JB 95-11

Entitled:

A Framework for Robust Run by Run Control
with Lot Delayed Measurements

Authors:

(with N.S. Patel)

Journal:

IEEE Trans. on Semiconductor Manufacturing



IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 10, NO. 1, FEBRUARY 1997 75

A Framework for Robust Run by Run
Control with Lot Delayed Measurements

John S. Baras, Fellow, IEEE, and Nital S. Patel, Member, IEEE

Abstract—This paper considers the run by run control problem.
We develop a framework to solve such a problem in a robust fash-
ion. The framework also encompasses the case when the system
is subject to delayed measurements. Recent results available for
the control of such systems are reviewed, and two examples are
presented. The first example is based on the end-pointing problem
for a deposition process, and is subject to noise which has both
Gaussian and uniform components. The second one is concerned
with rate control in an LPCVD reactor.

I. INTRODUCTION

ECENTLY, there has been a strong interest in RbR

control in the semiconductor industry. With device tol-
erances shrinking, it becomes necessary to squeeze maximum
performance out of existing equipment. A further advantage
of the RbR control framework is that it enables automatic
recipe generation to meet different targets, and also aids in the
recovery of the process after a large disturbance. Furthermore,
RbR control could also prove useful in extending the time
between maintenance shut downs (for example, one may be
forced to periodically clean the equipment due to process drift
induced by deposit build up in the chamber). In this paper,
we present a worst case framework for carrying out RbR
control. The advantage of this approach is its ability to handle
uncertainty. This is useful in cases when we do not have
confidence in our models, such as after a sudden change in
process characteristics. Furthermore, the set theoretic approach
followed allows us to relax assumptions on the statistics of the
noise. This becomes important when one is working with small
sample sizes, and can no longer appeal to the central limit
theorem. Toward the end of this paper, we present examples
where the controller successfully handles Gaussian, uniform,
as well as, skewed Gaussian noise. Furthermore, performance
requirements dictate that the closed-loop system achieve good
target tracking with minimal controller induced noise. In a
preliminary paper [1], we had presented a robust approach to
designing RbR controllers. However, the controller designed
by such a method could be very conservative. In this paper,
an alternative approach is pursued, where the controller retains
the robustness properties but is far less conservative. Further-
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more, the current approach also yields guaranteed performance
bounds and allows one to deal with nonlinear models.

In addition to the above, we will also consider the case when
we have multiple delays between lots (runs). This case is of
importance in high volume processing lines. Here one wants
to maximize equipment utilization, and this implies initiating
the next lot before measurements can be carried out on the
current lot.

As with any control strategy, some a priori information
needs to be available about the process model. What we
require is the structure of the map between the recipe and the
measured variables. Such maps could be provided by models
obtained via the response surface methodology (RSM) [2]. A
number of researchers have successfully employed RSM to the
problem of automated recipe generation, process optimization,
and design [3]-[9]. However, the conceptual development is
not restricted to such models alone.

In addition to the above, we will also need bounds on the
process noise, in the sense that the assumed model, with these
noise bounds, can account for (1 — «)% of the observations,
where o is a very small number.. For example, if we choose a
to be 0.27, then the model with these noise bounds can account
for 99.73% of the observations. The problem of selecting
these bounds is similar to the problem of specifying control
limits for control charts in statistical process control (SPC).
The idea here is, that if we define our process model in this
manner, then the RbR controller hardly ever observes process
results which are inconsistent with the model. The influence
of these bounds on the performance of the RbR controller
is similar to that observed in control charts. For example, if
the bounds are chosen to be smaller than what they actually
are, the controller will generate an alarm via a consistency
check (see Section II-C), even if the process is in control.
On the other hand if they are too lax, then the controller
becomes less sensitive to process variation. The idea behind
this approach is illustrated in Fig. 1. For the sake of clarity,
we consider a single-input single—output system. Fig. 1 plots
the model prediction {g(z, u)] against the recipe settings (u).
The dots represent the actual measurements (y), which are
scattered around the predicted output. Typically, one tries to
account for this scatter by assuming that the system is subject
to random noise. However, we will represent the noise as
deterministic but bounded, with the noise bounds being given
by the dashed lines in Fig. 1. Of course, by making such an
assumption, the possibility of outliers (points which violate
the assumed bounds) exists, and one such outlier is shown in
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Fig. 1. Predicted output ‘(solid), actual measurements (dots), and noise
bounds (dashed).

Fig. 1. This also reflects the scenario where the statistics of
variation in the quality of a particular raw material varies with
different suppliers, but this variation in quality is forced to
satisfy bounds imposed by quality constraints (i.e., uncertain
statistics, but fixed known bounds).

The rest of the paper is organized as follows. In Section II,
we state the problem and review the relevant theory that is
employed to solve it. The conceptual solution to the problem
is obtained via dynamic programming [10]. Two examples are
presented in Section III, which illustrates how the RbR control
problem could be recast in the given framework, and some
simulation results are presented. The first example concerns
the problem of end-pointing and is developed in detail. The
second one is concerned with the problem of rate control in
an LPCVD reactor.

H. THE FRAMEWORK
We can set up the RbR control problem as the following

dynamical system:

Ty G.F(zk, uk), 0 € Xo

Ye+1 €G(Ther, Uk—r)
Ze41 =Tt uk)- (1)

This formulation is motivated by the discussion in the Intro-
duction. We will see in the next section via examples how
the problem can be set up in this fashion. Here, z, € R"
are the states, ux € U C R™ are the vector of recipes,
yx € R are the measurements, and 2; € RY are the regulated
outputs. Furthermore, X, C R"™ represents the set of possible
initial states. Note that the measurement is subject to a finite
delay 7 > 0, where * = 0 represents the delay-free case.
The set U of allowabie recipes can be determined from
various considerations. One criteria clearly is the set of recipes
where the experimentally determined model is valid. Certain
assumptions have to be made on the system (1) [11], [12].
In particular, we require that the sets F(z, u), G(z, u), and

U be compact (i.e., closed and bounded), and that I(z, u)
be continuously differentiable in z, for all u € U. Also, we
require that the set

—a—l(s, u)

72 n,
L {seR.ax

< v, for some u € U}

be compact, and contains the origin for all v > 0. Here, | - |
denotes the Euclidean norm. This assumption precludes certain
kinds of cost functions, e.g., linear. However, a common class
which does satisfy this assumption are functions quadratic
in the states. These are what we employ in the exampies.
Furthermore, we require that F(z, u) is never a singleton (i.e.,
single-valued), and that zero is an equilibrium point for the
system in the sense that

0 € F(0, 0);
0€g(0, 0);
(0, 0) =0.

During run k, one is concerned with selecting a recipe uy,
s0 as to regulate zx; in a suitable fashion. A framework for
dealing with such systems has been established in [11] and
[12]. The aim of the controller is to guarantee the following
inequality for all trajectories r, and s that can be generated
by system (1):

z H(sit1, ws) = Urigr, w)]? = ¥2)si41 — risa|® < B%(20)

=0
2

where v > 0 is specified a priori, and $%(z) is a finite
quantity with 5%(z) > 0, and 8*(0) = 0. This objective has
the following interpretation [11]. Let r — s € I%([0, c0), R™),
ie., |Ir = s|| = (Zige Irs — 5:/%)Y? < oo. Then, if z¢ = 0,
satisfaction of (2) implies that

li2(s, w) = i(r. Wl < llr - s

which illustrates that one is trying to minimize the variation
of the regulated output with respect to the variation in the
state trajectories. The latter is caused by the various noise
sources affecting the system (this point is made clearer via
examples in Section III). Furthermore, (2) also implies that
for any zo € Xy, one has

o, — LY as k—

and hence the system is ultimately bounded.

For the case when we have perfect state information (i.e.,
we know the value of z; for every k) we can solve for
the controller by solving the following stationary dynamic
programming equation [11], [12}:

V(z)=inf sup {Ji(r, u) —I(s, u)|?
uel . sEF(z.u)

=’ = s + V(r)} 3)
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to obtain V(z) > 0, with V(0) = 0. However, in general
we never have perfect state information and must consider the
measurement feedback case. We first consider the case when
we have no delay (i.e., 7 = 0).

A. The Delay-Free Case

We define, for an observed measurement trajectory y;,  and
recipe trajectory ug, r—1, an information state py., as follows

(11]

*
A
pr(z) = sup sup po(zo) + E (s, wi-1)
zo€Xo r,s€ly ¥ (z0) i=1

—U(riy wic)]? = Vi = sifP e = x}

where, I'y’Y (o) is the set of state trajectories generated by
the system (1), compatible with the observed y; x and ug x—1,

given that the initial state was zo. See [11] and [12] for more’

details. Here, the convention is that the supreme over an empty
set is —o0o. po defines a weighing on the initial value of the
states zo and could include any a priori information available
about the initial conditions. Since zo € Xy, we may assume
that po(z) = —o0, for all z ¢ X,. We now define

H(p, u, y)(z) & sup {p(é) + B(E, z, u, )}
EER™

with the function B defined by

B¢, z,v,y)

A
2 sup {li(z, v) - Us, ») = 7l — oI’}
SEF(£,v)

if z € F(§, v), y € G(£, v), and is equal to —oo else. It can
then be shown ([11], [12]) that we can recursively compute
Pr as

Pk+1 =H(pk7uk7 yk+1)7 k=0, 11 (4)
for some initial py. Here, it should be noted that p;, is actually
a function of z, and hence the dynamic system (4) is infinite
dimensional in general. We can then, in principle obtain the
measurement feedback controller via the following stationary
dynamic programming equation [11]

M(p) = inf sup M[H(p, u, y)]- )
u€U yER!

In practice however, solving (5) is computationally hard, since
the equation is inherently infinite dimensional. Hence, we
implement a certainty equivalence controller [13]-{15]. At
time k we have pg, V the solution to (3), and the corresponding
state feedback policy ur. We then compute

T € arg max {p(z) + V(z)} (6)
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and implement u; = wup(Zx). Note that in general the
certainty equivalence controller is nonoptimal. However, some
conditions are available which enables one to check for opti-
mality [14], [15]. Furthermore, in [15], a family of controllers
is developed which enables one to meet the performance
requirements when the optimality conditions for certainty
equivalence fail.

The controller obtained depends on ~. In particular, one
would want to iteratively test different values of « and choose
the smaliest value such that (5) has a solution M, with M (p) >
Sup,c g~ p(z), for any p, and M(pg) = 0. Howevei, doing so
is nontrivial. On the other hand note that the value of v is lower
bounded by «*, where +* is the smallest value of « such that
(3) has a solution V, with V(z) > 0, V(0) = 0. This is due
to the fact that the performance for the state feedback case is
no worse than the performance for the measurement feedback
case where one does not have perfect state information. Hence,
the value of v should at least be 4*. In the simulations, we
have chosen v = ~*.

B. Delayed Measurements

So far, we assumed that sufficient time is available between
lots to carry out measurements and to calculate the new recipe.
In general, however, we may have a delay of multiple lots. Let
this be denoted by 7 > 0, where 7 is the number of lots after
which the measurement of the current lot becomes available.
Note that the delay-free case is a special instance of the
general delayed measurement problem. A detailed framework
for dealing with such systems can be found in [16], where
necessary and sufficient conditions for the solvability of the
problem are stated. Moreover, the general idea is similar to
[17].

The objective of the controller design still remains as in (2).
However, the certainty equivalence controller is modified as
follows. We first compute

2y, € arg max {J(Pe)(2) + V(2)} (7

and then implement u; = up(Zx), where V is again the
solution to (3) and up is the corresponding state feedback
policy. Here

ifk<r
else

. _ | polz)
Pr(z) = {Pk—-r(-’f)
where p; is recursively computed via a delayed version of
4) as

Pr—r41 = H(Pr—r, Uk—r’ Yk+1), k=r,7+1, -

with H and B defined as before. Also J(py) is defined as

J(Br)(z) =

x

sup {Pr(zo) + Qo(zo; z)}
0ER™
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where Qo(zo, =) is the solution of the following dynamic
programming equation:

Qi€ z)= sup  {Ji(r, ws) — Us, w;))?
r, s€EF(€,ui)
-2 = s + Qiyi(r, 7)}
(k- min{r, k})<i<k-1
aen={_ o 4o7°

and we set Qo(Zo, T) = Q(k—min {r, k}) (Z0, T).

C. A Special Case s

So far we have assumed that the system conforms to the
model assumptions. One would, however, like a course of
action in case the system does in fact violate the model
assumptions. If the model has been correctly defined, the
probability of this occurring should be negligible (i.e., <1%),
and we may never observe a violation in practice. However,
if the model is incorrectly defined, the chances of violation
increase.

We can check for violation in the following manner. Let the
measurement delay be 7. Assume we have just finished with
run k. Then the controller flags a violation if given the current
information state pi_,, the recipe ug..,, and the measurement

Yk+1

H(pi—r, Uker, Yks1) = —00, for all z € R™.

This test, and the subsequent re-initialization of the infor-
mation state, is based on the fact that the information state
is a weighed indicator function of the set of feasible states
[18], and takes the value —oc for all infeasible states. To
recover from this situation, we reinitialize the information
state. At this time, all we can say is that the process has
either shifted by an exceptional amount, or that yx,; is an
exceptionally bad data point. Note that we are using the term
exceptional 1o classify this situation, since the model already
incorporates both expected measurement errors and process
shifts. To reinitialize the information state sequence, we do
the following:

1) Define pr—-, in the following manner
if pr—r(z) # —00
if pr-r(z) = —c0
and yr+1 € g(.’L‘, 'uk_T).

ber(z) a pk—(‘Jr(z)

The first case deals with the possibility that y is a bad
data point, whereas the latter deals with the possibility
of an exceptional shift.

2) Now define pgy1-- as

Pra1-r(z) 2 sup {pr—r(€) + B(E, 7, we—r)}
EER™

where B is defined as

B, z,u) 2 suwp {li(z, u)~Is, w)? -7}z — 51}
SEF(E,u)
if z € F(£, u), or else is equal to —oo. B defined in
this fashion deals with the possibility that an exceptional
shift has occurred.

The information state is now propagated as before from the
next run onwards, uniess another violation is flagged.

III. EXAMPLES

In this section, two examples are presented. The first one
deals with end-pointing a deposition process, and is developed
in detail. The second example deals with the problem of rate
control in an LPCVD reactor, where the controller has to deal
with multiple objectives.

A. End-Pointing

In this sub-section, we consider a simple example, i.e., the
problem of end-pointing. The scenario is as follows. Lots,
consisting of 24 wafers are processed through a single wafer
reactor. Here, we assume that the process under consideration
is deposition. Measurements are carried out on the last wafer
of each lot. The aim is to determine the processing time, so
as to achieve a given target thickness. Here, it is assumed that
the processing time per wafer is constant for all wafers across
a lot. We assume that the process is subject to three kinds of
noise: 1) variation in the average deposition rate at the test
wafer from lot to lot; 2) variation in the instantaneous rate
from test wafer to test wafer, due to changes in both the wafer
surface, and deposition conditions; and 3) measurement noise,
either due to finite resolution of the measurement apparatus,
or due to experimental error. Here, the basic process can be
modeled as (assuming for now that we have no measurement
delay)

Th+1 =Tk + Uk

Eks1 = (Fx + wi) i

Gkt = (Fr + wi) E + my

Bip1 =T
where 7 is the average deposition rate for the test wafer in
lot k, ék+1 is the actual deposition thickness on the test wafer
for lot k for a deposition time £, and x4 is the measured
thickness. Also, Tf‘k is the target thickness for lot k. Here, v, is
the noise used to model the variation in the average deposition
rate, wy, is the noise used to model the rate variation per wafer,
and my; is the noise modeling the measurement error. It is
assumed that the controller knows Tk before the processing
time for lot k is computed.

We now give some (fictitious) numbers to enable simula-
tions. It is assumed that the nominal (or average) thickness
required is T = € = 1500 A. Furthermore, the nominal
deposition rate of the system is assumed to be 7 = 300 A/min,
and hence the nominal deposition time is £ = 5 min. Hence,
we can now express the system in terms of deviations from
the nominal, i.e., as

Tht1 =Tk + Uk

€kl =Tibk + Ttg + tr + (£ + te)wi

Riy1 =Tk

Yk+1 = Tkl + Tig + tr + (T + ti)wi + mi

here, 1, = 7x — T, tx = itz — i, etc. We can now interpret
[ri€x Tx] as the states, and [ Ry yi] as the measurements. Also,
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note that before the deposition time for lot & is computed, we
also know T}. Hence, what is not known on the onset of run
k are &, i.e., the actual deposition for lot £ — 1, and 7,
i.e., the deposition rate for lot k. The deposition time is fixed
to belong to the set tx € [—4.8, 20], where this restriction
could be obtained via scheduling constraints. Furthermore, we
assume that 7, € R, where R denotes the operating range
of the equipment. Here, it is assumed that R. = [~125, 300].
The operating range denotes the range of parameter values
over which the equipment is supposed to be operating. If the
rate exceeds this range, it is assumed that a maintenance call
will be placed. The controller can raise a maintenance alarm by
checking the information state, since during normal operation
we should have p(r, £, T) = —co for all r ¢ R. Hence, if
pr(r, & T) # —oc for some r ¢ R, a maintenance alarm is
issued. Note that from an implementation point of view —o0
represents a large negative number. For this simulation, we
have chosen —oo to be —1 x 10%°,

Now let v (the variation in the mean deposition rate) be
zero mean, Gaussian, with standard deviations ¢, = 2. The
instantaneous rate variation wy, is modeled by taking the sum
of two random variables. One from a uniform distribution
over [—12, 12, and the other from a zero mean Gaussian
distribution with a standard deviation of one. The Gaussian
component is used to model outliers. Also, the measurement
error is modeled as being uniformly distributed between —10
and 10 A. Such a distribution models the resolution limit of
the measurement apparatus. Placing bounds on the various
noise sources (vx € [—30,, 30,), wi € [-15, 15], and my, €
[=10, 10]), we obtain the following set-valued dynamical
system

Tk+1 €Tk + [~6, 6]
Ek+1 € Thtk + Ttg + tr + (T + tx) [~15, 15]
Ry =T
Yk+1 € Ttk + Ttg + Eri + (T + te) [-3, 3] + [-10, 10).

Furthermore, we define the regulated output zj, as
Zk41 = 0.1 (Ex41 — Rega)®

where we assume that there is no cost associated with the
control action. Here 0.1 is simply a scaling factor. Note that
since we have no information on the power spectrum of the
noise, we try to attenuate the influence of the noise on the
regulated output over all frequencies. However, the above
framework can take care of the case when the noise has a
known power spectrum. In that case, we augment the above
system with filters to emphasize those frequencies where the
noise is active. See [11] for such an example.

Now, assuming that r, € R, we solve the state feedback
problem (3) assuming that V(r, £, T) = 0 for all r ¢ R. We
. iteratively test different values of v, and the smallest value of

~ which yields V' (0, 0, 0) = 0 is found to be approximately
20.2. Hence, this is the guaranteed value which is true for the
nominal deposition over the entire operating range R. It is
clear that the value of ~ depends on the operating range R.
In fact, the smaller the range R the smaller the value of ~.
The values of V, and the corresponding control policy up are
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Fig. 2. End-pointing: process under rate drift.

stored in a table. Note, that this computation is carried out off-
line. We assume that the initial rate is within £20 A/min of
the nominal value 7, and hence initialize the information state
as po(r, &, T) = 0if r € [-20, 20}, or po(r, &, T) = —o0
otherwise. The certainty equivalence controller (6) is then
implemented. We also consider the case having a measurement
delay, where the measurement is now given by

Yk+1 € Th—rtimr + Tlo—r + tri_r
+ (£ + te—r) [~15, 15] + [-10, 10]

where 7 is the measurement delay in lots. For this case we
implement the controller obtained via (7).

We first consider the case where there is no delay. For
purposes of illustrating some of the properties of the robust
controller, we will employ a simple controller obtained via
the EWMA estimate of the deposition rate. For this EWMA
based controller, we will assume that the initial deposition rate
is known exactly. This controller is implemented as

~

ar =/\(-.£’£—> + (1 - )\) Ak 1
t—1

with ag equal to the exact initial rate.

Fig. 2 illustrates the behavior of the controlled and uncon-
trolled deposition thicknesses, when the equipment is subject
to random drift till run 10. After run 10, the statistics for v, are
changed to a Gaussian distribution with mean 3 and standard
deviation 1. The target is fixed at 1500 A. Fig. 2 (top) shows
the uncontrolled trajectory (corresponding to deposition for 5
min), and the trajectory generated by the robust controller.
Since, the initial rate is not known exactly for the robust
controller, the controller undergoes an initial transient. The
plot also illustrates that the noise induced by the robust
controller is small. However, the controller still tracks the
target accurately. This point is made clearer if one compares
the trajectory generated by the robust controller, to those
generated by the EWMA controllers for A = 0.2, and A = 1.0.
These trajectories are shown in Fig. 2 (bottom). The mean and
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Fig. 3. End-pointing: process subject to exceptional shifts.

TABLE 1
END-POINTING: ERROR STATISTICS OF THE CONTROLLERS
EWMA|)X=0.2|Mean 35.13|STD 52.73
EWMA | A=10] Mean 11.43{STD 72.74
Robust Mean 5.45{STD 53.70

standard deviation (STD) of the errors incurred employing the
different controllers is given in Table I. The error is defined as

error = actual deposition — target.

One immediately observes that the mean of the error incurred
by the robust controller is comparable to that obtained by
the high A EWMA controller, whereas the standard deviation
of the error is comparable to that obtained via a low A

EWMA controller. This point is also observed in Fig. 3, which .

shows the response of the robust and the EWMA (A =
1.0) controllers to process shifts. The uncontrolled trajectory
(deposition time 5 min) is also plotted. Note that from run 21
onwards, the perturbations of the deposition thickness around
the target are magnified (compare the robust control trajectory
to the uncontrolled trajectory). This is explained by the fact
that since the rate for this period is below the nominal rate,
the deposition time has to be increased to meet the target
thickness. This amplifies the perturbations induced by the rate
variations from wafer to wafer.

We now wrn to the case with measurement delays. Fxg. 4
shows the controller response to multiple shifts, with and
without measurement delay. As one expects, the performance
degrades with increasing delay. The main point we would
like to make is, that if the delay is too large (as compared
to the interval between consecutive shifts), one may have to
relax the performance requirements imposed on the system.
For example, a delay of five lots in the current scenario would
yield 12 lots of scrap, since the controller is not aware of the
shift until six lots have been processed. Finally, Fig. 5 displays
the case when one needs to carry out target tracking. We
again observe that there is increased variation in the deposited

g

Deposition Thickness (A)
g & 8

:

1000}

800
[

Fig. 4. End-pointing: process subject to exceptional shifts and measurement
delays.

Deposition Thickness (A)
5 8 8 & § 8

g

eoco 5 10 15 20 25 30

Lot Number

Fig. 5. End-pointing: target tracking with and without measurement delays.

thickness for higher deposition time (corresponding to a target
thickness of 2000 A).

B. LPCVD Rate Control

In this section, we will briefly consider the inverse problem,
i.e., of controlling the rates in an LPCVD reactor. The model
we work with is an experimentally determined one presented
in [19]. Here, we limit our attention to the deposition on the
first and last wafer. We augment the models with drift terms.
The models express the deposition rates in terms of deposition
temperature T', deposition pressure P, and the silane flow rate
Q. They are given by

Rl =exp(c;+coln P+ T + C4Q—1) +dy
B -—R 1-9 CgsRlQ_ +dy (®)
1+ S/CgsRlQ !

with the rates expressed in A/min, P in mtorr, T in K, and
Q) in sccm. The parameters are given [19] to be ¢; = 20.65,
cg = 0.29, c3 = —15189.21, ¢y = —47.97, §' = 4777.8,
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and Cys = 1.85 x 10~°, where we have dropped the units
for convenience. dy, and d represent the drift terms. The
actual rates (R; and Ry) are obtained from the above model by
adding a zero mean noise to R; and R,. The noise is assumed
to be Gaussian with a variance of 9. Furthermore, we assume
that the maximum drift expected between runs is 0.3. This
actually represents a shift of ¢ in ten runs, and may be too
large to be true in practice. However, we choose this value
since it enables us 10 see the comective action of the RbR
controller in a fewer number of runs. The targets T; for Rj,
and T, for Ry are fixed at 169.75 A/min and 141.7 A/min,
respectively. It is also assumed that the,other parameters of
the model do not undergo changes from run to run. We also
assume that what is to be controlled are the measured rates
(R; and Ry), since we do not have any information of the
actual rates. We can express the system in a set-valued form
as done in the previous example. The exact equations are

a[k+1]=c [k]
co[k+1] = ez [K]
c3lk+1]) =cs [k]
ca [k + 1) =cq [K]
8§ Cys [k + 1] =5 Cys [K]
di [k + 1] e d, [k] + [-0.3, 0.3]
d2 [k + 1) €dy [k] + [-0.3, 0.3]
Ry [k +1] € f (P[k], T[k], Q[k]) + [-9, 9]
Ry [k +1] € f (P[k], T[k], Q[K]) 9(Q[K]) + [-9, 9]
vilk+1] € f(Plk~1], Tk~ 7], Qlk — 7]) + [-9, 9]
v2lk+1] € f(Plk - 7], Tk ~ 7], Qk - 7])
g(Qk -1 +[-9, 9]

where

F(Plk], T[k}, Q[K]) = exp (ca[k] + c2[k] In P[k]
+ ca[k]T[k] ™ + co[K]Q[] ™)

and

_ 1 - S'Cy,[kIf(PIK], T[K], QIK)Q[K]

9(QIF) = = S'C,.[K|f (P[k], T[k], Q[k])Q[k]~2

where we have not shown the dependence of f and ¢
on the parameters (c;, ¢z, etc.) for convenience. Here
[e1 €2 3 cq S'Cys dy d2 Ry Ry] represent the states, and [y, yo)
represent the measurements. Also T > 0 represents the
measurement delay. We assume that the operating region
of the equipment R is :20% around the parameters (i.e., ¢,
c2, etc.), and with the drifts d;, and d, restricted to [—30, 30].
The regulated output is given by

zZlk+ 1] = (Rifk + 1] = T1)? + (Ra[k + 1] - T2)%.

Solving the state feedback problem (after centering the system
around the origin), and forcing the control inputs (i.e., P,
T, and @) to lie in the experimental design space [19], we
obtain the value of v as 30. We then implement the certainty
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Fig. 7. LPCVD rate control: process subject to drift.

equivalence controllers given by (6) for the case of no delay,
and (7) for the case of one lot delay.

For the purposes of simulation, we allow the drift to be zero
mean, Gaussian with a standard deviation of 0.1. We force a
process shift during run 4. This shift corresponds to a change
in c3 of 580, ¢4 of —8, Cys of 11076, d; of 2.5, and d; of 11.
After this, we force bad data points during run 10, by forcing
n; = 20, and np = —20. Finally, we subject the process to a
steady drift of 0.3 for both R; and R, between runs 15-30.
Fig. 6 (top) illustrates the controller performance for R;, and
Fig. 6 (bottom) for R,. The horizontal lines show the target,
the solid line is the case when we have no measurement delay,
and the dotted line is the case when we have a one lot delay. It
is observed that the controller effectively compensates against
these disturbances. We observe that the shift is compensated
for in the very next run in case of no delayed measurements,
and after an additional run in the delayed measurement case.
We now consider the process under drift alone. The reason for
doing so is that it allows us to illustrate the corrective actions
of the controller. Fig. 7 shows the trajectories generated by
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Fig. 9. LPCVD rate control: process subject to drift, and nonzero mean
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the controlled and uncontrolied systems under the influence
of identical noise. We also plot the targets and the £3¢ noise
bounds. Finally, we illustrate the performance of the controller
under nonzero mean skewed noise. The density function of
the distribution and a histogram of 2000 randomly generated
points is shown in Fig. 8. Based on the histogram, we design
the controlier, choosing +6 as the noise bounds (one could
of course have chosen asymmetrical noise bounds). For this
case, we obtain v = 21. Fig. 9 shows the performance of the
controlled and uncontrolled systems. We again plot the target,
and the noise bounds around it. Based on the measurement
obtained for run 27 the controller flags a consistency violation
due to the noise added to R; exceeding the assumed noise
bounds.

IV. CONCLUSION

In this paper a framework for handling RbR control prob-
lems in a robust fashion was presented. The framework yields
controllers which achieve good target tracking with minimal

controller induced noise. Furthermore, the framework is capa-
ble of handling nonideal noise statistics (in particular uncertain
statistics), as well as multiple lot' delayed measurements.
Simulation results based on end-pointing and rate control in
an LPCVD reactor were presented. An actual implementation
is desirabie to further validate the methodology. A crucial
issue is the separation of the disturbances into nominal (which
we include in the model) and exceptional. Taking very large
bounds on the disturbances will yield controllers, which rarely
experience exceptional disturbances but are too conservative,
and fail to meet the desired performance objectives. This,
and the development of efficient computational algorithms
is currently being looked into. We would like to point out
that in [1], a robust controlier was presented for polynomial
models which is a conservative approximation to the controller
presented here.
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