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Abstract

The paper presents a technique for computing the individual throughputs and the average queue occupancy when

multiple TCP connections share a single bottleneck buffer. The bottleneck buffer is assumed to perform congestion

feedback via randomized packet marking or drops. We first present a fixed point-based analytical technique to compute

the mean congestion window sizes, the mean queue occupancy and the individual throughputs when the TCP flows

perform idealized congestion avoidance. We subsequently extend the technique to analyze the case where TCP flows

perform generalized congestion avoidance and demonstrate the use of this technique under the Assured Service model,

where each flow is assured a minimum traffic rate. Simulations are used to demonstrate the accuracy of this technique

for relatively low values of packet dropping probability and a much wider range of packet marking probability.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we present a mathematical tech-

nique for computing how competing TCP flows

share the link capacity and buffer space of a bot-

tleneck queue. In particular, we first consider the

interaction of multiple persistent TCP flows, each

performing idealized congestion avoidance [1], with

a buffer performing congestion control via random
packet drops/marking. We develop an analytical

technique, resulting in a fixed-point iteration

scheme, to obtain the �center� of the queue occu-

pancy and the individual TCP windows and use

such values to determine the individual through-

put of each TCP flow. Such a technique is used to

numerically predict the manner in which TCP

flows share resources in the presence of a queue
using algorithms such as Random Early Detection

(RED) [2] and Explicit Congestion Notification

(ECN) [3].
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We subsequently extend the analysis to consider

the case of TCP flows performing generalized

congestion avoidance. Under this generalization of

TCPs current window adjustment algorithm, a

TCP flow increments its congestion window,

cwnd, 1 from its current value W by c1W a in the
absence of congestion and decreases the window

by c2W b in the presence of congestion (where a, b,
c1 and c2 are constants that parameterize the

window adjustment algorithm). This model of

window adjustment corresponds to the family of

binomial congestion control algorithms studied in

[4]. We present the extensions to our fixed-point

technique necessary for this generalized case. To
further demonstrate the flexibility of this fixed-

point mechanism, we consider the case where such

generalized TCP flows are regulated by the As-

sured Service [5] model. Under this model, each

flow is guaranteed a minimum assured traffic rate;

packets from a flow should ideally experience no

congestion as long as its offered traffic does not

exceed this rate. A suitable modification of the
fixed-point analysis technique leads to a reason-

ably accurate method for predicting the individual

TCP window sizes and throughputs under this

service model as well.

Mathematically speaking, we treat the evolution

of the congestion window of a TCP flow as an

idealized stochastic process. In particular, we con-

sider the TCP Reno version [6] of window adap-
tation, where detection of congestion (through

duplicate acknowledgments or via explicit setting

of a congestion indicator bit) results in an halving

of the congestion window. Of course, most TCP

versions do not respond to multiple congestion

indicators (packet markings or drops) within a

single window, but rather assume that the indica-

tors collectively signal a single congestion episode
and thus halve their window only once. We shall

later explain why our model provides reasonably

accurate approximation of such behavior as long as

the notification probability is moderately low. By

disregarding transient phenomena such as fast re-

covery [1] and timeouts, we can model the window

evolution of the generalized TCP flow as a Markov

process with the following state-transition proba-
bilities:

PfWnþ1 ¼ wþ c1wajWn ¼ wg ¼ 1� pðwÞ; ð1:1Þ

PfWnþ1 ¼ w� c2wbjWn ¼ wg ¼ pðwÞ; ð1:2Þ
where pðwÞ is the (state-dependent) congestion

notification probability. The classical congestion

avoidance algorithm is obtained by setting a ¼ �1,

b ¼ 1, c1 ¼ 1:0 and c2 ¼ 0:5. The value of the TCP
window that corresponds to �zero-drift�, whereby
the probability of window increase equals the
probability of window decrease, is assumed to

represent the �center� of the flow�s window distri-

bution. It should be noted that, strictly speaking,

when multiple TCP flows interact with a single

queue, the probability for congestion notification

for a specific flow depends not just on its window,

but also on the instantaneous window sizes of all

the other connections. 2

Congestion notification is an abstract event in

our analysis; packet drops and packet marking are

thus fundamentally equivalent events. Our fixed-

point analysis technique thus applies irrespective

of whether the buffer�s congestion control uses

packet drops or ECN-based packet marking. To

illustrate the accuracy of our analysis for conven-

tional TCP flows, we shall first present simulation
studies based on feedback via randomized drop-

ping. For numerical studies of the generalized

congestion avoidance algorithm, we shall however

use a buffer that performs congestion control via

packet marking. The use of such examples seem

justified, since modifications to TCP congestion

avoidance are likely to occur jointly after the de-

1 While cwnd in actual TCP implementations is expressed

in bytes and is consequently integer-valued, we assume that,

in Eqs. (1.1) and (1.2), W is real-valued and is expressed in

maximum segment size (MSS) units. The congestion window in

the rest of this paper is assumed to be real-valued. We will

explicitly mention the situations where the congestion window

is expressed in bytes.

2 An accurate model of the window evolution process for N

TCP connections would require an N-dimensional Markov

model, where the state space would be a N-dimensional vector

consisting of the window sizes of each individual connection.

The transition probabilities between states would depend on the

state of the entire system (the instantaneous windows of each

connection), making useful analysis impossible.
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ployment of explicit congestion notification

mechanisms, such as ECN, in the Internet. We

shall see that, while our generic fixed-point for-

mulation applies to both packet marking and

dropping-based congestion control, our specific

use of the ‘‘square-root formula’’ is more accurate
over a much wider range of packet marking

probabilities.

Our analytical technique computes only the

�center� of the queue occupancy (and not higher

order statistics). As an indirect fallout of our

simulations, we shall however also demonstrate

how such randomized congestion feedback typi-

cally causes the TCP windows to be negatively
correlated. Negative correlation implies that the

TCP windows tend to vary �out-of-phase�; such

behavior causes the variance of the queue occu-

pancy to be smaller that the sum of the variances

of the individual flows.

The rest of the paper is organized as follows.

Section 2 describes our mathematical model for

the interaction between multiple TCP flows and a
RED-like buffer. Section 3 presents the analytical

technique for multiple flows performing idealized

congestion avoidance and provides simulation re-

sults to demonstrate the accuracy of our analysis.

This section also reveals how our use of the

‘‘square-root formula’’ leads to higher accuracy

when notification is primarily achieved through

ECN-based feedback. Section 4 considers the ex-
tension of the analysis for the case of multiple

generalized TCPs under the Assured Service model

and presents comparisons with simulated results.

Finally, Section 5 concludes the paper.

1.1. Related work and model applicability

While several papers (e.g., [2,7]) have used
simulations and experiments to consider the effect

of RED-like randomized feedback algorithms on

TCP throughput, relatively little work has been

published on analytical techniques for computing

such throughput sharing. The fixed-point method

for analyzing the sharing of a bottleneck buffer

was first presented in [8,9] later presented a similar

analysis based on a control-theoretic model. The
extension of the fixed-point technique for gener-

alized TCP flows was investigated in [10]. This

paper combines the results in [8,10] into a common

framework. Ref. [8] also shows how such fixed-

point analysis is exploited to evaluate two alter-

native techniques for computing the window

distribution of a TCP flow in such a multi-flow

case.
The role of negative correlation in stabilizing

the queue occupancy was explored in [8,11], which

also showed how the use of averaged values of past

queue occupancies and drop-biasing techniques

could quantitatively modify such correlation be-

havior. Our analytical technique only computes

the mean queue occupancy; we do not make any

claims on the dynamic behavior of the queue. Ref.
[9] treats the queue as a dynamical system and

shows that such a queue can exhibit instabilities

and oscillatory behavior; such behavior is mathe-

matically motivated in [12].

Our analytical technique applies to queues

where the drop or marking probability is based

only on the queue occupancy and is independent

of the number of active flows. Active queue man-
agement algorithms, such as SRED [13] and

BLUE [14] attempt to stabilize the bottleneck

queue occupancy by dynamically adjusting the

drop/marking thresholds based on the offered

load. While such algorithms could be incorporated

into our analysis by appropriate adjustment of the

notification probabilities, we have not explicitly

considered such enhancements in this paper.
The �drift-based computation� of a flow�s mean

window size was previously used in several papers

(e.g. [7,16,17]) to compute the throughput of a TCP

flow subject to a constant packet drop probability.

Such an approach leads to the �square-root for-

mula� for classical congestion avoidance, which

states that the mean window of a TCP connection

is inversely proportional to the square-root of the
loss probability. More detailed models of TCP

behavior, that consider the effect of timeouts and

fast recovery, are considered in [18,19], and essen-

tially show that the TCP throughput becomes in-

versely proportional to the packet drop probability

at moderately high loss rates. Our idealized ana-

lytical technique is demonstrated using the classical

square-root formula and is thus applicable only
when packet loss rates are relatively low and

transmission timeouts are relatively rare events.
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The generic analytical framework has however

been also used in conjunction with other more ac-

curate models of TCP behavior to provide better

approximations for higher packet loss rates. For

example, [20] used the fixed point framework with

the PFTK formula [19] for TCP behavior to dem-
onstrate better agreement under higher rates of

RED-based packet dropping. We focus primarily

on establishing the principles of the fixed-point

formulation, rather than studying specific models

of TCP response. However, our simulation studies

will demonstrate that the use of the fixed-point

method with the square-root formula is accurate

for a wide range of ECN-based congestion feed-
back––in essence, our model is accurate as long as

the packet loss rates can be kept low enough to

restrict the occurrence of retransmission timeouts.

2. Mathematical model and problem approach

In this section, we first describe the TCP source
model for classical congestion avoidance, and the

random drop-based buffer management algorithm.

The corresponding extensions for generalized

congestion avoidance and marking-based queue

management are obvious and are presented

thereafter. We also present the Assured Service

model, which we shall analyze later.

2.1. TCP sources

The TCP connections are persistent (sending

infinite-sized data files), with the congestion win-
dow acting as the only constraint on the injection

of new packets by the sender. We assume that the

connection never times out, that the data is always

sent in equal-sized segments (although segment

sizes could vary between connections) and that

acknowledgments are never lost. For the purposes

of presentation, we assume that the receiver ac-

knowledges every received packet separately (de-
layed acknowledgments are not enabled); delayed

acknowledgments can be incorporated into the

model using the approximation in Appendix C.

Let N be the number of concurrent TCP con-

nections under consideration. The ith TCP flow,

TCPi, has a MSS ofMi bytes. Moreover, the round

trip time of the ith TCP connection is assumed to

consist of two components: a fixed component

denoted by RTTi (seconds) and a variable queuing

component. Since our model assumes that each

flow essentially faces only one bottleneck, the

delay in the rest of the traffic path can be assumed
to be fixed and determined largely by the propa-

gation and transmission delays of the constituent

links (queuing delays in such non-bottleneck nodes

are assumed to be negligible). The queuing delay at

the bottleneck node is explicitly modeled and

contributes to the variable component of the de-

lay. Let Wi denote the window size (in MSSs) of

the ith connection. Note that while the process
model (Eqs. (1.1) and (1.2)) represents the window

state in segments, we shall also occasionally refer

(explicitly) to the window size in bytes.

2.2. Queue behavior

For the analysis in Section 3, we consider a

RED-like queue which subjects all incoming

packets to random packet drops/marking, with a

probability that depends on the instantaneous

queue occupancy. The specialized �ORED� queue
behavior for the analysis of the Assured Service
model will be presented in Section 2.3.

The service rate (bandwidth) of the queue is C

bytes/s. In general, let Q be the buffer occupancy of

the random drop/marking queue and Qi (in bytes)

be the amount of traffic from connection i that is

buffered in the queue (so that
PN

i¼1 Qi ¼ Q). The
drop/marking function is denoted by f ðQÞ. For the
simulation results, we use the linear drop/marking
model, with f ðQÞ given by

f ðQÞ ¼
0 8Q < minth

pmax 8Q > maxth

pmax

Q�minth

maxth �minth

8minth 6Q6 maxth;

8><
>:

ð2:1Þ
where, as per standard notation, maxth and minth

are the maximum and minimum drop/marking

thresholds (in bytes) and pmax is the maximum

packet drop/marking probability. (This is in fact,

an even gentler version of the �gentle� model of

RED behavior recommended in [21].) From an

analytical viewpoint, we merely need f ðQÞ to be
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non-decreasing in Q; this is true for all sensible

drop functions.

Although our analysis is primarily focussed on

algorithms that do not maintain flow-specific state

(and do not distinguish between flows), a slight
generalization, which allows the actual packet

congestion notification probability to be flow-

dependent, is possible. To that extent, we suppose

that the congestion notification probability for a

packet of flow i, which arrives when the queue

occupancy is Q, is given by the function fiðQÞ.
fiðQÞ is related to our afore-mentioned drop/

marking function f ðQÞ by the expression:

fiðQÞ ¼ c2i f ðQÞ; ð2:2Þ
where the ci are arbitrary non-zero constants. Our

model thus permits the notification function for
different connections to be scalar multiples of one

another; the scalar values are represented as c2i
instead of ci for future notational convenience.

This scalar model permits us, for example, to

capture the byte-mode of operation of RED where

the probability of a packet drop is proportional to

the size of the packet (by setting c2i ¼ Mi).
3 Also,

for convenience, we shall use piðW Þ to represent
the (as yet unknown) relationship between the

packet drop/marking probability of TCPi and its

window size W. The reader may note that packet

drops or marking in RED, unlike our reference

model, are not truly conditionally independent; a

simple correction for our model in such a situation

is discussed in Appendix B.

2.3. Assured Service model and buffer behavior

The Assured Service model [5] describes a

framework for differential bandwidth sharing,

where each flow (user) is guaranteed a minimum or

assured rate as part of their service profile. Ade-

quate capacity provisioning is assumed to ensure

that packets from a flow experience minimal con-

gestive losses/marking as long as its transmission

rate lies within this assured rate. Flows are allowed

to inject additional (opportunistic) packets beyond

this assured rate; such packets are treated as best-

effort and have lower priority. To enable network
buffers to differentiate between such packets, [5]

proposes a tagging mechanism at the network

edge. Packets which stay within the profiled rate

are tagged as in packets while packets that violate

the profile are tagged as out packets. Mechanisms

such as a leaky bucket [22] or modifications

thereof [5] may be used to implement the tagging

operation. In packets are provided preferential
treatment in network buffers via the RIO (RED

with In/Out) discard algorithm; RIO is similar to

RED except that it uses different thresholds for in

and out packets to ensure that out (opportunistic)

packets are dropped before in packets. For simu-

lation-based studies involving the generalized

congestion avoidance algorithm, we assume that

our bottleneck queue uses the ORED [10] buffer
management algorithm; ORED is similar to RIO

but differs in two respects:

• ORED marks out packets instead of dropping

them.

• ORED does not signal congestion notification

for in packets, except when the buffer overflows

and packets are dropped.

As in the classical congestion avoidance case,

the generalized TCP flow TCPi has an MSS of Mi

bytes and a round-trip time of RTTi s. Addition-

ally, TCPi is assumed to have an assured rate of Ri

bytes/s and can consequently expect to receive no

congestion feedback as long as its transmission

rate qi is less than Ri. The flows interact with an
ORED buffer serving a link of capacity C bytes/s.

Our analysis assumes that 4

C >
XN
i¼1

Ri; ð2:3Þ
3 Our �scalar-multiple� model of flow-dependent notification

probabilities can capture a much richer set of randomized

feedback settings than apparent at first glance. For example, it

can represent a setting of weighted RED where the different

classes have the same minth and maxth thresholds but different

pmax. We do not explore the validation of such settings further

in this paper.

4 If C <
PN

i¼1 Ri, then ECN marking will occur even though

at least one TCP flow obtains less than its assured rate. This is

clearly a violation of the Assured Service model.
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i.e., the link capacity is greater than the sum of the

assured rates of the individual flows.

The marking function of the ORED buffer (for

out packets) is given by the traditional linear

model f ðQÞ presented in Eq. (2.2).

3. Estimating the mean queue occupancy for clas-

sical congestion avoidance

In this section, we consider the interaction of

TCP flows performing classical congestion avoid-

ance with a bottleneck buffer performing feedback
through random packet drops or marking. For the

classical congestion algorithm, the state-transition

probabilities of the ith Markovian process are

given by

P Wnþ1

�
¼ wþ 1

w

����Wn ¼ w
	

¼ 1� piðwÞ; ð3:1Þ

P Wnþ1

n
¼ w

2

���Wn ¼ w
o
¼ piðwÞ: ð3:2Þ

We first use a drift-based argument to determine

the center of the queue occupancy, denoted by Q
,

and the centers of the cwnd-s of the individual

connections, denoted by W 

i , i ¼ f1; . . . ;Ng. To

estimate the center of the queue occupancy, we use

a set of fixed point mappings. The basic idea is to

find values for the average window sizes, such that

the average queue size given by those set of values
is consistent with the average notification proba-

bility that is implied by the window sizes. The

derivation of the �square-root� formula via the

drift-based technique is borrowed from [23]. As

noted earlier, let Q
 be this mean or center value of

the queue occupancy and let W 

i , i 2 f1; 2; . . . ;Ng

be the center of the ith TCP flow.

3.1. Formulating the fixed point equations

Define the drift of the congestion window of a

TCP flow (momentarily dropping the flow-specific

subscript) by the expected change, DW , in its

window size. Since, for a window size of w, the

window size (in packets) increases by 1=w with

probability 1� pðwÞ and decreases by w=2 with
probability pðwÞ, we have

DW ¼ ð1� pðwÞÞ 1
w
� pðwÞw

2
: ð3:3Þ

From the above equation, the center or �0-drift�
value of W, called W 
, is seen to be

W 
 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1

pðW 
Þ

s
; ð3:4Þ

where the approximation is quite accurate as p is

usually quite small 5 (for current TCP versions, if

the drop probability exceeds 0.05, timeouts and

slow start phenomena begin to dominate TCP

behavior).

The notification probability for flow i, piðW Þ,
for a given value, Q of the buffer occupancy is

given by the relationship piðW Þ ¼ fiðQÞ. Accord-
ingly, in the multi-TCP case, the zero-drift analysis

gives the following expression (in packets) for the

mean window size for flow i:

W 0
i ðpacketsÞ ’

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

fiðQ
Þ

s
: ð3:5Þ

By incorporating expression (2.2) in the above

equation and noting that each packet of flow i is

Mi bytes in size, we get the mean window size (in

bytes) as:

W 

i ’ Mi

ci

ffiffiffiffiffiffiffiffiffiffiffiffi
2

f ðQ
Þ

s
: ð3:6Þ

Now, let Ci be the average bandwidth obtained by

TCP i. Assuming that there is no significant buffer

underflow and that the link is fully utilized (after

all, this is a bottleneck queue), we get the relationPN
i¼1 Ci ¼ C. Ci can also be computed by a differ-

ent method: by noting that a TCP connection

sends one window worth of data in one effective

round trip time. Since a queue of size Q will con-

tribute a buffering delay of Q=C, the effective

round trip time of connection i is RTTi þ Q=C;
thus, we can relate Ci to Wi by the expression

5 A more accurate analysis [23] reveals that the mean

window occupancy, in ack time, is given by W 
 � 1:5269=
ffiffiffi
p

p
.

It is this value that we used in all our experimental results; for

notational ease, however, we shall continue using the
ffiffiffi
2

p

approximation in our exposition.
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Ci ¼
W 


i

RTTi þ Q=C
: ð3:7Þ

On summing the Cis from the above equation and

equating them to C, we get

C ¼ W
XN
i¼1

Mi=ci
RTTi þ Q=C

; ð3:8Þ

or, upon simplification,

W ¼ 1PN
i¼1

Mi=ci
QþC
RTTi

; ð3:9Þ

where W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=f ðQÞ

p
. For notational convenience,

let the RHS of Eq. (3.9) be denoted by the function

gðQÞ so that

gðQÞ ¼
XN
i¼1

Mi=ci
Qþ C 
RTTi

 !�1

:

The fixed point solutions for the �average� TCP
window sizes and the queue occupancy is then

given by the set of values that provide a solution to

the following simultaneous equations:

W ¼
ffiffiffiffiffiffiffiffiffiffi
2

f ðQÞ

s
; ð3:10Þ

W ¼
XN
i¼1

Mi=ci
Qþ C 
RTTi

 !�1

¼ gðQÞ: ð3:11Þ

After solving these simultaneous equations, we can

get the �average� congestion window for the ith

TCP flow (in bytes) using the relation

W 

i ¼ Mi

ci
W 
: ð3:12Þ

We can then obtain the throughput, qi, of TCPi by

using the relation

qi ¼
W 


i

RTTi þ Q
=C
: ð3:13Þ

3.2. More generic models for TCP behavior

It is well-known that current TCP versions

show appreciable deviation from the ‘‘square-

root’’ formula if the packet loss rate is larger than

�5%. (This deviation occurs primarily due to the

overhead of retransmission timeouts and slow

start caused by multiple packet losses within a

single window worth of packets). The above fixed

point model can, however, be easily extended to

consider more accurate or generic models of TCP

response. For example, by consider the effects of
TCP fast retransmits and timeouts, Ref. [19]

showed that the window size (expressed in MSS) of

a single TCP flow subject to a loss probability

fiðQÞ is well approximated by:

Wi ¼ RTTi RTTi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2fiðQÞ

3

r(,

þ T0 min 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27fiðQÞ

8

r !
fiðQÞð1þ 32f 2

i ðQÞÞ
)
;

ð3:14Þ

where T0 represents the base retransmission time-

out interval. Since the total RTT of TCPi is clearly

a function of Q, it follows that Eq. (3.14) can also

be represented in the form Wi ¼ gðQÞ, with an

appropriately defined gð�Þ. This is fundamentally

similar to the form of Eq. (3.11); accordingly, the
same fixed point technique can be used to solve for

Q
 even in this case. To maintain our focus on the

fixed point technique itself (rather than the precise

form of gðQÞ), we do not consider such refinements

any further in this paper.

Our Markovian model for TCP window evo-

lution assumes that the TCP window halves on the

receipt of every congestion indicator, even if they
occur in fairly close succession. This is, of course,

an idealized behavior, single most current TCP

implementations treat multiple packet drops/

markings within a single window as indicative of a

single congestion event and halve their window

only once. We argue that our model is reasonably

accurate since the number of random packet

drops/markings within a single window should be
either 0 or 1 in a well-behaved queuing system. To

see this, assume that the router congestion notifi-

cation probability stays constant at p. Then, the

average window size of a TCP flow subject to

feedback from such a router is W 
ðpÞ ’
ffiffiffiffiffiffiffiffi
2=p

p
(from Eq. (3.4)). Let X represent the random

variable representing the number of notification

events in such a window W 
ðpÞ. Then, the
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probability of multiple losses, PrfX P 2g under a
truly independent feedback model is given by the

binomial model:

PrfX P 2g � 1� PrfX ¼ 0g � PrfX ¼ 1g

� 1� ð1� pÞW

ðpÞ

� W 
ðpÞ
1

� �
pð1� pÞW


ðpÞ�1
: ð3:15Þ

Fig. 1 plots this probability as a function of p. It
is easy to see that the probability of multiple losses

is fairly small even for moderately large values of p

(around 10% for p ¼ 0:2). This low probability is

easily explained by observing that a larger p also

leads to a smaller value of the ‘‘average’’ window

size, thus reducing the likelihood of multiple losses

within a single window. Accordingly, our sto-

chastic model of TCP window evolution seems to
be a reasonably good approximation to TCP be-

havior (sans timeouts of course).

3.3. Existence and solution of fixed point

We now prove the existence of a unique solu-

tion to the above simultaneous equations (i.e.,

(3.10) and (3.11)) and also provide a numerical
technique for its rapid computation.

The existence of a unique solution can be

demonstrated graphically (see Fig. 2) by simulta-

neously plotting Eqs. (3.10) and (3.11) on the

ðQ;W Þ axes. Since f ðQÞ is assumed non-decreasing

in Q, we have W in Eq. (3.10) to be a non-
increasing function of Q. On the other hand, gðQÞ
in Eq. (3.11) can be seen to be an increasing

function of Q. The two plots will therefore inter-

sect at a single point, which is our �zero-drift� so-
lution for W 
 and Q
.

In Appendix A, we prove that the function gðQÞ
is concave; accordingly we can see that the func-

tion f ðQÞ, defined by the difference between the
RHS of Eqs. (3.10) and (3.11), is convex in Q:

sðQÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2

f ðQÞ

s
� 1

XN
i¼1

Mi=ci
Qþ C 
RTTi

,( )
:

ð3:16Þ

Hence, we use the Newton gradient technique,

which is guaranteed to converge and provide a

solution to the equation sðQÞ ¼ 0, to solve for the
fixed point. We start with an initial estimate of

Q0 ¼ minth þd (an initial value to the left of Q
)

and proceed with repeated iteration. In this par-

ticular setting, the derivative s0ðQjÞ at the jth iter-

ation is given by

f 0ðQjÞffiffiffi
2

p
f ðQjÞ3=2

�
XN
i¼1

Mi=ci
ðQj þ C 
RTTiÞ2

XN
i¼1

Mi=ci
Qj þ C 
RTTi

 !2,8<
:

9=
;:

ð3:17Þ

Fig. 1. Probability of two or more loss/marking events in a

congestion window.
Fig. 2. Typical relationship betweenW and Q for random drop

queues.
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3.4. Insights from above analysis

The drift analysis technique provides some in-

sights for predicting or controlling the station-

ary behavior of persistent TCP connections and
for understanding the accuracy of our approxima-

tion technique. For example, our analysis shows

that:

• TCP connections with the same round trip time

but different packet sizes will see the same �aver-
age� window size (in bytes) if ci ¼ aMi 8i, where
a is an arbitrary constant. In other words, to en-
sure fair sharing of throughput among TCP

connections with different packet sizes, the

packet dropping probability should be propor-

tional to the square of the packet size. Contrast

this with current byte-mode drop schemes

where the packet drop probability is normally

proportional to the packet size.

• TCP connections which are identical, except for
different round trip times, will observe relative

throughput that is inversely proportional to

the round trip times. This unfairness towards

TCP connections with larger round-trip times

is well known.

• Since W 
 (the �fixed point� that satisfies both

Eqs. (3.10) and (3.11)) is identical for all flows,

it should be clear from Eq. (3.12) that the mean
value of the window size (in packets) for all TCP

flows, which have the same drop function (same

pis), will be the same, irrespective of their round-

trip times and segment sizes. The point is more

subtle than apparent at first glance: the means

are identical only when expressed in MSSs and

when the distribution is taken with respect to

ack time. When sampled in clock time, the mean
window size of a TCP connection will indeed de-

pend on its round-trip delay (which influences

the rate of progress of the connection). We

can, however, easily compute the distribution

in clock time from that in ack time, if the

round-trip delay for a specific connection is

non-varying (through the relation dFackðxÞ ¼
fxdFclockðxÞ=

R1
0

y dFclockðyÞg). As the number of
flows increases, we shall later see that the buffer

occupancy (and hence, the queuing delay) shows

relatively smaller variation; estimates of clock-

time distributions from our ack-time calcula-

tions are progressively more accurate.

3.5. Simulation results for the mean window sizes

We used a wide variety of simulations, with

various combinations of segment sizes and round

trip times, to verify the accuracy of our fixed point-

based prediction technique. All simulations are

performed with New Reno TCP sources on the ns-

2 [24] simulator; the fixed point technique con-

verges in a few seconds compared to the OðminÞ
duration necessary with simulations. To study the
accuracy of our drift analysis, we simulated both

RED (Random Early Detection) and ERD (Early

Random Drop) [15] queues. The differences be-

tween these algorithms and the necessary correc-

tions to our model (for RED) are presented in

Appendix B.

A set of illustrative examples are presented in

Figs. 3 and 4. In both simulations, two TCP con-
nections, with 512 byte packets, interact with a

single bottleneck queue. The random drop queue

has minth ¼ 25 packets, maxth ¼ 75 packets and

buffer size equal to 150 packets (similar to rec-

ommendations in [25]); pmax was varied between

the values outlined in the plots. Fig. 3 considers

two TCP connections with identical round-trip

times, while Fig. 4 shows the results when the
nominal RTT of the second connection is double

that of the first (called the BaseRTT in the figure).

By varying pmax, we change the slope of the drop

function and hence, the �zero-drift� point of the

queue occupancy. Similar simulations have also

been performed for a variety of round-trip times

and MSSs. In general, the accuracy of our pre-

dictions is slightly lower for larger RTT values,
although in all cases the agreement was within

10% of the predicted values. This is expected be-

cause a larger RTT essentially increases the chance

of buffer underflow (which invalidates our model)

by increasing the feedback time of the TCP control

loop. Since our model does not account for phe-

nomena like fast recovery (during which the queue

size reduces), we tend to predict larger queue oc-
cupancies than those obtained via simulation.

To further illustrate the utility of our analytical

technique in determining the relative sharing of the
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bottleneck capacity among the TCP flows, we

consider four TCP flows sharing a bottleneck

ERD buffer. The round-trip times of the four flows
were 50, 70, 90 and 110 ms respectively. Table 1

shows the simulated and analytically predicted

values for the throughput of all the four flows. We

can again see that our analytical technique predicts

the true sharing of TCP bandwidth with reason-

able accuracy.

Our simulations also validate our analysis,

which states that the means of the TCP windows
(in segments) should be identical (in ack time),

even though the round-trip times of the various

flows and the segment sizes are different. It should

also be noted that the negative correlation among

window sizes (discussed shortly) helps to reduce

the variation in packet loss probability and im-

proves the accuracy of our technique.

3.6. Model accuracy for varying N

While the above examples clearly validate the

fundamentals behind the fixed-point approach, it

would be interesting to study the effect of our

choice of the ‘‘square-root formula’’ on the accu-

racy of our model. To study this behavior, we

performed extensive simulations by varying N, the

Fig. 3. Mean behavior with two identical connections.

Fig. 4. Mean behavior with two dissimilar connections.

Table 1

Results for 4 TCPs with different RTTs

TCP flow Throughput analytical

(Mbps)

Throughput simulated

(Mbps)

1 0.451 0.441

2 0.392 0.370

3 0.346 0.352

4 0.311 0.315
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number of persistent TCP flows. More impor-

tantly, we used simulations to obtain the difference

between the simulated average queue occupancy

when the router performed congestion feedback
using either packet drops or packet marking

(ECN). Fig. 5 plots the simulated queue occu-

pancy of both RED and ERD queues, as well as

the analytically predicted value using the fixed-

point method. Since the fixed point method is

based on an abstract concept of congestion noti-

fication, the analytic prediction is identical for

both packet dropping and marking behavior. The
plots presented in Fig. 5 correspond to a bottle-

neck buffer setting of minth ¼ 25, maxth ¼ 75 and

pmax ¼ 0:2 respectively. The TCP flows were

grouped in pairs, with the RTT of the first pair set

to 50 ms, and the RTT of every successive pair set

to 1.2 times that of the previous pair.

It is easy to see that the analytic predictions

over-estimate the actual occupancy (and conse-

quently TCP throughput) when congestion notifi-

cation is performed via packet drops. The reason

for this is not hard to find––the square-root for-

mulation fails to consider the effect of timeouts,
which occur when TCP flows encounter packet

losses. As N increases, the average queue length

and the average packet dropping rate increases,

leading to greater inaccuracy in the square-root

based fixed-point model. When notification is

performed via packet marking, such loss-related

timeouts are extremely rare events, and congestion

control is achieved principally through congestion
avoidance. Accordingly, our analytic model proves

reasonably accurate (within 10% in all cases) for

ECN-based bottleneck queues, even when the

feedback rate is high and number of TCP flows are

fairly large. ECN-based marking is clearly the

preferred mode of congestion notification in the

future; moreover, the adoption of advanced

mechanisms such as TCP SACK should further
reduce the likelihood of TCP timeouts. Accord-

ingly, the results demonstrate that the ‘‘square-

root formula’’ based fixed-point technique is likely

to be increasingly useful as a predictor of network

performance in the future.

3.7. Negative window-size correlation and its con-

sequences

On observing the results of our simulations, we

found that the window sizes of the different flows

were negatively correlated. Negative correlation
essentially implies that the windows tend to vary

out of phase: when the window size of one flow is

large, the other flows have smaller than usual

window sizes, and vice versa. The queue occupancy

thus exhibits lower variability and tends to be less

dependent on variations in the window size of a

single flow. To demonstrate the presence of such

correlation for an arbitrary number of flows, we
sample the queue size and the individual windows

to obtain the variance of the sum of the window

sizes Varð
PN

i¼1 WiÞ and the sum of the individual

variances
PN

i¼1 VarðWiÞ. We know that the
two should be equal if the flows are ideally

Fig. 5. Queue occupancy variation for router drop/marking.
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uncorrelated. For negative correlation, the sum
should exhibit lower variance ðVarð

PN
i¼1 WiÞ <PN

i¼1 VarðWiÞÞ, while for positive correlation,

the sum should exhibit larger variance ðVarð
PN

i¼1

WiÞ >
PN

i¼1 VarðWiÞÞ. This follows from the general

relationship

Var
XN
i¼1

Wi

 !
¼
XN
i¼1

VarðWiÞ þ
X
i6¼j

CovðWi ;WjÞ:

ð3:18Þ

Hence, if the covariance terms are negative, then

the LHS of Eq. (3.18) is less than the RHS.

Fig. 6 shows the behavior of these statistical

metrics for different values of N, the number of

simultaneous flows sharing a bottleneck buffer.
The figure shows that Varð

PN
i¼1 WiÞ is always less

than
PN

i¼1 VarðWiÞ (and, in fact, VarðQÞ is even

lower than Varð
PN

i¼1 WiÞ). This indicates the

presence of �negative correlation� among the TCP

flows. Ref. [8] shows how such a negative corre-

lation can be exploited to obtain more accurate

estimates of the stationary distribution of the

congestion windows, while [10] discusses how such
negative correlation is exploited by intelligent

�drop-biasing� strategies to reduce the variability of

the queue occupancy. Fig. 7, on the other hand,

shows that the coefficient of variation of the queue

occupancy decreases with an increase in the num-

ber of simultaneous TCP flows. Accordingly, we

can expect our analytical predictions to be more

accurate in the presence of a larger number of

flows, as long as the presence of a larger number of

flows does not increase the drop probability and
the incidence of retransmission timeouts.

4. Analysis extension for generalized congestion

avoidance

We now extend the fixed-point technique to

compute the mean window sizes and throughputs
for TCP flows performing generalized congestion

avoidance. In general, a process that performs

window-based congestion control under the TCP

paradigm can be thought of as increasing its win-

dow by a function incrðW Þ on receiving an ac-

knowledgment in the absence of congestion and

decreasing its window by decrðW Þ on receiving an

acknowledgment indicating congestion. As stated
earlier, we consider a special case of window ad-

justment where:

incrðW Þ ¼ c1W a; decrðW Þ ¼ c2W b;

where a; b; c1 and c2 are arbitrary constants. The
class of algorithms having a ¼ 0 and b ¼ 1, are

called additive-increase, multiplicative-decrease

(AIMD) algorithms in literature. We shall also

refer to the class of algorithms having a ¼ �1 and

b ¼ 1 as sub-additive increase, multiplicative-

decrease (SAIMD) algorithms in the remainder of

this paper.

Fig. 6. Variance plots for TCP flows over an ERD queue. Fig. 7. Coefficient of variation behavior.
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To demonstrate the utility of our fixed-point

analysis to a variety of problems, we tailor our

analysis to the Assured Service model and consider

the interaction with an ORED buffer. As we shall

see shortly, this is a relatively harder case, since the

marking probability for packets from a flow is not
simply dependent on the queue occupancy, but on

the flow�s window size as well. (The case of gen-

eralized TCP flows interacting with a random

notification buffer without any minimum assured

rate is a simpler version of this problem and fol-

lows almost immediately.) Also, the ORED buffer

marks (sets the ECN bit) on only out packets.

Since in packets are never marked, the only pos-
sible form of congestion indication experienced by

in packets occurs due to losses during buffer

overflow. The model thus essentially assumes that

marking out packets with a sufficiently aggressive

probability is adequate to ensure that a congestion

window does not grow without limit. Mathemati-

cally speaking, this will be true as long as

limw"1 incrðW Þ=decrðW Þ ! 0. i.e., while a < b,
which is true in all practical cases of interest.

4.1. Formulating the fixed point equations

As before, we define the drift in the congestion

window of the ith flow by the expected change,

DWi , in its window size as a function of its window

size Wi . The window size increases by c1W a
i with a

probability 1� piðW Þ and decreases by c2W
b
i with

a probability piðW Þ, where piðW Þ is the probability
of a packet being marked (ECN bit set). Thus, the

drift is 0 (corresponding to the �mean� or center of
the window) when Wi satisfies the condition

c1W a
i ð1� piðWiÞÞ ¼ c2W

b
i piðWiÞ: ð4:1Þ

Accordingly, given a specific function pið�Þ, we can
obtain the mean value of the congestion window
by solving

c2
c1
W b�a

i ¼ 1� piðWiÞ
piðWiÞ

: ð4:2Þ

Clearly, relation (4.2) defines a set of N equations

for i ¼ 1; . . . ;N .

If the mean ORED buffer occupancy is Q

(bytes), we can determine the corresponding
function pið�Þ. In this case, the marking probability

for out packets is given 6 by f ðQÞ. Now, if a

fraction ci of the packets from flow i are marked as

out, the unconditional marking probability for

packets of flow i is cif ðQÞ. Unfortunately, when

more than 1 TCP flow is present, ci is itself a

function of both Wi and Q. To see this, note that,
when the queue occupancy is Q, the total round-

trip time for flow i is given by RTTi þ Q=C. Since
the flow control algorithm transmits WiMi bytes

every round-trip time, the achieved throughput qi

is given by

qi ¼
WiMi

RTTi þ Q=C
: ð4:3Þ

The probability of a packet being tagged as out

is assumed to be equal to the fraction by which the

achieved throughput exceeds the assured rate Ri. ci
is thus given by ci ¼ ðqi � RiÞ=qi or, upon using

Eq. (4.3):

ci ¼ 1� RiðRTTi þ Q=CÞ
WiMi

: ð4:4Þ

Accordingly, the marking probability piðWiÞ is

given by

piðWiÞ ¼ 1

�
� RiðRTTi þ Q=CÞ

WiMi

�
f ðQÞ;

which on substituting into Eq. (4.2) yields the

following relationship (one for each i ¼ ð1; . . . ;NÞ)

c2
c1
W b�a

i ¼ 1

�
� RiðRTTi þ Q=CÞ

WiMi
f ðQÞ

��1

� 1:

ð4:5Þ
We denote the solution for Wi of the above equa-

tion as hiðQÞ to explicitly indicate that the above

equation is really a function of the queue occu-

pancy Q. We shall elaborate on a technique for

solving the above equation (to obtain hiðQÞ) in

Section 4.2.
Given a value for Q, we can then (at least in

principle) solve the set of N equations (Eq. (4.5)

for i ¼ 1; . . . ;N ) to obtain the N values, hiðQÞ,

6 As stated earlier, our formulation can also be used when

different flows have marking probabilities that are scalar

multiples of each other, i.e., f iðQÞ ¼ jif ðQÞ where ji are

arbitrary constants.
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i ¼ 1; . . . ;N . However, our solution must satisfy

another constraint: in the absence of buffer un-

derflow, the sum of the throughputs of the N flows

must equal the link capacity C, i.e.,
PN

i¼1 qi ¼ C.
For a specific value of Q, we note that qi ¼
hiðQÞMi=ðRTTi þ Q=CÞ and hence, after trivial
algebraic manipulations arrive at the other con-

straint:

XN
i¼1

hiðQÞMi

QþRTTi 
 C
¼ 1: ð4:6Þ

The basis of our fixed-point theory should now

be clear. As we vary Q and solve for the hiðQÞ
according to expression (4.5), there will be one

value for which the constraint (4.6) is satisfied.

This value of the queue occupancy is denoted by

Q
. The corresponding solutions for hiðQ
Þ pro-

vides the theoretical mean window sizes W 

i ; the

corresponding throughput for connection i is then

computed by W 

i Mi=ðRTTi þ Q
=CÞ.

4.2. Existence and solution of fixed point

The existence of a unique solution can be veri-

fied by varying Q from minth to 1. At values close

to minth, f ðQÞ � 0 and hence, from Eq. (4.5), we

see that hiðQÞ will be very large. Accordingly, the

LHS of Eq. (4.6) will be much larger than 1. On

the other hand, as Q " 1, the value of hiðQÞ also
increases (since it is clearly always larger than

RiðRTTi þ Q=CÞ). In that case, if we neglect the

constant term of 1 in the RHS of Eq. (4.5), we can

easily see, after elementary manipulation, that the

expression (4.5) reduces to

c2Mi

ci
W b�a

i ¼ c2
c1
Ri RTTi

�
þ Q

C

�
W b�a�1

i þMi;

ð4:7Þ

which, for large values of Q and Wi , yields

WiMi ¼ hiðQÞMi � Ri RTTi

�
þ Q

C

�
: ð4:8Þ

By plugging expression (4.8) into the LHS of

constraint (4.6), we can see that the LHS turns out

to be equal to
PN

i¼1 Ri=C. But by our assumption

(2.3), this is clearly less than 1. We can further

show that as Q increases from minth to 1, the

LHS of (4.6) decreases monotonically and crosses

1 at some point. Such a value of Q accordingly

defines the unique solution of the fixed point.

Our algorithm for solving the fixed point es-

sentially consists of varying Q and solving for
hiðQÞ until the condition (4.6) is satisfied.

An iterative gradient scheme (based on the

Newton method) can be used to solve for hiðQÞ. A
value of Wi that satisfies Eq. (4.5) is essentially the

unique zero of the function gðW Þ defined by

1

�
� RiðRTTi þ Q=CÞ

WiMi
fmarkðQÞ

��1

� 1� c2
c1
W b�a

i

ð4:9Þ
Define

g1ðWiÞ ¼ 1

�
� RiðRTTi þ Q=CÞ

WiMi
fmarkðQÞ

��1

� 1

and

g2ðW Þ ¼ c2
c1
W b�a

i :

By taking derivatives, we can see that g1ðWiÞ is

convex and decreasing in Wi while g2ðWiÞ is in-

creasing in Wi (since b > a). Furthermore, if b�
a < 1, then g2ðWiÞ is also concave. Accordingly, we
start with a value of Wi slightly larger than

RiðRTTi þ Q=CÞ and repeat the iterations until we

converge. In particular, if b � a6 1, gðWiÞ is con-
vex and hence, we can guarantee convergence

without any overshoot. When b � a > 1, we have

the possibility of overshoot and hence, need to

take special care in our numerical procedure.

However, in all our numerical calculations, we
were able to attain convergence using the Newton

iterative method using the iteration

W jþ1
i ¼ W j

i þ gðW j
i Þ

g0ðW j
i Þ

: ð4:10Þ

Here, g0ðW j
i Þ, the derivative of gðW Þ, is given by

the expression:

g0ðWiÞ ¼
�RiðRTTi þ Q=CÞ

f ðQÞW 2Mi 1� RiðRTTi þ Q=CÞ=WiMið Þ2

� c2
c1
ðb � aÞW b�a�1

i :

The appropriate value for Q i.e., Q
, on the

other hand, can be obtained by a binary search
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procedure, since we have established thatPN
i¼1 hiðQÞMi=ðRTTi þ Q=CÞ is monotonically de-

creasing and smaller than C when Q > Q
 and

larger than C when Q < Q
. Thus, the entire al-

gorithm consists of two loops: an outer loop

varying Q via a binary search method and an inner
loop evaluating hiðQÞ via the Newton gradient

method.

4.3. Simulations and comparative results

We performed fairly extensive tests using ns-2

to compare the accuracy of our analytical/numer-

ical results with those obtained via simulations.
Our modifications to ns-2 included incorporation

of the generalized incrðW Þ and decrðW Þ functions
in the TCP code and augmentation of the RED

code to implement the ORED mechanism.

For ease of illustration, we principally present

plots for the case of only two generalized flows.

(We have however used between 2 and 20 TCP

flows in additional simulations to verify the accu-
racy of our technique.) Both flows had the same

segment size of 512 bytes. To provide illustrative

results, we use four parameter sets.

1. Parameter set 1: (a ¼ �1, b ¼ 1, c1 ¼ 1 and

c2 ¼ 0:5), i.e., the current TCP window adapta-

tion procedure.

2. Parameter set 2: (a ¼ 0, b ¼ 1, c1 ¼ 0:2 and
c2 ¼ 0:1), i.e., an interesting choice of AIMD

parameters.

3. Parameter set 3: (a ¼ �1, b ¼ 1, c1 ¼ 0:5 and

c2 ¼ 0:1), i.e., SAIMD with a reduction in the

coefficients for window increase and decrease.

4. Parameter set 4: (a ¼ 0, b ¼ 1, c1 ¼ 0:4 and

c2 ¼ 0:2), i.e., AIMD with larger coefficients

for window increase and decrease than parame-
ter set 2.

The link capacity was varied between 4.5 and 12

Mbps. While minth and maxth was maintained at

20 and 100 respectively for both parameter sets,

pmax was kept at 0.01 for parameter set 1 and 3,

and at 0.1 for parameter sets 2 and 4. This was

done to ensure reasonable mean window sizes: for
identical marking probabilities, parameter sets 2

and 4 would have much larger mean window sizes

than parameter sets 1 and 3. We present here the

results of two different experiments.

In the first set of experiments, which we shall

call Experiment A, we kept the round-trip times

identical for both flows but provided them differ-
ent profiled rates. TCP flow 1 had a profile of 1.5

Mbps and TCP 2 had a profile of 3 Mbps. Both

flows were tagged by a leaky bucket-based condi-

tioner with a moderate bucket size of 20 packets.

Fig. 8 shows the theoretical and simulated TCP

mean window sizes/throughputs for parameter set

1 as the link capacity C is varied. Fig. 9 shows the

corresponding plots for parameter set 2 (we do not
provide plots for the other parameter sets due to

space limitations). The figures show close agree-

ment between our analytical predictions and the

simulated results. We conducted similar experi-

ments where N varied from 2 to 20; our predictions

Fig. 8. Mean window sizes and throughputs for parameter set 1

(different rate profiles).
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were always within 5% of the values obtained via

simulations.

In the second set of experiments, which we shall

call Experiment B, the two TCP flows had identical

profiled rates (1.5 Mbps) but different round-trip

times. Flow 1 had an RTT of 20 ms while flow 2

had an RTT of 100 ms. Fig. 10 shows the theo-
retical and simulated TCP mean window sizes/

throughputs for parameter set 1 as the link ca-

pacity C is varied; we see the close agreement be-

tween the analytical predictions and the simulated

values. Similar agreement is obtained with the

other parameter sets; we omit the figures due to

space constraints.

4.3.1. Accuracy of technique for larger N

We have also studied the accuracy of our model

for larger values of N under a variety of settings.

Table 2 shows the predicted and simulated values

of the goodput for N ¼ 10 flows. In this particular

study, each odd flow has a guaranteed (assured)

rate of 400 Kbps and each even flow has an as-

sured rate of 800 Kbps, while the channel band-
width is set to 9 Mbps. Moreover, flows were

grouped in pairs, with the first pair having an RTT

of 25 ms, and the RTT of each subsequent pair

being set to 1.6 times the RTT of the previous pair.

We tabulate the results for two of the parameter

sets enumerated earlier: for parameter set 1 (TCP),

the ORED buffer parameters were minth ¼ 25,

maxth ¼ 75 and pmax ¼ 0:1, while for parameter
set 2, the buffer parameters were minth ¼ 20,
maxth ¼ 100 and pmax ¼ 0:1.

Fig. 9. Mean window sizes and throughputs for parameter set 2

(different rate profiles).

Fig. 10. Mean window sizes and throughputs for parameter set

1 (different RTT values).

Table 2

Mean TCP goodputs for N ¼ 10

TCP

flow

Parameter set 1

(a ¼ �1)

Parameter set 2 (a ¼ 0)

Analytical

(Mbps)

Simulated

(Mbps)

Analytical

(Mbps)

Simulated

(Mbps)

1 1.095 1.108 0.759 0.763

2 1.362 1.392 1.165 1.160

3 0.873 0.889 0.736 0.744

4 1.160 1.149 1.142 1.132

5 0.696 0.682 0.705 0.712

6 1.006 0.998 1.110 1.114

7 0.567 0.554 0.667 0.660

8 0.905 0.887 1.071 1.066

9 0.485 0.481 0.622 0.616

10 0.849 0.806 1.025 1.004
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The close agreement between the simulated and

predicted values validates the applicability of our

technique across a wide variety of operating pa-

rameters. Ref. [10] also uses this approach to

consider how changes to the adaptation parame-

ters affect the bandwidth sharing paradigm be-
tween multiple TCP flows. Such studies are useful

in evaluating the possible effects of suggested

changes to TCP�s current congestion control

algorithm. Of course, as stated earlier, this �square-
root� based approach works only when retrans-

mission timeouts are rare events. When packet

losses are the sole means of congestion notifica-

tion, this technique is accurate only as long as
the loss probabilities are relatively small (below

�5%). However, when packet marking mecha-

nisms, such as ECN, are used, packet losses are

relatively infrequent events; accordingly, our

analysis holds over a much wider range of marking

probabilities.

5. Conclusions

In this paper, we have demonstrated an ana-

lytical and numerical technique to obtain the

centers of the TCP window sizes and the associ-

ated queue occupancy when multiple persistent

TCP flows share a bottleneck buffer performing

randomized congestion feedback. The technique
essentially uses a drift-based argument to relate the

center of a TCP window performing congestion

avoidance to the average packet marking/dropping

probability. We use a set of fixed-point conditions,

which seek an operating point for the buffer where

the drop/marking probability is consistent with the

sizes of the individual TCP windows. While we use

the ‘‘square-root’’ formula as a specific instance of
our fixed-point formulation, the mechanism is

general enough to incorporate other models for

TCP response to congestion notification. For

simple cases, where an individual flow is not sub-

ject to any rate-constraints, we prove how the use

of a Newton gradient-based technique results in

fast convergence.

We subsequently extend the technique to con-
sider TCP flows performing generalized congestion

avoidance, where the flow increases and decreases

its congestion window by c1W a and c2W b respec-

tively. As an example of a more complicated

model, we consider the case of an Assured Service

framework and derive the mean window sizes and

throughputs under this model. The solution tech-

nique now combines binary search in an outer
loop with gradient-based iterative search in an

inner loop. Simulation results attest to the accu-

racy of our analysis technique.

While performing our simulations, we had ob-

served the presence of negative correlation among

the TCP windows. Mechanisms that indirectly

exploit this negative correlation to smoothen the

buffer occupancy have been suggested in [11] and
should be explored in greater detail. Our ana-

lysis does not consider the effects of transients

such as fast recovery and timeouts. Accordingly,

our fixed point approximation technique was

seen to provide very accurate results, over a wide

variety of loads and operating conditions, when

ECN-based marking was used to provide con-

gestion feedback. When congestion notification
is achieved via randomized packet dropping,

our technique suffers from a degradation in accu-

racy when the average packet loss rate exceeds

�5%.

The numerical technique presented here ap-

pears to be a promising way to develop hier-

archical fixed point algorithms that provide

reasonably accurate estimates of network behavior
at a fraction of the cost of detailed simulations. In

the future, we hope to explore the use of such

techniques for determining the operational point

of packet-based networks, especially in the pres-

ence of multiple bottlenecks.

Appendix A. Proof that s(Q) is convex

We prove here that the function sðQÞ defined in

Eq. (3.16) is convex. First, some notation: let Mi
ci
be

denoted by bi and C 
RTTi be denoted by di. The
function gðQÞ is then given by gðQÞ ¼ ð

P
i bi=

ðQþ diÞÞ�1
. On differentiating this function we

obtain

g0ðQÞ ¼ gðQÞ2
X
i

bi
ðQþ diÞ2

: ðA:1Þ
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Since from above, g0ðQÞ > 0 8Q, gðQÞ is an in-

creasing function of Q. Differentiating again, we

have the second derivative given by

g00ðQÞ ¼ 2gðQÞg0ðQÞ
X
i

bi
ðQþ diÞ2

� 2ðgðQÞÞ2
X
i

bi
ðQþ diÞ3

;

or on rearranging

g00ðQÞ ¼ 2ðgðQÞÞ3
X
i

bi
ðQþ diÞ2

 !2
8<
:

�
X
i

bi
ðQþ diÞ3

 ! X
i

bi
Qþ di

 !9=
;:

ðA:2Þ

We now prove that the term in the curly braces in

Eq. (A.2) is negative. To see this, let b ¼
P

i bi and
let ai ¼ ðQþ diÞ 8i 2 f1; 2; . . . ;Ng (note that ai is
always positive). Consider a random variable A

which takes on the value ai with probability pi ¼
bi=b. Then, the second derivative can also be

written (with E½ � denoting the expectation opera-

tion) as

g00ðQÞ ¼ 2b2ðgðQÞÞ3fE2½A2� � E½A3�E½A�g: ðA:3Þ

Now, we know if A is a random variable that has

ProbðA > 0Þ ¼ 1, then logE½Am� is convex in m

8mP 0. Thus, we have logE½A2�6 ðlogE½A� þ
logE½A3�Þ=2, so that E2½A2� � E½A3�E½A�6 0. Ap-

plying this result to expression Eq. (A.3), we see

that g00ðQÞ is negative and hence, gðQÞ is a concave
function of Q.

As the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=f ðQÞ

p
is easily seen to be convex

(its second derivative is positive), we can conclude

that sðQÞ is a convex function of Q.

Appendix B. Modeling RED behavior

In this appendix, we discuss the applicability of

our mode to ERD and the RED queues. The im-

portant differences between RED and ERD are:

• RED operates on the average (and not the in-

stantaneous) queue length. The drop probabil-

ity, p, is thus a function of the weighted

average Qavg of the queue occupancy, i.e., p is

a function not just of Qn but of ðQn;Qn�1;
Qn�2; . . .Þ with an exponential decay.

• To avoid unbounded inter-drop gaps, RED in-

creases the drop probability for every ac-

cepted packet. This property, which we call

drop-biasing, is achieved by using a variable,

cnt, which increments with every successive

accepted packet; the true dropping probabil-

ity is then given by pðQÞ=ð1� cnt 
 pðQÞÞ. This
results in a inter-drop period that is uni-

formly distributed between ð1; . . . ; b1=pðQÞcÞ as
opposed to the geometrically distributed inter-

drop gap caused by an independent packet drop

model.

• Some RED implements have f ðQÞ ¼ 1 when

Qavg exceeds maxth; this contrasts with our as-

sumption of random drop throughout the entire
range of the buffer occupancy. Our RED queues

however have f ðQÞ ¼ pmax for Qavg larger than

maxth.

To capture the effects of drop-biasing in RED,

we change the function f ðQÞ such that the aver-

age inter-drop gap is the same for both RED

ð1=2pÞ and ERD ð1=pÞ. We achieve this by setting
the pmax value in RED simulations to half that

used for ERD simulations and in our analytical

technique.

Appendix C. Correction for delayed acknowledg-

ments

Delayed acknowledgments essentially imply

that the TCP process increments its window only

once for every K (K is usually 2) acknowledg-

ments. A simple way to capture this effect is to

alter Eq. (3.1) to

P W nþ1
i

�
¼ wþ c1W a

K

����W n
i ¼ w

	
¼ 1� piðwÞ;

ðC:1Þ
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i.e., approximate window evolution by a process

that increments its window by c1W a=K for every

congestion-free acknowledgment. Accordingly, the

zero-drift condition in Eq. (4.1) becomes:

c1W a
i ð1� piðWiÞÞ ¼ Kc2W

b
i piðWiÞ: ðC:2Þ
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