ol —oY

INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS
Int. J. Satell. Commun. 2001; 19:29-50

An architecture for Internet service via broadband satellite
networks

Vijay G. Bharadwaj'*', John S. Baras' and Norman P. Butts?

Hnstitute for Systems Research, University of Maryland, College Park, MD, U.S.A.
ZLockheed Martin Global Telecommunications, U.S.A.

SUMMARY

High bandwidth satellites offer the promise of a rapidly deployable communications infrastructure with
a natural support for mobility. However, many widely used versions of the Transmission Control Protocol
perform poorly over satellite links, and this presents an obstacle to the deployment of such systems. We
present an architecture that overcomes these problems and allows easy integration of heterogeneous
networks into the larger Internet. We also present some results from our initial implementation, which uses

TCP connection splitting to improve TCP performance over satellite links. Copyright © 2001 John Wiley
& Sons, Ltd.

KEY WORDS: satellite; TCP/IP; performance enhancing proxy; Internet; latency

1. INTRODUCTION

With the rapid advancement of computer technology, portable and handheld computing devices
are becoming increasingly common. Along with this trend comes the demand for these devices to
be connected to the Internet. At the same time, there is also a growing demand for Internet
connectivity in regions of the world that do not possess a good pre-existing communication
infrastructure. Satellites offer an attractive solution to both these problems. Mobility can be
supported easily, and coverage can be extended relatively quickly, even to remote areas.

Such universal connectivity requires the widespread deployment of a single family of standard
protocols to ensure seamless interoperability between various systems. The Internet protocol
suite is a natural choice, having been widely deployed and shown to work well over a variety of
conditions and links. An important member of this protocol suite is the Transmission Control
Protocol (TCP) [1,2], which is an end-to-end transport protocol for reliable sequenced data
delivery. Most Internet traffic uses TCP; examples are web traffic, email and file transfers.

*Correspondence to: Vijay G. Bharadwaj, Institute for Systemns Research, A.V. Williams Building, University of
Maryland, College Park, MD 20742, US.A.
' E-mail: vgb@isr.umd edu

Contract/grant spensor: Lockheed Martin Global Telecommunications and NASA: contract/grant number: NCC-3528

Copyright © 2001 John Wiley & Sons, Ltd.

a0 AR R R ERRITER AL M S AR TR A




ST TR RIS T T TN TR e T T TR R LTI TA T T PR R A R e

:
2
:
.
/
ff
E
:
E
E
F
g
3
|

30 V. G. BHARADWALJ, | S. BARAS AND N. P. BUTTS

However, there are a number of problems with using TCP over satellite links, many of which arise
from the high propagation delays inherent in satellite links.

In this paper, we look at some solutions that have been proposed for these problems and
describe an implementation of one such solution. We argue that building heterogencous networks
requires that we take into account the special characteristics of the underlying links, and that such
knowledge can be used to improve the performance of protocols such as TCP. Section 2 outlines
the problems with TCP and some of the proposed solutions. In Section 3 we describe our
implementation of one of these solutions, and set out some of the design considerations. Section 4
details some results obtained and Section 5 discusses some of the lessons learned and discusses
some directions for future work.

2. TCP: LIMITATIONS AND PROPOSED SOLUTIONS

TCP was designed as an end-to-end transport protocol that would handle wide network
variation and run over many different kinds of networks, without having knowledge of the
underlying network characteristics. Thus, the design of TCP, especially in its flow control
mechanisms, is very conservative. In the years since TCP was first proposed, many new link
technologies have been developed, and added to the Internet. Many of these links have distinctive
characteristics, and so the network as a whole has grown more and more heterogeneous. In the
process, many cases have been found where the conservative approach of TCP leads to poor
performance over certain types of links. At the same time, TCP has needed to stay conservative in
order to handle the larger network variation, and so the gap between optimal performance and
that obtained with TCP has widened in many cases.

2.1. TCP over satellite

The best-known shortcoming of TCP is that the offered window size field in the TCP header is
only 16 bits long, which restricts its value to 64 KB. Some implementations further limit the
maximum window size to 32 KB, and many popular applications default to a window of 8 KB.
Since TCP cannot send more than one window of data per round-trip time, the maximum
throughput attainable by a connection over a geostationary satellite link, which has a delay of
about 250 ms in each direction, may be restricted to as low as 128 kbps. However, simple
solutions exist for this problem, and are discussed in the next subsection.

TCP’s cumulative acknowledgment scheme can discover only one segment loss every round
trip, so if multiple segments are lost in one window of data, throughput is reduced sharply. This is
a major problem in environments with bursty error characteristics, such as links prone to
intermittent fading. Solutions have been proposed for this problem as well, as described in the
next subsection.

Harder problems are raised by the flow control and congestion control mechanisms in TCP.
TCP is a self-clocked protocol—the sender uses the stream of acknowledgments from the receiver
to time its transmissions. This ‘ACK clocking’ reduces the complexity of the sender at the expense
of using up more bandwidth on the return channel to send frequent acknowledgments. Tt also
leads to unfairness between connections that traverse widely differing paths in the net-
work—connections with smaller round-trip times can increase their rate of sending more rapidly,
and so end up capturing most of the network bandwidth, at the expense of long-delay connections

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Sarell. Commun. 2001; 19:29-50



AN ARCHITECTURE FOR INTERNET SERVICE 31

(31 Such problems are studied further in Reference [4], and it is shown that this bias of TCP also
leads to poor performance of TCP connections passing through multiple congested gateways
relative to connections that cross one or no congested gateway.

Related problems arise due to the slow start and congestion avoidance algorithms. Due to the
small initial window in slow start, a significant number of round trips may be required for the
congestion window to grow large enough to effectively utilize the link bandwidth. This is
a problem in the satellite environment, where the round trip delays are long. A small web transfer,
consisting of four or five packets, takes three round trips (1.5 s over a GEO satellite link) to
complete, regardless of the link bandwidth available. Most data transfers over a satellite link can
complete without ever having attained a window large enough for optimal link utilization.

In the congestion avoidance phase window growth is much slower than in slow start. However,
even a single loss results in halving the window. Thus the costs of even a single ‘false alarm’ due to
a corruption-based packet loss are very high. For bulk transfers over uncongested paths, if such
a loss occurs after the window has grown quite large, the window is halved and the satellite link is

under-utilized for a prolonged period while TCP recovers and grows its window back to the
former size.

2.2. Proposed solutions

In light of the above problems, a number of solutions have been proposed. These fall into three
categories—link level solutions, end-to-end solutions, and proxy-based solutions. These catego-
ries of solutions are not mutually exclusive—all three kinds of solutions may be used together in
a network.,

Link level solutions include the use of link layer techniques like strong forward error correction
(FEC) and link-level automatic repeat request (ARQ) mechanisms to mitigate the problem of
corruption loss. In many situations, deploying these mechanisms can ensure that most losses seen
by TCP are in fact due to congestion. However, these solutions do not address problems due to
the TCP window size and congestion control mechanisms. The snoop protocol, as described in
Reference [5], also falls into this category—it basically tries to implement link level ARQ using
TCP acknowledgments as the triggering mechanism. However, this solves the problem of TCP
assuming that all losses are due to congestion by assuming instead that all losses are due to
corruption. Thus, if the loss is actually due to congestion, snoop produces undesirable effects, and
so it cannot be deployed in the middle of a network. The other solutions mentioned above do not
have this problem.

Many end-to-end solutions have been proposed, mostly as extensions to TCP, and a number of
them have been adopted by the IETF as TCP options or enhancements. The window scaling and
timestamp options [6] allow TCP to use window sizes up to 30-bit wide. The use of larger initial
congestion windows [7] can mitigate problems due to slow start. The selective acknowledgment
(SACK) [8] allows the receiver to return more information in its acknowledgments, and so
addresses the problem of muttiple losses in a window. The use of these options is good and should
be encouraged. However, some of the options require additional complexity and state informa-
tion at the TCP layer, and so may not have been implemented, for example, on small embedded
systems. Further, some of these options are very hard to configure correctly on any given system.
For example, the window scaling factor can only be negotiated at connection setup, when neither
host has an estimate of the connection round trip time; unless some additional mechanisms are
used to determine the RTT, the hosts can only guess at an appropriate scale factor. These options

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Satell. Commun. 2001; 19:29-50




32 V. G. BHARADWAL J. 5. BARAS AND N. P. BUTTS

also do not address some of the problems pointed out in the previous section, such as the high
penalties imposed by the congestion control algorithms for corruption-based packet losses on
connections using satellite links.

Even these remaining problems can doubtless be solved by implementing further enhance-
ments to TCP. However, there is another, more philosophical, objection to adopting this
approach. One of the major motivations behind the design of TCP was that by using an
end-to-end approach that ignored link characteristics, a much simpler protocol design could be
obtained. The fact that such an approach was suboptimal was considered an acceptable tradeoff,
especially as the performance penalty was relatively low for more homogeneous networks. Today,
as TCP becomes more and more complex in order to accommodate network heterogeneity while
at the same time staying independent of link characteristics, it becomes important 1o ask if an
approach that used a knowledge of link characteristics might not actually provide a simpler and
more optimal solution.

Proxy-based architectures seem to provide such a solution. In this approach proxies are
deployed in the network to separate links or groups of links with highly dissimilar characteristics.
These proxies can then take advantage of their knowledge of link characteristics, while isolating
the hosts from such details. This allows simplification of the protocols used in the end-user
terminal, at the expense of additional complexity in the network. Since the proxies are designed to
take advantage of local network characteristics, we can obtain closer-to-optimal performance
than with the end-to-end approach.

Connection splitting proxies [9] belong to this class of solutions. In what follows we explore
the capabilities and limitations of this architecture.

3. CONNECTION SPLITTING

Figure 1 illustrates the connection splitting architecture as applied to networks with satellite
links. The end-to-end TCP connection between H! and H2 is broken into three separate
connections, namely C1, C2 and C3, by the gateways G1 and G2. C1 and C3 use TCP, while C2
may use a different protocol, optimized for the satellite link. The splitting is achieved by having

End host Gateway Satellite link Gateway End host

HI Gl G2 H2
| Connection segment l Connection segment Connection segment
Cl1 c2 C3

Figure 1. Overview of TCP connection splitting.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Satell. Commun. 2001; 19:29-50




AN ARCHITECTURE FOR INTERNET SERVICE 33

each of the gateways transparently act as a TCP proxy for the remote host, thus isolating
the hosts from the characteristics of the satellite link. For instance, having ecach
gateway acknowledge data on behalf of the remote host reduces the connection round trip
time seen by the hosts. The use of such proxies allows the hosts to implement very simple
versions of TCP, as they will only be communicating over a relatively simple network, with
the proxy. It also allows the proxy to optimize the transfer taking into account the nature of the
satellite link.

Various connection-splitting proxy designs have been proposed in the literature. One ap-
proach, specific to cellular networks, was proposed in Reference [10]. The authors implemented
a version of TCP that used connection splitting to deal with host mobility. The major drawback
of this solution was that it needed the new protocol to be deployed in all base stations and in the
mobile hosts, and it required the applications on the mobile hosts to be modified to use the new
APL Another more recent approach, specifically for satellite systems, is described in Reference
{11]. Here the authors use an approach similar to ours, but define a new protocol for use over the
satellite link.

Most connection-splitting implementations currently available cither require changes to host
software or fail to deal gracefully with exceptional circumstances. For example, they cause TCP
connections to fail if network routing is asymmetric, that is if the routes in the two directions of
a connection are different. Another common problem is that if one of the proxies responsible for
connection splitting runs out of resources or fails, many undesirable effects are seen, especially if
other routes still exist between the communicating hosts. We attempt to tackle these problems in
our implementation.

Our approach was motivated by the observation that in homogeneous networks, TCP can
nearly always be tuned to perform well, by including various enhancements and choosing
parameters beforchand. Therefore, by choosing the locations of the connection-splitting proxies
so that they partition the network into relatively homogeneous parts and using appropriately
tuned TCP implementations within cach part, it should be possible to achieve good performance
for all network users. This would allow us to build on the widely available and extensively tested
base of TCP implementations.

3.1, Design considerations

We now look at the problem of designing proxics like those in Figure 1. We would like to improve
the throughput for TCP connections using the satellite link while allowing the hosts to continue
using TCP as before. Since TCP requires ACKs for its clock, we must ensure that when the
satellite link is uncongested, the sender TCP receives a stream of ACKs that is similar to what it
would receive if the satellite link were replaced by an uncongested terrestrial link of similar
bandwidth. In other words, we want to decouple the ACK clock, which is supposed to provide
flow control by representing the state of congestion in the network, from the link delay, which is
a characteristic of the link.

One way to do this is to have the proxy acknowledge data as soon as it receives it, and to
perform flow control by allowing a backlog to accumulate in its receive buffer, thus reducing the
offered window, when the satellite link is congested. This ‘back-pressure’ mechanism is a relatively
slow way of throttling the sender—-the receiver’s buffer must fill up before the sender will stop
sending. However, it is the only way a TCP receiver can slow down the sender without dropping
packets, as ‘shrinking the window’ [12] is deprecated in TCP.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Satell. Commun. 2001; 19:29-50




O TR AR

|
F,
;
;

34 Y. G. BHARADWALI . §. BARAS AND N. P. BUTTS

TCP is designed to run on top of IP, which is a connectionless network protocol. It is robust to
routing changes and reordering of segments in the network, and our proxy implementation
should have these properties as well. Use of the proxy must not cause failure or data loss when
network routing changes or when routes in the two directions are different. The TCP standard
specifies that if a host receives a segment with an invalid sequence number it must acknowledge
the segment and drop it. Therefore, to avoid data loss in case of routing changes our proxies
should ensure that TCP sequence numbers used on C1 and C3 are identical. The initial exchange
of SYN segments by two hosts at connection setup time establishes the synchronization in
sequence numbers. Therefore, the proxy must use the information in the SYN exchange to
synchronize itself with the scquence numbers on a connection. If due to routing changes or other
reasons (such as IP layer encryption) this information cannot be acquired, the proxies should at
least be capable of simply forwarding all subsequent segments on that connection.

Similarly, port numbers must also be preserved by the proxies, as many services use them as an
authentication mechanism.

The proxy must not return a SYNACK to the host before the remote host has responded. Such
a response would imply that the remote host is functional and 13 sure to accept the connection. If
this does not happen, then the proxy will have to abort the connection, thus causing the end user
to see a difference in behavior when the proxy is used. It would also cause the two hosts to be in
a combination of states that is not valid as per the TCP specification, opening up the possibility of
failure if routing changes should occur or asymmetric routes be found. Therefore, the proxy must
only return a SYNACK after the remote host has accepted the connection.

A similar statement might be made about the FIN sent to indicate a half-duplex close on
a connection. However, the standard API for TCP does not provide a way for an application to
find out whether a FIN has been successfully acknowledged by the remote end. Therefore, for
simplicity of implementation it might be desirable to acknowledge a FIN as soon as it is received
by the proxy.

3.2. Implementation description

Our implementation of a connection splitting proxy for satellite links was designed keeping the
above concepts in mind. We used TCP, enhanced with timestamp, window scaling and SACK
options, on the satellite link. This TCP implementation also uses the FACK [13] congestion
control algorithm, and an increased value for the initial congestion window during connection
startup. We chose TCP for its flexibility, as well as to speed up the implementation process. It is
envisaged that any protocol modifications for the satellite link will be implemented as TCP
options [14].

The procedure used to perform connection splitting is as shown in Figure 2. Whenever
a gateway sees a connection request (i.e. a SYN segment), it intercepts the request and originates
a similar connection request with an enhanced option set. When all downstream connections are
completed, an acknowledgment (i.e. a SYN ACK) is returned to the host that originated the
original request. Both the gateways always negotiate and accept all the TCP options listed above
during connection setup, so that the connection between G1 and G2 will always use all these
options.

Once the connection has been set up, the proxy intercepts all data on that connection, returns
an acknowledgment to the sender bearing the address of the destination, and buffers the data for
downstream transmission. When a proxy receives a FIN segment, it immediately closes the

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Satell. Commun. 2001; 19:29-50



AN ARCHITECTURE FOR INTERNET SERVICE 35

Enhanced TCP

_ "Vanilla" TCP SACK (FACK), window scaling, _ "Vaniila” TCP
Options as requested by H1 i ps, larger initial CWND Options as requested by H2

HIf—-Sell | GI G2 H2
W—

-
SynAcl
| smwe
SynAckGL
|
D | ckGi

Ack
*_A,ii\‘;k-/ﬁ

inH1

Ack FinG2
}

-—-__'Fiilﬂ___‘
———__ﬁik___h
/M

L Ack

—-—__J‘C_k‘_‘__—

Terrestrial network Terrestrial network

Satellite link
RTT ~ 10¢ms RTT ~ 100ms
(WAN) RTT ~500ms (WAR)

RTT ~ 10ms {LAN)
{Typical values)

RTT ~ 10ms {LAN)

(Typical for GEO systems) (Typical values)

Figure 2. Timing diagram for simple unidirectional transfer from H1 to H2.

corresponding half-duplex connections. When a FIN has been received for both directions of
a TCP connection, all the resources for the corresponding connection segments are freed to
minimize resource usage.

As described in Section 3.1, all sequence numbers and port numbers are preserved, and packets
received on unknown connections are simply forwarded.

Note that there is a variable delay due to buffering at G1 as well as G2, which is not shown in
Figure 2. Also, a host may choose to piggyback ACKs on other kinds of packets. In the figure,
AckH1 may be piggybacked on the data following it, and FinH2 may be combined with the ACK
immediately preceding it.

During the lifetime of a connection, a back-pressure algorithm is used for flow control;
segments are removed from the receive buffer on the upstream connection only if they can be sent
immediately on the downstream connection. Thus, when the downstream path gets congested,
the offered window on the upstream connection reduces correspondingly, and congestion in-
formation is propagated back to the sender.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Satell. Commun. 2001; 19:29-50



I S

36 V. G. BHARADWAJ 1. 5. BARAS AND N. P. BUTTS

An additional mechanism is used to limit the size of the buffers at the proxy. If a backlog begins
to build in a receive buffer, an arriving packet is discarded without acknowledgment. This causes
the sender to retransmit the segment and reduce its congestion window, and so keeps the buffers
small without appreciably affecting end-to-end throughput. No packets are dropped if there are
out-of-order segments in the receive queue; this avoids multiple packet drops in a single window,
which would cause serious performance degradation.

More details on the implementation can be found in Reference [14].

3.3. Failure conditions

Our implementation is capable of handling a number of failure conditions gracefully. Due to the
flexible implementation [ 14], the proxy can be configured to split only selected TCP connections,
to keep resource utilization low. Also, due to the use of TCP on the satellite link, a proxy can
simply forward connection setup (SYN) messages for new connections if it does not have
resources available, without causing any side-effects except for a possible performance loss
relative to connection splitting,

Our proxy implementation never retransmits a SYN segment on its own. This way, if
a connection happens to follow different routes in the two directions, the proxy does not see the
SYNACK and simply times out the SYN request from its cache. Meanwhile, because no
connection has been set up, further data arriving on this connection is simply forwarded. If the
route is symmetric and a SYN gets lost, the initiating host eventually retransmits its SYN and the
proxy treats it as a new SYN.

However, many failure conditions remain. If a proxy fails, then any data that is buffered on the
proxy but has not yet been transmitted is surely lost. Even data that has been transmitted and not
yet acknowledged may be lost if the transmitted copy is lost in the network. The proxy is also as
yet unable to deal with route changes during the lifetime of a connection. These weaknesses
appear to be unavoidable consequences of the connection splitting architecture. Some possibili-
ties for improving robustness under route changes are discussed later.

4. PERFORMANCE MEASUREMENTS

Our current implementation of the TCP connection-splitting proxy runs on the Linux operating
system, kernel version 2.1.95. Though the proxy module is processor-independent, all the tests
have been carried out using a pair of Pentium PCs running at 166 MHz.

We tested various scenarios, involving single TCP connections as well as multiple simultaneous
connections. Of these, the single connection tests are fairly simplistic and intended mainly as
benchmarks. The numbers quoted were all obtained by performing each test thrice and averaging
the measured times, since time was the quantity we directly measured. For instance, the
throughput values were obtained by dividing the size of the transferred object by the average
time, and not by averaging the throughput over three runs.

4.1. Single TCP connection

4.1.1. Test methodology. The test configuration is shown in Figure 3. The server host was a PC
running Microsoft Windows NT Workstation 4.0 with the default TCP/IP parameters, and the
client host was running Microsoft Windows 95 with the default parameters. We used the FTP

Copyright © 2001 John Wiley & Sons, Lid. Int. J. Satell. Commun. 2001; 19:29-50

3
,
3
3
-
.




B T s AT Ay T T T, T A T A i e e

AN ARCHITECTURE FOR INTERNET SERVICE 37

Router Router
(Cisco 1602) (Cisco 1602)

Server Gateway Channel simulator Gateway Client
Pentium PC Pentium PC (Adtech) Pentium PC Pentium PC
Windows NT 4.0 Linux 2.1.95 Linux 2.1.95 Windows 95
Gateway module Gateway module

Figure 3. Test configuration. The proxy module was run on the two gateways.

scrver and the HTTP server from the NT Peer Web Services software. The clients used were
the command-line FTP client supplied with Windows 95, and Netscape Communicator 4.05 for
the HTTP tests. Tests were carried out using a data channel simulator to simulate the satellite
channel, as well as over a commercial Ku band satellite link.

For the FTP tests, various combinations of the following parameter values were used, with no
competing traffic on the link:

* File sizes: 10, 100, 1000, 10000 and 100000 KB.
e Link rates: 384 kb/s, 1.536 and 8 Mby/s,

¢ Link delay each way: 0, 250 ms.

e Bit-error rates: 0, 10 7%, 1078 1077, 1078,

To provide a baseline for comparison, identical tests were carried out with connection splitting
disabled on the proxy machines.

HTTP tests using different kinds of webpages were carried out over the same range of link rates
and delays. Three webpages were used for testing:

® Test page 1: HTML document (356 B) + one image (391 KB).
¢ Test page 22 HTML document (1.7 KB) + 16 images (sizes 19-100 KB, total size 669 KB).
® Test page 3: HTML document (1.6 KB) + 16 images (neatly equal sizes, total size 262 KB).

4.1.2. Results—simulated satellite channel. Figure 4 shows the degradation of TCP performance
when delay and errors are added to a link. The end-to-end TCP transfer is limited to a constant
maximum transfer rate, independent of link bandwidth, by the fact that its offered window is
restricted to small values. Thus, link utilization decreases with increasing link bandwidth. The
connection splitting approach, which uses much larger window sizes on the satellite link, yields
better throughput. Both approaches suffer significantly from bit errors, especially at higher link
speeds. This is due to TCP assuming that all losses are caused by congestion.

Figure 5 shows the dependence of throughput on the size of the file transferred. As expected, the
end-to-end approach is limited to a constant rate due to the small size of the window. The proxy
approach does considerably better. As the file size is increased, the cost of low utilization during
slow start is amortized over a longer interval of near-line-rate transfer, and the utilization
improves. This is shown clearly in Figure 5(b), in the plot of throughput against the ratio of file
size to bandwidth-RTT product. Clearly, for good performance, the file size should be an order of
magnitude larger than the bandwidth-RTT product.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Satell. Commun. 2001; 19:29-5(




e T TR TR R T BT TR RV TR LA e SRR TIAR L

38

100.00

V. G. BHARADWAJ, 1. S. BARAS AND N. P. BUTTS

v

0 ] / 7
: § ooy 7
&

i 5 / %
s s %
it .
(a) Link rate (kbps) (b) Link rate (kbps)

l Delay=0. BER={) @ Delay=250ms, BER=0 ¥ Delay=250ms, BER=1E-6

l Delay=0. BER=0 W Delay=250ms, BER=0 & Delay=250ms, BER=1E-b

Figure 4. Effect of delay and errors on FTP performance. File size =

10 MB. (a) End-to-end TCP; (b) proxy, IW = 1.

100000

100.00 100,00
Fon —F = 7
: o 7] i 7
& 5n‘m 7 ,‘f/ /"’ ;. sn:nn z 47
5 wow - 4 # Z woo "’?
'? 30.00 ~ g 30.00 /f”
] o —

Figure 5. Effect of file size on TCP performance at different link speeds. Delay = 250 ms each way, BER = 0.
(a) End-to-end TCP; (b) proxy, IW = 1.

The effect of slow start on throughput can be reduced by increasing the value of the initial
congestion window. As Figure 6 shows, this improves throughput at all link rates, but the increase
is appreciable only for medium-sized files at higher link speeds. This is because each time the
initial window is doubled, the slow start phase is shortened by one round trip. For very large
transfers, this is a small fraction of the total number of round trips required, and has little effect on

Copyright © 2001 John Wiley & Sons, Ltd.

Int. J. Satell. Commun. 2001; 19:29-50




AN ARCHITECTURE FOR INTERNET SERVICE 39

100.00 100.00
- 50.00 —] 90.00 4‘"‘
i 80.00 - g 0.00 ="
E 7000 % 700
£ 50. 50.00 G
g o0 3 w00 7/
B 3000 & v
g 20.00 g o /’ f'l
- 20.00 >
& 1000 - 3 10.00 = ’//'/’
0.00 PR . . 000 | wmme®ET , .
1 10 100 1000 10000 100000 0.01 0.10 1.00 10.00 10000 1000.00
File size (KB) Fite size / (banchwidth * RTT)
(=384 kbps ~=--1.536 Mbps —+— 2.048 Mbps - = 8 Mbps) [—+— 384 Kops --=--1.536 Mbps —— 2,048 Mops —~- & Mops
(a)
100.00 100.00
e 90.00 st %000 AT .
$ s000 < £ s - j/r -
£ 7000 | - i a— £ om0 f /x d
E 50.00 - 7 - 3 6000 5 -
g 50.00 _,—_ f" §, 50.00 —~7 ra
3 4000 /"/ £ 3 w00 = _,"
) / i ‘x,-/ 'g. 20.00 . / {/
F o000 | —— - 10.00 Y & S
0.00 pr” : T T Y el . ‘ .
1 10 100 1000 10000 100000 0.0 0.10 1.00 10.00 100.60  1000.00
Fila size (KB) File size / {(bandwidth * RTT)
=364 kbips -+~ 1.536 Mbps —— 2,048 Mops —- 8 Mbps [—+=384 kops ++=:1.536 Mbps —+—2.048 Mbops = 8 Mbps|
(b)

Figure 6. Effect of increasing IW on TCP performance. different link speeds. Delay = 250 ms each way,
BER =0, proxies enabled. (a) Proxy, IW = 4; (b) proxy, IW = 16.

average throughput. For small transfers, increasing the window fails to make any difference
beyond a point, since the transfer time cannot be reduced to less than one round trip time. For
medium-sized files (i.e. those with size approximately equal to the bandwidth-RTT product), the
entire transfer is completed during slow start, so doubling the initial window has a significant
effect.

In other words, increasing the initial congestion window, at least up to sizes that are small
compared to the bandwidth-RTT product, does not change the fact that high link utilization can
be achieved only when the transfer size is an order of magnitude larger than the bandwidth-RTT
product. However, for small transfers, the reduction in user response time is often significant.

Figure 7 shows the link utilization achicved by the split-connection system when bit errors are
present on the satellite link. Performance is fairly good even at relatively high error rates, mostly
due to our use of SACK information and the FACK algorithm on the satellite link. Throughput is
more affected by bit errors at higher link speeds, since the susceptibility of TCP to errors (in terms
of reducing the congestion window) depends on the number of errors per round trip time and not
on the absolute BER. Figure 7(b) plots the throughput as a function of the error rate per round

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Satell, Commun. 2001; 19:29-50



R e

R

40 V. G. BHARADWAJ, J. S. BARAS AND N. P. BUTTS

100.00 00.00
g 80.00 - \ ﬁ 80.00 T ‘\_‘
£ 700 e — \‘\ £ 7000 p— %
5 60.00 S ‘ T 6000 T
£ so00 L. ® 5000 ~,.\
2 4000 i £ s s
£ . L] < AR
& 30.00 < 2 3000 ~
E 20.00 o E 2000 L
ﬁ ' E k'
10.00 10.00
0.00 - T T T 0.00 r T T T
1.0E-10 1.0E-08 1.0E-08 1.0E-07 1.0E-06 1.0E-05 0.0001 0.001 0.01 0.1 1 10
(a) Bit Error Rate (b) Bit Ervor Rats * BEandwidth delay product
[-=— 384 kbps --=--1.536 Mbps -~ B Mbps| [——384 kbps --=--1.536 Mbps -+ & Mbps|

Figure 7. Effect of bit errors on FTP performance at different link speeds. File size = 1 MB, delay = 250 ms
each way. Proxies enabled, IW = 1. (a) Throughput vs BER; (b} throughput vs normalized BER.

trip. We see that performance drops sharply when the error rate approaches one error per round
trip, as is characteristic of TCP.

For the HTTP transfers, performance was measured by the total time required for each
webpage to load, as measured by a stopwatch. Due to the imprecise nature of this measurement
method, as well as due to the variance introduced by the HTTP client (which requires a significant
amount of time and processing power for its image manipulation and rendering algorithms), these
results are by no means exact. However, they serve very well to illustrate some general trends, and
give an idea of perceived user delays.

HTTP, like FTP, uses a request-response mechanism, wherein the client requests one object at
a time from the server. However, each FTP transfer consists of a single file, whereas a single
webpage typically consists of several smaller objects, each of which must be requested separately
by the client. Due to the request-response mechanism, there is an interval of one round trip
between the time that the client finishes receiving an object and the time that it begins to receive
the next object. Therefore, the traffic generated by an HTTP session is intermittent in nature, with
long pauses. Thus, throughput is not a good indicator of HTTP performance.

As Figure 8 shows, HTTP performance declines markedly with increasing link delay, and in
this case the improvements due to using the proxy are not as remarkable as in the case of FTP.
Further, as seen from Figure 9, increasing the initial congestion window does not have much
effect on performance. It is worth noting that for test pages number 2 and 3, the request-response
delays contribute 8 s (16 round trips of 0.5 s each), which is a major portion of the total loading

delay. The only way to overcome this problem seems to be to add request aggregation capabilities
to HTTP.

4.1.3. Results—Ku band satellite. Similar results were obtained when the above FTP tests were
repeated over a commercial Ku band satellite link. The bandwidth of the satellite link was E1
(2.048 Mby/s). During the tests, the satellite modems on the two ends of the link reported bit error
rates of 107 ¢ and 4.5 x 107 %, respectively, on the raw channel. The Reed-Solomon coding used by
the modems reduced the error rate to 1072 or better in both directions, and so for all practical
purposes the channel was error-free. Thus the results obtained were very similar to those obtained
with the channel simulator at the same link speed with the BER set to zero.

Copyright © 2001 John Wiley & Sons, Ltd. Int. 4. Satell. Commun, 2001; 19:29-50




e

D SSSSSS—————————

AN ARCHITECTURE FOR INTERNET SERVICE 41

B Enci-to-end TCP, Deay=0 B End-to-erdd TGP, Dalay=250 ma|
O Proxy, Daley-0 G Proxy, Delmym250 me

@ Eri-to-end TCP, Dalaya250 me
@ Pro) =250 ms

Figure 8. Effect of delay on HTTP performance for three sample webpages. For these tests, the proxies were
set to IW = 1 and the channel simulator to BER = 0, (a) Test page 1; {b) test page 2; (c) test page 3.

(a) Link rats {kbps)

M End-io-ond TGP & Proxy, IW=1 (] Proxy, Wasd B Procy, [We18]

(b) Link rate (kbpa) {c) Link rate (kbps)

B End-io-and TOP E Proxy, We1 O Proxy, (Wed BProy, iWe16 MEnd-lo-end TCP & Proxy, W=1 [ Proxy, (Wt & Proxy, [W=186]

Figure 9. Effect of increasing IW on HTTP performance over simulated satellite link
on three sample webpages. For these tests, the channel simulator was set to BER = 0.
(a) Test page 1; (b) test page 2; (c) test page 3.

Figure 10(2) shows the variation of throughput with changing file size. As expected, perfor-
mance with proxies enabled is much better than with end-to-end TCP. We see that performance
picks up when file size is about an order of magnitude larger than the bandwidth-RTT product

Copyright © 200! John Wiley & Sons, Ltd, Int. J. Satell. Commun. 2001; 19:29-50




v PR TR T TR AR TR T A ey p Aze BRI SAT T LRI

42 V. G. BHARADWAL, J. 5. BARAS AND N. P. BUTTS

100 90.00
ST ] T

« o 80.00
£ P -
’E 8o s £ 700 /
X 70 LA
£ kg / € 60.00
5 v 3 som
£ s0 .3
< by, §
£ 7 / £ ﬁ——"_r
= ] AL gau.uo /
£ A £ 2000

10 - 10.00

0 T T T T 0.00 T T T T T
1 10 100 1000 10000 100000 0 2000 4000 6000 8000 10000 12000

(a) File slze {KB) (b} File slzs (KB)

[~ End'to"ena TCP --=- Proxy, IW=1 —— Proxy, [W=4 —- Proxy, W=186| [~ Transfer 1 + Transfor 2 = Total

Figure 10. FTP Performance over Ku band satellite link. (a) Single FTP
session; (b} two simultaneous FTP sessions.

{approximately 125 KB), and that only medium-sized file transfers are affected by increasing the
initial congestion window.

Figure 10(b) shows the performance achieved by two identical simultaneous FTP connections
sharing the satellite link. We see that for large enough file sizes, link utilization is still high, with
each of the two connections getting a roughly equal share of bandwidth.

4.2. Multiple TCFP connections

4.2.1. Test methodology. A setup similar to the single connection case was used. The server and
client machines in this case were PCs running Linux. As before, all links were 10 Mbps Ethernet
links, except for the simulated satellite link, which was an 8 Mbps serial link. The TCP
benchmarking tool, distributed benchmarking system (DBS), [15] was used to create multiple
connections between these two machines. In the tests for measuring fairness to flows with
different RTTs, a third machine was used as an additional client. This machine was also
a Pentium PC running Linux connected to the server through a Cisco 7000 series router.

We measured application-level throughput at the receiver for different numbers of parallel
connections transferring data from the server to the client(s). Receiver throughput is measured
instead of sender throughput because the latter merely measures how quickly the program could
write its data to the TCP send buffer, and is in no way related to the actual rate of data transfer.
All connections were made before the measurement was started, so that differing connection
setup times did not affect throughput measurements. This was done using the BEFORE
connection mode of DBS.

We measured throughput for transfers of size 10 and 100 KB. These sizes were chosen to
approximate the typical size range of HTTP objects, so that the measurements would be
somewhat realistic. Tests were carried out with the channel simulator set to 250 ms delay cach
way. In none of the tests were any bit errors introduced by the channel simulator. This was done
for two reasons: firstly, the preceding tests show that bit errors do not have an appreciable effect
on performance on typical Ku band satellite channels. Secondly, at the file sizes we tested, the
probability of any single transfer encountering a bit error, even at relatively high error rates such
as 1079, is so low that any results obtained from a small number of tests would not be statistically
significant.

Copyright © 2001 John Wiley & Sons, Ltd. Ine. J. Satell. Commun. 2001; 19:29-50




AN ARCHITECTURE FOR INTERNET SERVICE, 43

We performed tests with 10, 20, 30 and 40 simultaneous connections. The total band-
width-RTT product of our link is 500 KB, or approximately 343 segments at our chosen MTU of
1500 bytes. Therefore, when 10 connections share the channel, the optimal window for each of
them is about 50 KB, and we can expect to see some effects of limited receive window sizes, as the
client and server were using the Linux default window sizes of 32 KB. On the other hand, when 40
connections share the channel, the optimal window size for each is around 12.5 KB, or about
9 segments. So at this point we do not expect to see any effects due to limited receive window sizes;
instead we expect to see severe congestion when we increase the initial window on the proxies to
16 segments.

We note that some of the results shown here, especially for the 10 KB transfer size, may not be
very accurate, due to limits imposed by timer granularity on the test systems. However, the
general trends are quite reliable, and reveal some interesting insights.

4.2.2. Results—simulated channel. Figures 11 and 12 show the results when different numbers of
parallel TCP connections transfer data simultaneously over the simulated link. As expected,
throughput is low for small transfers, as the transfer time is dominated by delays due to slow start.

3 8 5 8 8 3

Theoughput (% of link rate)

—
o

v . - . 6.00
0 10 20 3 40 50 0
(a) Number of connections (b} Number of connections

[+ End40-end TCP - Proxy, Wa1 —— Proxy, Wt = Proxy, W16 [—End-to-end TCP --=-- Proxy, IW=1 —— Proxy, [Wed4 --=-- Proxy, IW=16]

Figure 11. Throughput for simultaneous 10 KB transfers. Delay = 250 ms each way.
(a) Mean utilization; (b} normalized standard deviation.

120 0.45
C.40 "y —
100 = . § S
. 4 0.35
£ ]
¥ o $om
5 5 0.25
£ &0
i 8oz
g 40 3 0.15
E 0.1¢
20
005
0 . . - . 0.00 : . - -
0 5 10 15 20 25 30 35 0 45 0 5 10 15 20 25 30 35 40 45
(a} Number of conmections (b} Number of connections:
[+ End 0500 TCP --=-Proxy, W=1 —+—Proxy, W=d --w-- Proxy, IW-16] [—=—End to-ena TCP --= "Proxy, W-1 —=— Proxy, =4 - Proxy, IW-16

Figure 12. Throughput for simultaneous 100 KB transfers. Delay = 250 ms each way.
{(a) Mean utilization; (b) normalized standard deviation.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Satell. Commun. 2001; 19:29-50




D SLTLEE——————

44 Y. G. BHARADWALJ, I §. BARAS AND N. P. BUTTS

Even 40 transfers of 10 KB each only represent a total transfer of 400 KB, which is less than the
bandwidth-RTT product of our link, so it is not surprising that the use of proxies does not help
much. Increasing the initial window makes a large difference to throughput—when IW is
increased to 16 segments, the entire transfer can be accomplished in a single round-trip.

More interesting results are observed for the larger transfer size of 100 KB. Here each transfer
involves approximately 70 segments, which means that with IW = 1, the transfer takes about
seven round trips to complete, with the senders sending at most 32 segments in a round trip.
Increasing the IW to 4 segments reduces the transfer time by two round trips, and so yields
significant benefit. Increasing IW to 16 segments further reduces the transfer time by two round
trips, improving throughput even more.

With 40 simultaneous transfers of 100 KB each, the total amount of data transferred is
4000 KB, which is about an order of magnitude larger than the bandwidth-RTT product of the
link. Therefore, it is not surprising that the proxies perform well. However, it is remarkable that
end-to-end TCP does not do as well, since for this case the optimal window size is only 12.5 KB.
A possible explanation is provided by Figure 12(b). These plots show the standard deviation of
the throughput of individual connections in each experiment, normalized by the mean through-
put for connections in that experiment. We see that when the number of connections becomes
large enough for the sum of the senders’ windows to exceed the path bandwidth-RTT product, the
standard deviation rises sharply. This occurs when the number of connections is about 20 (20
connections, each with window 32, make a total window of 640 segments, which is slightly less
than twice the bandwidth-RTT product of the simulated satellite link). This indicates that, at least
for the transfer sizes and link parameters involved, the bandwidth sharing mechanisms of TCP do
not work very well when utilization is high. This observation, if true, would indicate that
increasing the IW too much may have harmful effects on throughput.

The measurements plotted in Figures 13 and 14 show how proxies can improve performance by
performing localized error recovery. During these tests, two simultaneous flood pings were
carried out from the client host to its adjacent proxy, alongside the TCP transfers. A flood ping
consists of ICMP Echo Request messages sent from one machine to the other 100 times a second
or as fast as Echo Response messages are received by the sender, whichever is greater. We used

Figure 13. Throughput for 10 KB transfers with congested terrestrial link. Congested link is
downstream of satellite link, which has delay = 250 ms in each direction.
(a) Mean utilization; (b) normalized standard deviation.

Echo Request messages with 1472 B of data, so that the final IP packets containing these
60 09
Te . . 08
s 07
E
] Sos
330 405 ‘.“r
§ X 04
£ 20
g =
‘ E 10
| o . : . .
| o 10 20 30 40 50 50
| (a) Number of connections (b} Humber of connections
| [—+—End-to-end TCP s~ Proxy, W=1 —— Proxy, We4 --=-- Proxy, Wa18) [=—End-t0-ond TCP - Praxy, IW=1 —+— Froxy, W4 - Proxy, W=18
|
\

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Satell. Commun. 2001; 19:29-50




E
5

VTSR

AN ARCHITECTURE FOR INTERNET SERVICE 45

60 12
— [
z s g1 =
E .
-
= 40 3 o8
5 -
i
® a0 08
] 2
£
52 304
2
E 10 02
0 T T r - 0 . T T T
[\ 16 20 30 40 50 o 10 20 30 40 50
(a) Number of connectiona (b) Number of connections
[—+—End-to-end TCP --«--Proxy, W1+ Proxy, IW=4 ----Proxy, IW=18] [+ End-to-6nd TGP. = Proxy, W¥=1_—+— Proxy, IW=4 —=-- Proxy, IW=16]

Figure 14. Throughput for 100 KB transfers with congested terrestrial link. Congested link is
downstream of satellite link, which has delay = 250 ms in each direction.
(a) Mean utilization; {b) normalized standard deviation.

messages were exactly 1500 B long, ie. sized equal to the Ethernet MTU. This arrangement
simulates congestion on the terrestrial link, making it the bottleneck instead of the satellite link.
As expected, the proxies perform better, since any packets dropped due to congestion can be
retransmitted locally without traversing the satellite link.

In this case, increasing IW does not help much; it may even be harmful for throughput, though
our data are not clear enough to say for certain. It is worth noting that with increased IW the
standard deviation of throughput among simultaneous connections becomes very large, and of
the order of the mean throughput.

For the experiments plotted in Figures 15 and 16, an additional client host was used. This
machine was connected to the server by Ethernet through a Cisco 7000 router. In each case, half
the total number of transfers (referred to as set L, for low delay) were to this additional client while
the rest (set H, for high delay) were to the client on the other side of the simulated satellite link.
Thus the only link common to set L and set H was the Ethernet link connected to the server.

Due to the much larger round-trip delay experienced by clients in set H, end-to-end TCP is
seen to be extremely unfair to them. However, the proxies do a much better job of sharing
bandwidth between the connections by enabling long-delay connections to compete on equal
terms with low-delay wired links. As the initial window is increased, the sharing behavior
improves. The remaining unfairness is due to the fact that the proxies use TCP over the satellite
link, where the window evolves much stower than over the terrestrial low-delay link. This points
to the need for a more efficient protocol over the satellite link. One obvious solution to this
problem could be to use TCP with different window increments during slow start and congestion
avoidance depending on the round-trip time.

Figure 16 shows an interesting trend—the normalized standard deviation for set L is much
higher than that for set H. This seems to strengthen the argument that TCP does not share
bandwidth equally between identical connections when congestion is present.

4.3. Some comments

From the above, we see that the value of IW plays a major role in determining throughput.
However, it is not possible for a host to know such a value when it sets up the connection.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Satell. Commun. 2001; 19:29-50

ot




! T

FAha i Lt birae L e it

46 V. G. BHARADWALJ, J. §. BARAS AND N, P. BUTTS
200 200
£ 180 — 180
£ 160 AN £ £ 0
AN / £
i 140 2140
= 120 £ 20
] ~ s
5 @ — s
Eeot— S I S —— -
R e g . - .
£ 20 o £ w0 o
0 T T o . . . .
0 10 20 30 40 50 o 10 20 20 0 0
(a) Number of connections (b) Number of connections
[—=—Low delay --=--High dalay| [—=—Low delay --=--High delay]
200 200
__180 180
s 160 P B s
% z
. ® jap
g 120 / ~~ g 120
£ 100 ,_____// # 100 —— =
3 &0 — 3w  es— =
[ % & e
E 40 — g 40
20 20
0 . . . . 0 ‘
0 10 20 0 40 50 0 10 20 30 40 50
(c} Number of connections {d) Number of connhections

[—=— Low delay --=--High delay}

—+— Low delay --=--High delay

B s

Figure 15. Bandwidth sharing among flows with different RTT. (a) End-to-end TCP;
(b) proxy, IW = 1; (c) proxy, IW = 4; (d) proxy, IW = 16.

This suggests that it might be useful to have the network participate in flow control by
determining a good value for the initial window at connection setup, and informing the host
about this value. In any event, it is clear that at least for the transfer sizes tested, the
transfer does not last long enough for the window to stabilize or for equilibrium to be
reached.

Looking closer at Figure 15, a disturbing fact becomes apparent. The throughput achieved by
set H in the proxy case with IW = 1 is only slightly higher than that achieved under end-to-end
TCP. However, the throughput for set L is much lower. This suggests that with the proxies
enabled, high-RTT connections become unnecessarily aggressive. Further investigation shows
that the vse of proxies for set H causes the window for these connections to grow as rapidly as for
set L, and so all the data is transferred very quickly to the first proxy on the path, where it must
wait for transmission when the congestion window on the satellite link grows sufficiently large.
This behaviour unnecessarily reduces the throughput of set L, and uses up large amounts of
memory on the proxy.

The above observation motivates us to consider methods for flow control at the proxies, so that
they are never unnecessarily aggressive, and can keep their memory requirements low without
sacrificing throughput. Such issues are discussed in the next section.

Copyright © 2001 John Wiley & Sons, Ltd.

Int. J. Satell. Commun. 2001; 19:29-50




AN ARCHITECTURE FOR INTERNET SERVICE 47

ad
(4.3
=
n

o
P

Q.4

Normalized standard devistion
= [=]
oW
-

0.1
£ / ..... -
0 porssssseneees g . . 0 : . o
0 10 20 30 40 50 o 10 20 0 e 50
(a) Number of connections (b) Number of connactions
—— Low defay —=-High del —=— Low delay = High delay

06 06
0.5 -

£ 05 o

7 : _

AN

Normalized standard deviation

0.3 // 0.3 S
L -\/
02 S 802 A
01 - — 01 T
et z
et
0 . . : . o ‘ , .
0 10 20 30 40 50 0 10 20 30 a0 50
© Number of connactions (d) Number of connections
—=—Low dalay --=- High delay ——Low delay --=-- High delay]

Figure 16. Bandwidth sharing among flows with different RTT. (a) End-to-end TCP:
(b} proxy, IW = 1; (c) proxy, IW = 4; (d) proxy, IW = 16.

5. DISCUSSIONS AND FUTURE WORK

During our experience with implementing and testing the proxy, we found a few areas that need
improvement and further research. The biggest problem was that since the proxy has to buffer
any data transmitted on a split connection until it is acknowledged, the memory required for
a proxy is quite high. In fact, a little thought shows that we cannot guarantee a bound on the
memory requirement, since downstream congestion or a host failure can cause data to be held in
transmit buffers at a proxy for long and indeterminate periods of time.

An obvious way to ameliorate this problem is to split TCP connections selectively, since only
large transfers can benefit much from connection splitting. This could be done by dynamically
varying the set of split connections in response to activity. Connections that have been idle for
a long time could be dropped from the set by discarding their associated state information, so that
future segments would simply get forwarded. Connections which are not currently being split, but
have witnessed high activity recently, could be added to the set of split connections by dynam-
ically acquiring the required state information. Such a ‘soft-state’ approach would also improve
the proxy’s tolerance to some error conditions. This is a challenging problem, and one that
requires more work. A major difficulty is in formulating an algorithm for deciding when to add
a flow to the set of split connections and how to acquire the requisite state information.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Satell. Commun, 2001; 19:29-50



:
,
i
;
]
"
]

48 V. G. BHARADWAJ, J. S. BARAS AND N, P. BUTTS

Another useful addition would be a method to detect when routes change during the lifetime of
a split connection. Especially when routes change in only one direction, the proxy can deduce this
fact by examining the flow in the other direction. However, there does not seem to be a good way
to tackle the case when routes change in both directions and the proxy has unacknowledged data
in its send buffer. This is an area for future work.

A problem specific to our architecture is that for bulk transfers, the TCPs on the satellite link
try to share the link equally between them. However, this is not necessarily desirable. For
example, some connections have faster downstream links than others, and can be given a larger
share of the bandwidth on the satellite link without adversely affecting the end-to-end transfer
rate of other connections. This kind of proportional sharing does eventually come about due to
back-pressure on the slower connections, but it takes a long time, and end-to-end throughput is
reduced. This method also requires the proxy to buffer a lot of untransmitted data—a better
algorithm would keep proxy buffering low by ensuring that data arrived just as a window became
available for sending it. We have explored some simple schemes for better flow control [14], but
as yet there does not seem to be a good way to carry out such control in all situations.

Scalability is an important consideration for all connection implementations. It seems inevi-

table that connection splitting proxies will have higher memory and processor requirements than
IP routers. However, whether these requirements necessarily increase linearly with the number of
active connections or whether they can be restricted to a constant multiple of the requirements of
a router seems an open question.
The experiments reported here do not represent very high data rates. Also, traffic patterns for
high-bandwidth satellite networks are not very well understood, and much work needs to be done
before we can extend our results to such networks. However, given the flexibility of the
implementation and its ability to deal gracefully with situations when resources are short, we
believe that such proxies can provide noticeable performance improvements to users of such
systems. Implementing mechanisms to minimize unnecessary resource usage, as outlined above,
would further improve robustness and performance.

Ce AT IR TR AR TR T TR AR AR A T

ACKNOWLEDGEMENTS

The authors would like to thank Bob Randall, without whose expertise the satellite testing could not have
been carried out, and Rohit Tripathi and Koroush Saraf for their assistance in carrying out the performance
testing with the delay simulator, We are also indebted to Mingyan Liu and Manish Karir for their helpful
comments and advice, which greatly improved this paper.

REFERENCES

- Jacobson V. Congestion avoidance and control, Proceedings of ACM SIGCOMM '88, August 1998; 314-329.

. Postel J (ed.). Transmission: control protocel—protocol specification. RFC 793, September 1981.

- Lakshman TV, Madhow U. The performance of TCP/IP for networks with high bandwidth-delay products and

random loss. IEEE/ACM Transactions on Networking, June 1997.

4. Floyd S. Connections with multiple congested gateways in packet-switched networks, Part 1: one-way traffic. ACM
Computer Communications Review 1991; 21(5):30-47.

5. Balakrishnan H, Seshan S, Katz R. Improving reliable transport and handofl performance in cellular wircless
networks. ACM Wireless Networks 1995; 1(4).

6. Jacobson V, Braden R, Borman D. TCP extensions for high performance. RFC 1323, May 1992.

7. Allman M, Floyd S, Partridge C. Increasing TCP’s initial window. RFC 2414, September, 1998,

[

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Satell. Commun. 2001; 19:29-50

AP - L Lok Wbl




Al T L e e

S

AN ARCHITECTURE FOR INTERNET SERVICE 49

8. Mathis M, Mahdavi ], Floyd S, Romanow A. TCP selective acknowledgment options. RFC 2018, October 1996.

9. Butts NP, Bharadwaj VG, Baras JS. Internet service via broadband satellite networks. Multimedia Systems and
Applications: Proceedings of SPIE 1999; 3528:169-180.

10. Bakre A, Badrinath BR. I-TCP: indirect TCP for mobile hosts. Technical Report DOS-TR-314, Department of
Computer Science, Rutgers University, October, 1994,

11. Henderson TR, Katz RH. Transport protocols for internet-compatible satellite networks. { EEE Journal on Selected
Areas in Communications 1999; 17(2):345-359.

12. Braden B. (ed.) Requirements for Internet hosts—communication layers. RFC 1122, October 1989,

13. Mathis M, Mahdavi J. Forward acknowledgment: refining TCP congestion control. Proceedings of SIGCOMM '96,
Stanford, CA, August 1996,

14. Bharadwaj VG. Improving TCP performance over high-bandwidth geostationary satellite links. Master's Thesis,
Department of Electrical Engineering, University of Maryland, 1999.
15. DBS: A TCP benchmark tool. htip://shika.aist-nara.ac jp/member/yukio-m/dbs/.

AUTHORS’ BIOGRAPHIES

Yijay Bharadwaj received his BTech in Electrical Engineering from the Indian Institute of Technology,
Mumbai, in 1996, and his MS in Electrical Engineering from the University of Maryland, College Park, in
1999. He is currently a research assistant at the Center for Satellite and Hybrid Communication Networks at
the University of Maryland, where he is working toward his PhD. His research interest is the design and
analysis of large hybrid networks, with special emphasis on protocol efficiency and security.

Jobn S, Baras was born in Piraeus, Greece, on 1 March 1948. He received the BS in Electrical Engineering
with highest distinction from the National Technical University of Athens, Greece, in 1970. He received the
MS and PhD degrees in Applied Mathematics from Harvard University, Cambridge, MA, in 1971 and 1973
respectively. Since 1973 he has been with the Department of Electrical Engineering, University of Maryland
at College Park, where he is currently Professor and member of the Applied Mathematics Facuity. From
1985 to 1991 he was the Founding Director of the Systems Research Center, now the Institute for Systems
Research. On February 1990 he was appointed to the Lockheed Martin Chair in Systems Engineering. Since
1991 he has been the Director of the Center for Satellite and Hybrid Communication Networks, a NASA
Center for the Commercial Development of Space, which he co-founded. Dr Baras has held visiting research
scholar positions with Stanford, MIT, Harvard, University, the Institute National de Reserche en Infor-
matique et en Automatique, and the University of California, Berkeley. He has numerous publications in
control and communication systems, and is the co-editor of Recent Progress in Stochastic Calculus,
Springer-Verlag, 1990. His current research interests include stochastic systems, signal processing and
understanding with emphasis on speech and image signals, real-time architectures, symbolic computation,
intelligent control systems, robust nonlinear control, distributed parameter systems, hybrid communication
network modeling, performance cvaluation and management. Among his awards are: a 1978 Naval
Research Laboratory Research Publication Award, the 1980 Outstanding Paper Award of the IEEE
Control Systems Society, 1983 and 1993 Alan Berman Research Publication Award from the Naval
Research Laboratory, the first Mancur Olson Research Achievement Award (1998) for sustained outstand-
ing research accomplishments from the University of Maryland College Park. Dr Baras has been awarded
one patent and has three patents pending. He has served in: the IEEE Engineering R & D Committee, the
Acrospace Industries Association advisory committee on advanced sensors, the IEEE Fellow evaluation
committee, the 1IEEE Control Systems Society Board of Governors, and the Editorial Board of the IEEE
Transactions on Automatic Control. He is currently serving on the editorial boards of Mathematics of
Control, Signals, and Systems, of Systems and Control: Foundations and Applications, of the IM A Journal of
Mathematical Control and Information. He is a member of Sigma Xi, the American Mathematical Society,
and the Society for Industrial and Applied Mathematics. Dr Baras is a Fellow of the 1IEEE.

Norm Butts has a 19-year history of diverse and challenging systems engineering positions with multiple
Lockheed and Lockheed Martin Companies. Assignments spanning commercial and defense projects, as
well as two foreign assignments, have resulted in a broad understanding of systems engineering principles
and underlying technologies. Norm has 5 vears prior systems engineering experience including design of
local government telecommunications systems and commercial video systems. Since 1997 he has acted as

Copyright € 2001 John Wiley & Sons, Ltd. Int. J. Satell. Commun. 2001; 19:29-50




50 V. G. BHARADWALJ, J. S. BARAS AND N. P. BUTTS

a network-engineering consultant to numerous Lockheed Martin terrestrial and satellite based programs,
overseeing internal research and development projects including University partnerships with emphasis on
hybrid satellite networks. He has published research papers on transparent TCP/IP satellite gateways and
experimental results of Voice over IP applications transmitted over ATM based satellite networks and
developed and implemented two successful live satellite network tgchnology demonstrations commissioned
by Lockheed Martin’s Astrolink Broadband ATM Satellite Program.

e DL e

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Satell. Commun. 2001; 19:29-50

e A L T e e T T AT L T R R AT e PR AR R AR




