 will keep sending RREQs with R flag 
set waiting long enough for the tree merge to complete.  
However, the PARTITION_MERGE_TIMER should not be 
too long either, otherwise even after partition merge; 
packets will continue not to be delivered to some group 
members.  After the two portions of the multicast tree have 
merged, the tree will most likely be non-optimal.  However, 
as a result of the tree optimization procedure using Group 
Hellos mentioned in the earlier part of the section, the tree 
will gradually graft and prune different links to become 
more efficient. 

  
     Reliability of MACT Messages 

During the experiments we ran, we observed that 
control packets might get lost, as the wireless channel is 
unreliable.  If only, RREQ or RREP packets are lost, the 
multicast tree may take a longer time to form or it may form 
non-optimally.  This is not crucial, as eventually the 
multicast tree will optimize itself.  However, if MACT 
messages are lost, the tree may never form or may cause the 
nodes to have incorrect multicast Next Hop information.  
For example, if a MACT with a join flag is lost, the branch 
that the MACT is trying to graft will never be added onto 
the multicast tree. If a MACT with a prune flag is lost, a 
node that is on the multicast tree may never realize that its 
Next Hop, which was a leaf node, has pruned away and 
might continue to forward multicast data packets, causing a 
waste of bandwidth.  If a MACT with Group Leader flag 
were lost, a node, which is supposed to become a group 
leader, would never realize that it is supposed to become a 
group leader.  Therefore, MACT messages with join, prune 
and Group Leader flags need to be reliably delivered.  We 
have added an additional control message called 
MACT_ACK.  After a node sends a MACT message to its 
neighbor, it waits for a MACT_ACK message from its 
neighbor.  If it does not receive a MACT ACK within a time 
of MACT_ACK_TIMER, it resends the MACT message. 
The node can send a maximum of MACT_RETRIES 
number of times. The lack of reliability in these crucial tree 
maintenance messages has been a critical oversight in the 
initial design of the protocol.  Adding reliability to these 
messages ensures that the multicast tree is formed reliably. 
 
 5. VALIDATION EXPERIMENTS 

An integral part of implementing a routing protocol 
is verifying its correct operation in various scenarios.  We 

performed validation experiments to test different features 
of MAODV in different scenarios.  We used the iptables 
functionality in Linux to emulate different topology 
scenarios.  Our implementation was tested in increasingly 
complex scenarios, and this provides us some degree of 
reassurance and confidence in its correct operation.  We 
used a combination of widely used multicast application 
such as vic as well as simple custom written test programs 
to verify the operation of MAODV.  Access to the Multicast 
Routing Table is provided to user space via the proc file 
system in Linux. 

 
 5.1. TWO AND THREE NODE SCENARIOS 

Even a simple two-node scenario can verify a 
significant amount of MAODV operation such as correct 
operation of Group Leader, RREQ, RREP, MACT, 
interaction with the Linux kernel multicast forwarding table, 
the proc file system, as well as multicast data forwarding.  
However a three-node test topology allows us to test the 
operation of the protocol in several key scenarios.  Using 
iptables with only three nodes we can emulate different 
connectivity scenarios as well as basic mobility of the 
nodes.  These different scenarios are illustrated in Figure 2.  
The dashed lines indicate connectivity between nodes, and 
the solid arrow lines indicate the multicast tree.   

Three nodes A, B and C connected as shown in the 
first portion of Figure 2.  Nodes A and B can see each other. 
Similarly, nodes B and C can see each other.  But nodes A 
and C cannot see each other.  In this scenario, an application 
on node A joins a multicast group.  It sends 
RREQ_RETRIES number of RREQs for the multicast tree 
and not having received any RREPs, it becomes a group 
leader.  Next, node C joins the multicast group.  It sends out 
RREQs.  The RREQ is forwarded to node A via node B.  
Node A, which is a member of the multicast tree, responds 
to the RREQ with an RREP.  Node C on receiving the 
RREP waits for RREP_WAIT_TIME and then sends a 
MACT towards node B, and activates the Next Hop B.  
Node B sends a MACT_ACK to node C and activates its 
Next Hop entries.  It then sends a MACT to node A.  Node 
A responds with a MACT_ACK to node B and activates the 
Next Hop B. The multicast tree is formed as indicated by the 
solid lines in the first portion of Figure 2.  This straight-line 
topology verifies the correct operation of MAODV, in a 
scenario where an intermediate node is not a member of the 
group, but simply a multicast-forwarding node.   

Next, we remove the iptables packet filtering 
from both node A and C and allow node A to see packets 
originating from MAC address C and vice versa. This 
creates a topology where each node is in the communication 
range of the other two as indicated by the dashed lines in the 
second scenario in Figure 2.  Node C is now able to hear the 
Group Hello messages being forwarded by node A.  These 
have a lesser Hop Count than the previous Group Hello 



messages received from node B.  Node C now sends a 
MACT with a join flag to node A and a MACT with prune 
flag set to node B as mentioned in the section 4.4.  Node B 
and node A send a MACT_ACK back to node C.  Also, as 
node B no longer has any downstream next hop nodes in the 
multicast tree it prunes itself from the multicast tree by 
sending a MACT with prune flag set to node A.  Node A 
sends a MACT_ACK to node B, completing the prune.  The 
multicast tree now looks as indicated by the solid lines in 
the last scenario in Figure 2.   

Re-enabling the iptables packet filtering to emulate 
the scenario where nodes A and C cannot communicate 
directly, we can verify that the multicast tree once again 
forms correctly.  This verifies that node C correctly 
generates a multicast RREQ with the Group Rebuild 
extensions [6] as it has lost contact with its upstream Next 
Hop node A.  

 
5.2. PARTITION MERGE 

Figure 3: Partition Merge 

 
It is important to verify the correct operation of the 

MAODV protocol when a partition merge occurs.  We 
emulate the topology as indicated in the initial scenario in 
Figure 3 using iptables as described in previous 
sections.  We create a partitioned network, such that nodes 
A and B are in one partition and nodes C and D are in a 
different partition.  All nodes join the same multicast group, 
but due to the partition, two separate multicast trees are 
formed.  Node A is the group leader for one tree and node D 
is the group leader for the other tree.  The IP address of 
node A is numerically lesser than node D.  Next, we use 
iptables to change the connectivity between nodes such 
that nodes B and C can now communicate with each other 
(two partitions coming together).  Node B, can now hears 
Group Hellos being sent by node D.  Node B sends an 
RREQ with Partition Merge extensions and the R flag set to 
node A, which is its current group leader for.  Node A on 
receiving this then sends a unicast RREQ with Partition 
Merge extensions and R and J flags set to node D which is 

the group leader of the second partition.  Node D now 
generates an RREP with R flag set.  The two partitions of 
the multicast tree are now merged.  This process is 
illustrated in Figure 3.  
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Figure 4: Control Overhead Experiment 

 
 6. EXPERIMENTAL RESULTS 

In addition to verifying the basic operation of the 
MAODV protocol, we also attempted to gain some insight 
into its efficiency in terms of packet forwarding.  We 
wanted to measure not only the control packet overhead, 
that MAODV generated, but also wanted to quantify at what 
rate could our implementation forward multicast traffic.  We 
wanted to take these measurements for the topology 
outlined in Figure 4, with the nodes spatially separated by 
sufficient distance to generate the topology. However, we 
ran into the problem outlined in [14].  The problem is that 
Hello messages do not accurately indicate connectivity for 
forwarding data packets.  Hello packets are broadcast 
packets, which are transmitted with maximum power.  So it 
is possible for nodes to see Hello packets from other nodes 
and think that there exists connectivity, between them, 
however, when data packets are sent they do not reach the 
destination nodes.  Therefore, we emulate the desired 
topology with iptables as mentioned in the previous 
sections.  The problem with this approach is that the 
wireless channel bandwidth is now shared.  This may have a 
significant impact in any throughput measurements.  

We wanted to characterize the control packet 
overhead generated by MAODV.  However, this is highly 
dependent on the mobility scenario, and very difficult to 
generalize.  Therefore, we decided to measure this overhead 
for a small representative example.  We start the experiment 
with the nodes emulating the initial topology shown in 
Figure 4.  Node A is chosen as the multicast source and 
nodes C and D were chosen as multicast receivers.  Node A 
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sends packets of size 1000 bytes.  Node B acts as a 
forwarding node that is not a member of the multicast 
group.   During the course of the experiment, we change the 
topology of the nodes to emulate basic mobility.  The new 
topology emulates the motion of node D from the vicinity of 
node B to the vicinity of node C.  We measured the number 
of MAODV control packets received at every node and the 
number of multicast data packets that were generated by 
node A.  Node A sends data for 370 sec. And nodes A, B 
and C remain on the multicast tree for 540 sec.  The average 
data transmission rate was measured to be 242Kbps, and the 
control overhead was 2.75 pkts/sec. 

 
 7. CONCLUSIONS 

In this paper, we presented our experiences in 
implementing multicast AODV in the kernel space. We 
tested and validated the protocol with the implementation.  
We have also presented some modifications that can 
enhance the performance of MAODV.  We propose the use 
of a mechanism to optimize the multicast tree as often the 
tree may not be the most efficient.  We propose one such 
mechanism based on Group Hello messages.  We also 
propose a scheme to combine two disjoint instances of a 
multicast tree after a partition merge has occurred.  In 
addition we believe that it is essential that MACT messages 
of MAODV have some mechanism to guard against 
corruption or loss.  This can have a serious impact on the 
formation and the maintenance of the multicast tree. 

We are currently investigating modifications to a 
users space implementation of AODV.  We would like to 
compare the performance of both our kernel level 
implementation as well as a user space implementation that 
includes some of our proposed enhancements.  We are also 
testing our implementation on strongARM processor based 
devices such as the IPAQ and the cerfCube.  Our 
implementations will be made publicly available.  
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