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Abstract. This paper presents new results for partially observed nonlinear differential games. Using the concept
of information state, we solve this problem in terms of an infinite-dimensional partial differential equation, which turns
out to be the Hamilton—Jacobi~Isaacs (HJT) equation for partially observed differential games. We give definitions of
smooth and viscosity solutions and prove that the value function is a viscosity solution of the HJI equation. We prove
a verification theorem, which implies that the optimal controls are separated in that they depend on the observations
through the information state. This constitutes a separation principle for partially observed ditferential games. We
also present some new results conceming the cerainty equivalence principle under certain standard assumptions. Our
results are applied to a nonlinear output feedback H., robust control problem.
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1. Introduction. The nonlinear H, robust control problem has generated considerable
activity in recent years, and important contributions have been made by a number of authors:
see [1]-[3], [5], [8], [9], [12], [16], [201-[24], [26], [291—[35). The state feedback problem
Is reasonably well understood, although the issue of controller synthesis for continuous-time
systems remains outstanding. This is because the value functions solving the various partial
differential equations (PDEs) that have been proposed need not be smooth—a standard diffi-
culty even for simple deterministic optimal control problems. The output feedback problem is
much more difficult, and various approaches have been suggested in the literature, Perhaps the
most general of these approaches was initiated in (24], [25], where the concept of information
state was used to solve a partially observed dynamic game, and applied in [23] to solve the
output feedback H.,, problem (see also the discussion in [6]). The results in [24], [23] are
presented in the discrete-time context for technical simplicity, although the system-theoretic
ideas are valid in continuous-time also; ideed, the key equations were presented in [25], (32]
and later in [6]. The purpose of this paper is to commence the task of developing a mathe-
matical theory for continuous-time partially observed differential games and output feedback
H 4 robust control.

The information state Pr = p.(x) is the solution of a first-order PDE and takes values
in a suitable infinite-dimensional Banach space p, € A& (here, x € R” is the state of the
system being controlled, so X is a space of real-valued functions of x). The partially observed
differential game that we consider can be transformed into an equivalent game with full state
information, and this leads via dynamic programming to a value or optimal cost function
Wi(p,t) that “*solves” a PDE on X x (0. T].. This PDE is a nonlinear first-order equation
and is the correct Hamilton—Jacobi-Isaacs (HJI) equation for partially observed differential
games. This HJI equation appears to be new, and we are not aware of any results in the literature
concerning this type of infinite-dimensional PDE. It is not clear what if anything the results
in [7] have to say about this HJI equation. In the case of partially observed stochastic control,
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the idea of information state is familiar, a theory has been developed {14], [17], [27], and the
dynamic programming equation is an infinite-dimensional nonlinear second-order PDE.

The particular class of problems that we consider in this paper is presented in §2. This
class should be regarded as a prototype class, and the ideas and principles we develop are
expected to apply in much more general contexts. The relevant information state is defined
in §3, and some if its properties are analyzed for use in later sections. In particular, the key
representation theorem is given. In §4, the value function and HJI equation are defined and
studied. Definitions of smooth and viscosity solutions are given. We prove that the value
function is a viscosity solution of the HJI equation. We do not know a proof of a uniqueness
or comparison theorem for equations of this type, and consequently our definition of viscosity
solution should be regarded as a provisional one. While in general it is not expected that
smooth solutions will exist, a verification theorem is proven in §5 assuming a smooth solution
exists, yielding that the optimal control is a separated control in the sense that it depends on
the observations via the information state. The certainty equivalence principle proposed in (5]
and [9] is considered in §6. We explain how this principle fits into the general information state
framework and show that, under a generalization of the standard assumptions, the certainty
equivalence controller can be optimal at certain values of the information state. The standard
assumptions are very stringent and are unlikely to hold in general, and we explain what can
happen in such an event. In §7, we apply our results to a relatively simple nonlinear H,, control
probiem, viz., finite horizon disturbance attenuation. The solution is expressed in terms of two
PDEs, a finite-dimensional one for the information state and an infinite-dimensional equation
for the value function. Infinite horizon H., problems are closely related to the theory of
dissipative systems [18], [36], and we present the relevant partial differential inequality (PDI)
for the output feedback problem. Finally, we make some comments concerning more general
cases.

2. Problem formulation. We consider the class of nonlinear partially observed deter-
ministic systems described by the state space equations

x(1)
y(#)

Sy, u(n) + glx(t), w(r)).
h(x(2)) + w().

(2.1)

Here, x(r) € R”" denotes the state of the system and is not directly measurable; instead,
an output quantity y(t) € R? is observed. The control input is u(z) € U C R™, and
w(t) € R? is regarded as an opposing disturbance input. The functions f : R* x R" — R",
g R"xR?” - R"™" and h : R” — R” are assumed bounded and smooth with bounded
derivatives of orders up to three, say. The set U is compact.

Most of this paper is concerned with a differential game problem on a finite-time horizon
[0, T], and we use the following type of admissible strategies. The admissible disturbances
are the square integrable functions ’

we W(ty = Ly([t, T1, R?),
while the admissible controls are the nonanticipating (causal) maps
u: YY) — U@,
where
Uy = L([t. TL U, Vi) = Lo([t, T], RP).

The nonanticipating property means that if y, y» € Y(¢) and y;(r) = y»(r) ae. r € [¢, 5],
then uly,J(r) = uly,](r) a.e. r € [¢, s] (cf. the Elliott—Kalton notion of strategy [10], [11]).
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We will denote by U(r) the class of such nonanticipating strategies for which (2.1) and (3.2)
(for u = u[y]) have unique solutions.

We next introduce several function spaces that will be used in the sequel. The Banach
space of continuous functions with at most linear growth is denoted

X ={peCR") :| pl<oo}

where the norm is defined by

| 5 li= sup 2L
xeR" 1 + ].X‘

Denote by
X'={peC'RY 1| pli<oo)

the Banach space of continuously differentiable functions with bounded derivatives equipped
with norm

1p()]
I p = sup 2+ sup [V, p(x)],
rern 1 |x| xeR?

where V, p is the gradient of p. Also, we need to define the function space
D={peCR" : px) < —clx| +c2¥x € R*, forsome ¢, > 0.¢; € R}.

Note that the subsets DN X ¢ X and DN X' € X! are open in their respective topologies.
As sets, X' € X, but X! is not a subspace of X' as Banach spaces.
The minimax differential game is defined as follows. The payoff is

T
Ju w, xg) = alxg) + / (L(x(0), uly)(t)) — y*E(w(t)]dr + O (x(T)),
0

where the initial state x(0) = xg is in general unknown. The functions L : R" x R™ — R,
£:RP — R,and ® : R" — R are assumed bounded and smooth with bounded derivatives of
orders up to three, and @ € DN A'. The assumptions imply that J is well defined and bounded
uniformly in w € W(0) and u € U(0). We will also assume that L >0,£>0, ¢ >0. The
controller’s objective is to minimize J, while the disturbances attempt to maximize J. For
u € U(0) define the functional

VJ(u) = sup J(u, w, xg).
weW(0), xpeR"

The problem addressed in this paper is that of minimizing J(u) over u € U(0). This is
a partially observed minimax differential game. Note that xq is regarded as an unknown
opponent also.

3. Information state. The key to solving the partially observed game is to replace it by
an equivalent one with full state information. The difficulty is that the new state is infinite
dimensional in general.

To this end, for fixed output path y € Y(0) and control 4 € U{(0), define the information
state by

3.1 pr(x) = a(xp) +/ [L(x(s), u(s)) — y2€ (y(s) — h(x(s))]ds.
0
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where x(-) is the solution of
(3.2) X(8) = flx(s), uls)) + glx(s, y(s) — h(x(s))), 0<s <,

with terminal condition x(r) = x. This quantity describes the worst-case performance up to
time ¢ using the control «, which is consistent with the observed output and the constraint
x(r) = x. It summarizes the observed information in a way that is suitable for fulfilling the
control objective. The information state evolves according to the dynamics

pr o= F(p,u), y(t)),

po = a.

(3.3)

where £ is the differential operator
(3.4) F(pou,y)==Vep - (fC.)+ g,y —h) + L(-, u) — y*e(y — h),

defined on a domain in X x R™ x R? mapping into X'. (Note that F is not continuous on
X x R™ x R but is continuous from X' x R x R? to X))

The smoothness of p,(x) and consequently the sense in which (3.3) is to be understood
depends on the smoothness of the initial data « (the other data are assumed smooth) and on
the regularity of u(-) and y(-).

DEFINITION 3.1. We say that a function p,(x) is a smooth soluticn of the dynamics (3.3)
ifa e DN X' and when u € U(0) and y € Y(0) are continuous,

(i) pi(x)isofclass C'(R" x [0, TY) and
(1) p,(x) satisfies (3.3) in R" x (0, T) in the usual sense.

LEMMA 32. [fa € DN X!, then p,(x) is the unique smooth solution of (3.3), and for

any u € U(0) and y € Y(0), the information state p, evolves in DN X' as

(3.3) peDnit, re[0,T],

whenever a € D N X', Moreover, the map t — p, from [0, T] into D N X' is continuous,
with modulus of continuity independent of u € U(0), y € Y(0).

Proof. 1. Leta e DN XY, u € UWO) N C([0,T],R™), and y € Y(0) N C([0, T1, RP).
Then by the method of characteristics (see, e.g., [13]), we see that (3.3) has a unique solution
given by (3.1) that is of class C', and moreover, the gradient has the representation

Vepi(x) = Vea(x(0)

3.6 t
B0 +/ [VeL(x(8). u() + ¥Vl (3(5) = h(x () Veh(x()]E(s) ds,
0

where x(-) is the solution of (3.2) and

2(s) = [Vo f(x(5), u(s)) + Veg(x{s), y(s) — h(x(s)))

3.7
3-7) Vag(x(s), y(s) — () Veh(x(s)]Z (),

0<s <t,where 5(t) =1.

2. These formulas are also valid for u € L/(0), y € Y(0), by an approximation argument
using continuous functions, as follows. Let u' — u in4(0) and y* — y in Y(0) as i — oo,
where each «' and y' is continuous, We claim that

(3.8) lim sup || p = p =0,

(=00 0y <T

where p' and p_denote the corresponding solutions of (3.3) with initial data «.
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To prove this, let x'(-) and x(-) denote the corresponding solutions of (3.2) with terminal
dataxi(r) = x,x(t) = x. Then a standard estimate using the Gronwall and Holder inequalities
gives

() —x()] < K(ll ' —wlle, + 1w —uilzy).
for s € [0, t], where K > 0 is independent of t € [0, T], x € R". This implies

|pi(x) = pr(0)] < la(x'(0)) — a(x(0))]
+/ (L(x'(5), 4 (5)) — L(x(s), u(s )| + 1y (5) — h(x'(5))) — L(y(s) — h(x(s))|] ds
0

< pu(1x1(0) = x(O)]) + Kf (X' (5) = x()] + |1’ (s) — u(s)] + 1y (s) — y(s)|]ds
0

SKO W =l + 1y =y,

uniformly, where p, is a modulus of continuity function for «. A similar estimate for
[V, pl(x) — V. p:(x)] can be obtained using (3.6). This proves (3.8).
3. Note that by assumption and (3.6), V, p;(x} is bounded uniformly in (x,¢) € R" x
[0, T]. This implies p, € X'!. The fact that p, € DN X' follows from the estimate (3.13).
4. Finally, we claim that there exists a modulus function p depending on & but independent
of u and y such that

(3.9 I pez — pu i< p(Je2 =11,

To prove (3.9), assume ¢! < 2. Let x'(-) (i = 1,2) denote the solution of (3.2) with
terminal data x‘ (') = x. Now

lx?(t)) — x| < K7 =1,
and for 0 < 5 < ¢!, using Gronwall’s inequality,
') = x*()| < Klx'(¢") = X7 (D) < KJeP =1,

Therefore

[P (x) = pra(0)] < Ja(x*(0) ~ a(x'(0))] +/ [L(x*(s), u(s)) — L(x'(s), u(s))]
0

+KE(y(s) — h(x*(s))) — £(y(s) — h(x' ()] ds

+fl [LGER(S), ()] + Klg(r(s), y(s) — R )] ds

< pa(1x%(0) — x1(O)]) + K/ x?(s) — x'(s)|ds + K[t* — 1]
0

< pa(KI2 =11 + K|2 — 1],

uniformly in x, u, y. A similar estimate for |V, p,2(x) — V. p;(x)| can be obtained using
(3.6). This completes the proof. d
If « is not differentiable, then (3.3) can be interpreted in the viscosity sense [13], [28].
DEFINITION 3.3. We say that a function p,(x) € C(R" x [0, T]) is a viscosity subsolution
of the dynamics (3.3) ifa € DN X, and ifforall ¢ € CZ(R"), ¢ € L'[0, T, whenever there
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exists (x', 1"y € R" x (0, T) with p,(x') + foll Y(s)ds — ¢(x") = max neroxio.r1(Pr(x) +
Jo W(s)ds — ¢(x)), then
lim inf essinf{y(r) — A - (f(x, u(t)) + glx, y(t) — h(x))) + L(x, u(r))
(3.10) S0 [t—1"t<d
— YO = k() t x — x| <8, (A= Vip(x)| < 8} = O
or a viscosity supersolution of the dynamics (3.3) if o« € DN X, and if for all p € C®(R™),
W € L'[0, T, whenever there exists (x', t') € R" x (0, T with p,/(x’)—%foll Y(s)ds—p(x) =
Mingenerr<(0.7)(P2: (X) + f§ W(s) ds — $(x)), then
giﬂg) sup esssup{y (1) — & (f(x, u(t)) + g(x. y(t) — h(x))) + L(x, u(r))
(3.11) °TFimriss
20 —h(x) : lx—x'| <8, A= V,p(x)] <8} <0;
or a viscosity solution if it is both a subsolution and a supersolution.

LEMMA 3.4. Ifa € DN X, then p,(x) is the unique viscosity solution of (3.3). Moreover,
Jorany u € U(0) and y € Y(0), the information state p, evolves in DN X as

(3.12) pr € DNA, t€(0,T],

whenever ¢ € DN X.

Proof. Leta € DN A, u € U(0), and y € Y(0). From the formula (3.1) and from
well-known continuity properties of ODEs, it is not hard to show that p,(x) € C(R* x [0, T]),
and we omit the details. The fact that p,(x) is the unique viscosity solution of (3.3) follows
from the results in [28].

To show that p, € DN A, we must prove the estimate

(3.13) —clxl=cy £ px) £ —Cilx{+¢ forallx eR", O0<t <T,

where the constants are independent ot u € U{(0), v € Y(0) but may depend on «. To this
end. let x(-) be the solution of (3.2). Thentfor0 <r <s <t < T, we have

(3.14) ()] < [x(rf+ Kls —r]

for some constant K > 0. A similar inequality holds if s < r. Therefore,

pi(x) < alx(0)) + KT
< —alx@|+c+ KT
< —cylx|+c KT +¢3+ KT.
This proves the upper bound in (3.13). The lower bound is proven similarly. g

LEMMA 3.5. The map (p. 1) — prfrom DN X x (0, T into DN X is continuous., where
pr denotes the solution of (3.3) at time T with initial data p, = p. In addition, ifu € U(0) and
vy € Y(0) are continuous, then the map t +> p, from (0. T into X is X-Frechet differentiable
with continuous derivative t v~ F(p,, u(t), y(t)).

Proof. 1. Proof of first assertion. Fix p! € DN X, and consider p> € DN X and
0<t' <*<T.IfuclU@!),ye V(") then the natural truncations of u and y belong
to U(t*) and Y(t?), respectively. Similarly, if u € U(t?), y € V(%) are given, then one
can extend them to elements of L{(¢') and Y(¢!) by setting them equal to arbitrary but fixed
elements of U and R?, respectively, on [¢!, #]. We use this convention to avoid any ambiguity
in the sequel. We claim that there exist a constant X > 0 and modulus function p that may
depend on p' suck that

(3.15) I pr—pr IS K || p' = p* Il +p(t = '],
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where pT (i = 1, 2) denotes the solution of (3.3) at time 7 with initial datapl = p', and inputs
u(-), y(-), with mterpretauons as explained above. This inequality implies that (p, t) +— Pr
is continuous at (p theDNX x1[0,T) (since (3.15) holds also if £ < ¢1).

Fix x and let x ( ) denote the corresponding solutions of (3.2) with terminal data x’ (T) =
x. Then x'(s) = x*(s) for 1> <'s < T (in particular x! (+2) = x2(:2)),

'@ =2 eh) < ki -
and
2 < Ik + K
Using these estimates,

P00 = PRI < 1p' (' (1Y) — PR ()]

[ ILGS), uls)) =y (s) — hx' ()] ds
< rpléx‘(H)) = LN+ 1p (2() = PP + K2 — 1Y
< oo (e =2 E@ND+ Il ph = p? | (1 + X202 + K12 — 1)
< op (K2 =t N+ Kl p' = p? || (1 + lx]) + K2 — 1),

This estimate implies (3.15) with p(s) = op (Kisl) + Kls|.
2. Proof of second assertion. Let & € DN X!, and assume that u and Y are continuous.
We must prove that

=0.

(3.16) lim | pess — pr — Fpi,u(r), y(2))é |
5—0 é

Since p,(x) is of class C!, we have

[Pras(x) — p(x) = F(pe, u(t), y(£))(x)8]
B}

1 t+3
‘5/ [F(ps,u(w.y(ls))(x)—F(pf.u(t),,v(t))('x)]ds

IA

1 t+48
5_/ UVips(x) = Vepi (O f (x, u(s)) + g(x. y(s) — h(x))]

Ve (O f(x, u(s)) — flx, u(t)) + g(e)(y(s) = y(6))]
+ 1L (e u(s)) = Lx, u) [+ v K|y(s) — y(1)|]ds

A

1 t+38
g/ [KIVips(x) = Vepe(x)]

+ K| f(xouls)) — flx,u)] + K1+ yD)y(s) — y(2)]
+1L(x, uls)) — Lix, u(t))|]ds

i t+4
< E/ Co(ls —t))ds — 0,
t

as § — 0 uniformly, where p denotes a suitable modulus of continuity function. This follows
because of our assumptions on the data and using (3.6), and is enough to prove (3.16). d
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Using the definition (3.1), we have the following key representation theorem.
THEOREM 3.6. For any u € U(0) we have

(3.17) Ju) = sup {(pr,P) : pp=al,
yeY(0)

where (p. ®) = sup, g (p(x) + ®(x)) is the “sup-pairing” [24].

Proof. For any w € W(0), an output y € Y(0) can be defined by solving the ODE
(2.1) with u(t) = u[yl(t), 0 <+ < T. Conversely, given any y € J(0), a disturbance
w € W(0) is defined by solving the ODE (3.2) with u(r) = u[y](¢), 0 <t < T, and setting
w(t) 2 —h(x()) + y(¢), 0 <t < T. Therefore there is a natural bijection between W(0)
and Y(0) (for each u). Consequently,

T
J(u) = sup {a(xO) +/ [L(x(2), ulyl(1)) — y*e(w()]dr + Q(X(T))}
0

weW(0), xgeR”

T
sup {Ot(—fo) + / [L(x(0), uly](t)) — y?e(y(6) = h(x(D)]d! + <D(X(T))}
0

yeV(0), xeR”

T
= sup [a(xO) +/ [L(x(t), uly](t)) — y*L(y(t) — h(x()))]dt + @ (x(T))
yeY(0). xeR" 0

x(T) = x}

= sup {pr(x)+ )}
yeY(0). xeR"

sup ((pr. ®) : pp=c). O
ve(0)
The equivalent differential game with full state information is to minimize the right-hand
side of (3.17) over u € U(0) subject to the infinite-dimensional dynamics (3.3).
We conclude this section with a brief discussion of an “‘adjoint” information state g,
which runs backward in time and has the interesting property that the sup-pairing (p:, q.) is
constant [24]. The adjoint information state is defined for fixed u € U(z) and y € Y(t) by

T
(3.18) gi(x) = / (L(x(s), u(s)) — y2 L (y(s) — h(x(s))]ds + D(x(T)),

where x(-) is the solution of (3.2) on [¢, T] with initial data x(z) = x. The dynamics for the
adjoint information state are

q.S = _F(—st“(s)» ,V(S))- S € [tv T],

(3.19) {QT ~-

THEOREM 3.7. The sup-pairing of the information state and the adjoint information state
is constant and expressed as

(3.20) (p:, q:) is independent of t € {0, T].

Proof. The assertion can be verified easily by combining the definitions (3.1) and (3.18).
Alternatively, suppose p, and g, are smooth solutions of (3.3) and (3.19), respectively. Define
V(1) = (pr, @) = pr(R(t)) + q(X(1)). Then V, p,(X(1)) = —V.q,(x(r)) and
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() = %’}’@m) + %%mm
= =V, p (X)) - (FE@), u(1) + (), y(t) — h(E(D)))
+ L(E(D), u(t)) — y2 ey — h(E()))
~ Vg (F() - (FE@), u()) + g(X(t), y(t) — R(Z(1))))

— L(E(0), u()) + y* ey — h(Z(1))) = 0.
This shows that v(z) = («, go) = (pr, ) is constant, as required. a

4. Value function and the HJI equation. Given Theorem 3.6, one can now apply dy-
namic programming methods to solve the equivalent problem and, hence, the original partially
observed problem. The value function is defined for (p, 1) e DN X x [0, T] by

4.1) W(p.t) = 'm{f sup {(pr, ®) : p, = p}.
el yey o)

This function is finite, as the following lemma shows.
LEMMA 4.1. Forall (p,1) e DN A x [0, T] we have

(4.2) (p.O) =K <W(p.t) <K+ (p.0)

for some constant K > 0.
Proof. For any u € U(z) and v € Y(¢) we have

T
pr(xX(TH+Px(T)) = P(X(f))+/ [L(x(s), ulyl(s)) — v E(y(s) = h(x(s))]ds+D(x(T))

t

< p(x() + K,
where K > 0 does not depend on u. y, and hence

(pr. @) = sup{p(x (1)) + ®(x(T)} < sup{p(x(t)) + K} = (p.0) + K.
x(T) x(1)

This proves the upper bound in (4.2).
To obtain the lower estimate in (4.2), select x € argmax p. Then

T
{(pr.®) = p(,r)+/ [LCx(s), uly](s) —y2e(y(s) —h(x(s))]ds + D(x(T)) > (p.0) — K.

where x(-) is the solution of (2.1) with initial data x(t) = x. O

In the next lemma, B(0, R) denotes the ball of radius R centered at O in R".

LEMMA 4.2. Fix p' € DNX. Then there exist §' > Oand R' > Osuchthat || p* — p' || <
8" implies that argmax g (p*(x) + ®(x)) C B(0, RY).

Proof. Since p! € D and ® is bounded, pl(x) + ®(x) < —cylx} + ¢ + K. Then for
pPeX,

PPx)+P(x) = pl )+ P+ (PP(x) = p'(x) < —cllxl+er+ K+ | p2=p' | (1+]x]).
Set 8! = ¢, /2. Then for || p> — p! || < &',
(4.3) pr(x) + ®(x) < —cilx| + ¢,

where ¢ =¢/2,¢y = c; + K + 8L,
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Next, select a sequence x; such that lim;_, pHx;) = SUpP, gn P2(x) = (P2, 0) < +o0.
Fix ¢ > 0. Then for all large i,

(P2, @)~ < p2(x)) < —¢| x| + ¢,
and hence
(4.4) Ixi| < R'

for some constant R! > 0 depending on p' and §!. Thus the sequence x; is bounded, and any
limit point x? satisfies |x2] < R!. Hence argmax, .g. (p*(x) + ®(x)) C B(0, R'). a
THEOREM 4.3. The value function W(p,t) defined by (4.1) is continuous, denoted

WelCDNXx[0,T).

Proof. Fix (p'. 1"y e DN X x [0, T]. Givene > 0, we will show that there exists § > 0
(depending on p') such that || p> — p' ||< 8 and |12 — ¢'| < & imply

(4.5) W(p' th) = W(p? )] <e.

The proof of this assertion is based on the proof of {11, Thm. 3.2].

Assume that 0 < t' <> < T and 0 < § < ', where 8!, R! are as in Lemma 4.2, and
that || p* — p' < 8,12 =11 < 6.

Choose u € U(+!) such that

W(p' 1)y > sup ((ph, ®)} — /3,
yey(th)

where p! is the solution of (3.3) with initial data p) = p' and using this u and any y. For
any y € Y(:%) define 7 € Y(r') by

y(s) =

Define @ € U(s?) by /
ify] = u[y] forall y e Y(s?).
Select y € V(¢?) such that
W(p*.1*) < (p7. ®) +¢/3,
where p? is the solution of (3.3) with initial data pfz = p? and using i and y. Then
(46) W(p*,e) = W(p' 1) < (p}, ) = (ph, ) +26/3 = p2(x?) — pl(x?) + 263,

where x* € argmax{p? + ®}. By Lemma 4.2, since ® is bounded, |x*| < R!. Then using
u(s) = u{yl(s) and 5(s), s € [t'l, Tl,ands € [t2, T], inequality (3.15) of Lemma 3.5 implies
that

Pr() = pr(e%) < (K8 + (12 = £ D)(1 + x2) < (K6 + p(Je? — £11))(1 + RY.
Therefore there exists 82 < 8! such that § < §2 implies, using (4.6),

4.7) W(p?, ) —W(pl, 1) <.
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The proof of the opposite inequality is similar. Choose u € U(z2) such that

W(p* i) = sup ((p}, ®)) — /3,
yey(?)

where p? is the solution of (3.3) with initial data p%: = p* and using u and any y. For all
y € Y(t'), define y € Y(t*) by § = y on [+2, T). Fix ug € U. Define i € U(s}) by

uly] = o

Now choose y € Y(t!) such that
Wp'.th) < (pr, ®) +¢/3,
where p! is the solution of (3.3) with initial data p), = p' and using ii and y. Therefore,
Wip'.th) = W(p™1%) < (pp, ®) = (p}. @) +2¢/3,
and proceeding as above there exists §° < 82 such that § < 8% implies
(4.8) Wiphth) —w(p' ) <e.

Inequalities (4.7) and (4.8) are both valid for § < §3, hence (4.5). a

The principle of optimality (dynamic programming principle) for this problem is as fol-
lows.

THEOREM 4.4. Forany0 <t <r < T we have

(4.9) Wip.t) = inf sup {(W(p,,r) : p = p}.
UEUU)yEy(!)

Proof. The proof uses the same methods as in [10], [11].
Indeed, let R(p. r) denote the right-hand side of (4.9), and fix e > 0. Choose u! ¢ Ulp. o)
such that

R(p,t) = sup {(W(p,,r)} —e.
YEY(1)

Forany g € D N X there exists u® € U(q, r) such that

Wig,r) > sup {(pr, ®)} — &,
yel()

where p, = g. Define u® € U(p. 1) by
w(y)(s) =

w'(p,. y)(s), r<s<T.

Then for any y € Y(¢) we have, using the control u’,

Rip.t) > W(p,.r)—¢
> (pr. @) — 2¢:

hence

(pr.®) = R(p,t)+2¢ forall y € Y(1).
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Therefore

sup {(pr, )} < R(p, 1) +2¢ (using u’).
yeY()

This implies
(4.10) Wi(p,t) < R(p, 1)+ 2e.
To prove the opposite inequality, choose u € U( P, t) such that

(4.11) W(p.t) = sup {(pr, )} —e.
yeY()

Then

R(p,t) < sup {W(p,.r)},
yey(n)

and there exists y! € J(r) such that
R(p.1) = W(p,,r) +e.
Foreach y € Y(r), define y € Y(r) by

N yis). t<s<r,
yis) =
y(is), r=<s<T.

Then define 0 € U(q.7) (g = p, results from u, y', and p, = p) by i(y)(s) = u(y)(s),
r <s <T. Then

Wipr.r) < sup {(pr.®) : p, = q},
yeY(n

and there exists y> € J(r) such that

Wip,.r) < (pr.®) +e.
Define y° € V(1) by

3 yl(s), r<s<r,
y)y=141",
v, r<s<T.

Therefore we have

R(p,t) < W(p,,r)+e¢e < (pr. d) + 2¢,
which implies, by (4.11),

(4.12) R(p.1) = sup {(pr, ®)} +2¢ < W(p, 1) + 3e.
yey()
Since & > 0 was arbitrary, inequalities (4.10) and (4. 12) imply (4.9). g
Equation (4.9) leads to the dynamic programming equation (DPE)

aw

— + inf vV, W , . u, = i NX'x (0,7T),
(4.13) a7 +§2uf;5( oWp.0), F(pu,y)) =0 inD x(0,7)

W(p,T) = (p,®) inDNAXA.

In (4.13), V,W(p, t) denotes the gradient of W with respect to p and, if it exists, belongs to
the dual space X* and (A, p) denotes the value of A € X* at p € &. Inview of the structure of
F (see (3.4)), the order of inf and sup in (4.13) is immaterial; i.e., the Isaacs condition holds.
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The DPE (4.13) is the appropriate Hamilton—Jacobi—Isaacs (HJI) equation for the partially
observed differential game.
We will make use of two classes C! ¢ C < C(DN X x [0, T]) of test functions. We take
¢ € C to mean that
(i) ¢ is X-Frechet differentiable, with derivative denoted (V, ¢, %—f);
(ii) the Frechet derivative (V, ¢, %—‘f’) is continuous on PN X x [0, T]; and ¢ € C!
means that in addition
(iii) the Frechet derivative (V,¢, %%) is continuous on DN X! x [0. T].
These classes of functions will be used to define smooth and viscosity solutions of (4.13).
LEMMA 4.5. Let p € DN X! 50 that p,(x) is a smooth solution of (3.3) on [t, T with
initial data p, = p, and let ¢ € C. Then we have the following version of the fundamental
theorem of calculus:

"T9o
4.14) ¢<pr,r>:¢<pt.r>+/ [a—f(ps,s>+<vpa><px,s>,F(psiu(s»,v(sm} ds.

Proof. Let u and y be continuous. Then the function r +— @{p,,r) is continuously
differentiable, and so by the usual fundamental theorem of calculus, (4.14) holds.

By an approximation argument, (4.14) holds for all u € (), y € Y(z) as follows. Let
u' — uinU(0) and y' — yin Y(0) as i — oo, where each «' and ¥ is continuous. Then

3¢

(4.15) cz><pi.r>:¢><p;§r>+/ [a—t(p;,sw<Vp¢<p;.s>,F(p;,u’(s>.,v'<s>>>} ds.

We claim that
(4.16) lim ¢(pl.r) =¢(prr), lim p(p 1) =(pi.0).
and

o . R . .
Iim,-_,m/ {g(pi_.s) + (Vo0 (py, ). Fip,. u'(s), yl(s)))} ds
@.17) '
r a¢
=/ {;(ps,S)wL(Vprb(ps.S),F(p.y,u(S)-y(sm} ds.

where p' and p_denote the corresponding solutions of (3.3) with initial data p € DN Xl at
time ¢. By (3.8) in Lemma 3.2, (4.16) follows directly by continuity. Thus it remains to prove
(4.17). This can be done by showing that

) S o _
1/ [g(pi,s) +(V,0(pl.5), F(pg. u'(s), y'(s))

; .
——a?(ps, §) = (V@ (ps. s), F(ps, uls), ,v(S))q ds

r
E ./
t

+{(Vop (P, s), F(ph,u'(s), y'(s)) — F(ps, u(s), y(s)))l1ds

r
< /
t

+ 1l Vo0 (Pl s) lull F(pL,u'(s), y'(s)) — F(ps, ul(s), y(s)) l}ds — 0
(4.18)

09

r + (V0 (L, 8) = Vo (ps, $), F(ps, uls), ()]

: 0
(p.lv's) - 8—?(%'5)

09 a¢
—(p;, ) — E(ps,S)

Y + || Vo (Pl s) — Voo (ps. ) Il Fps. u(s), y(s)) |




PARTIALLY OBSERVED DIFFERENTIAL GAMES 1355

as i — 0. Here, || - || denotes the norm on X as in §2 and ||
dual space A'*. We treat each term as follows.

Given ¢ > 0, the compactness of [z, 7], the assumed continuity of the partial derivatives,
and the uniform convergence (3.8) imply that for ; sufficiently large,

- |l+ indicates the norm on the

sup | V@ (05, s) = V,b(p,. 5) |l < e.

1<s<r
- 2 51— 22 o) <
- G 5) — — e £.
,2?2, ar P> gr Pod f =
This also implies
(4.20) sup | V@ (pi.s) |l.< K.
t<s<r

Next, because of (3.8) and the assumed bounds on the problem data, we have

(4.21) sup || F(ps, u(s). y(s)) < K.

1<s<r

Finally, it is not hard to verify the estimate

f | F Pl a (5). ¥(9) = Flpyuis), vion | ds

1<s<r

(4.22) <K sup |l py = ps |y +K (1 + sup || p! 1)1>

r<s<r

f (' () = u()| + v (s) = ¥()|]ds

Therefore using (4.19), (4.20), (4.21), (4.22) in (4.18). we have

(4.18) < Te+TKse + K/ (' (5) ~ ()| + v (5) — yi)llds < Ke
t

for all i sufficiently large, for a suitable constant K > 0 not depending on ;.
the proot. a

DEFINITION 4.6. A function W : DN X x (0. T
DPE (4.13) if

(i) wech
(i) W satisfies (4.13) in DN X' x (0, T)in the usual sense.

In general, it is too much to expect that the DPE will h
must appeal to a weaker notion of solution. To this end. we
W is a viscosity solution of (4.13) in a suitable sense. The definition we provide below is
consistent with our definition of smooth solution and is a generalization of it.” We do not
know a proof of uniqueness, and it may be the case that the definition has to be modified to
achieve this. Consequently, Definition 4.7 is a provisional-one. An abstract formulation of the
viscosity solution definition is given in {13]. It is not clear at present how our definition relates
to those appearing in (7], [17], [27]; indeed, the PDE (4.13) does not appear to be covered by
existing theory.

DEFINITION 4.7 (provisional viscosity solution). We say rhar a function W € C(DN X x
[0, T1) is a viscosity subsolution of the DPE (4.13) if for all ¢ € C, whenever
there exists (p'.t') € DN X' x (0, T) with W't —op. 1) = MAX (. eDAA0.7]
(W(p.t) ~¢(p, 1)) =0, then
(4.23) ?—(b(pﬁ )+ inf sup (Voo (p' 1), F(p' i, v)) > 0:

ot U verr

ue

This completes

— Riis called a smooth solution of the

ave smooth solutions, and so one
will show that the value function
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a viscosity supersolution of the DPE (4.13) if for all ¢ € C, whenever there exists (p'.1') €
DNX x (0, T) with W(p'.t") — ¢(p'. ') = ming, nepnxxpri(W(p, 1) —¢(p. 1)) =0,
then

(4.24) —¢(P ) + mf sup (V,¢(p', 1), F(p',u. y)) <0

yeRP

and a viscosity solution if it is both a subsolution and a supersolution.

The proof that W is a viscosity solution of (4.13) requires the following result (cf. [11
Lem. 4.3)).

LEMMA 4.8. Ler ¢ € C. Assume that ¢ satisfies

425) ¢<p £) + inf sup (V,0(p'. ). F(p ) < =

uel veERP

where® > 0. p' e DN X', ¢ € [0, T). Then there exists 8 > 0, u € U(t") such that for all
8 < dp, y€VI)

t'+8 B
(4.26) / [a—(f(ps,S) + (Vpp(ps, 5), Fps, ulyl(s), y(ﬂ))} ds < —386/2.
Similarly, if ¢ satisfies

09

(4.27) —~(p 1)+ mt sup(V,@(p'. 1), F(p'u. ) 20
yERP

where @ > 0, p e DN X!, t' € [0, T], then there exists 5, > 0, y € Y(1') such that for all
§ <8, uelU()

t'+4 P
4.28) / [g(p:. $)+{V,0(ps,5), Fps, ulyl(s). y(S)))} ds = 86/2.

Proof. Write
99
Alp.tou,y) = E(P, 1)+ (Vpd(p, 1), F(p.u, y)).

Sincep € C.A:DNAX!' x [0, T] x U x R?.— Ris continuous. In fact. for | p—p" |l < v,
[t — 1| <v(v>0small), we have the estimate

IA(p. 1 ) =AW YD) = a¢( 1) 8(1)( 1)
Uy Y) — yEL U, S i\pe ) )
@20 | PEH i e TR A T
+K | Vo (p. 1) = Vp(p', t) s +K p = p' Il Hlu —u'[ + 1y = ¥'D.
where K > 0 depends on p’, t', and v.
By (4.25), inf, sup, A(p',t',u,y) < —0. Select up € argmin, sup, A(p', tYou,y),
which does not depend on y because the Isaacs condition holds. Therefore

A(p'.t' ug, y) < —6 forally € R?.

Define u € U(t') by u(y] = ug. Let y € V(). Asin (3.9), Lemma 3.2, the map s — p;
from [¢/, T]into DN A" is continuous, with modulus of continuity independent of «, y. Thus
there exists 8o > O such that if § < §g and ¢t <5 <" +§, then

A(ps» s, u[}’](S)v )’(5)) S —9/2

Integrating from ¢’ to ¢ + § gives (4.26).
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To prove (4.28), we note that (4.27) implies the existence of y € R” (independent of )
such that
Ap' .t u yo) =86 foralluel.
Define y € Y(t') by y = yq, and letu € U(r). Then by continuity, with§ < &, (some §; > 0),
t' <5 <t +§implies
A(ps. s, ulyl(s), y(s)) = 6/2.

Integrating from ¢’ to t' + & gives (4.28). a

THEOREM 4.9. The value function W(p,t) defined by (4.1) is a continuous viscosity
solution of the DPE (4.13).

Proof. To show that W (p, ¢) is a viscosity subsolution, assume thereexistg € C,(p',t)) €
DXl x (0, T) with W(p',t") — ¢(p', ') = maxpnepnaxo.r{W(p, 1) — ¢(p, 1)) = 0.
We must show that ¢ satisfies (4.23). If not, then there exists § > 0 such that (4.25) holds.
By Lemma 4.8, (4.26) holds, which implies

(4.30) inf ,\,55‘(’,«) [ftl N B—(f(ps, $) + (Vo (ps. 5). Fps, uly](s), y(S)))} dS] <—386/2.
Now

W(p'. t)=¢(p'.t) and W(p.1) <é(p,1);
hence the dynamic programming principle (4.9) with r = ¢/, 7 = t' + § implies

0< inf sup {@p(prss t' +8) —d(p 1))
uEU(I’)yEy(r/)

Since ¢ € C, Lemma 4.5 and this inequality imply
t'+4 a¢
(431) 0< inf sup f {—(ps, 5) + (Vb (ps, 5), Fps, ulyl(s), y(S))):i ds .
uEU(t’)>,€y(,/) v at

But (4.31) contradicts (4.30), hence (4.23) is valid. Therefore W(p. 1) is a viscosity subsolution
of (4.13).
Now suppose there exists ¢ € C, (p'.t") e DN X' x (0, T) with

Wp i)y —¢(p,t) = (pvt)eg}jigx[m(W(p, N —¢(p, 1)) =0.

If (4.24) does not hold, then there exists § > 0 such that (4.27) holds. Then by Lemma 4.8,
(4.28) holds, implying

(4.32) uei{}(fr/)yz;?,/) {/; 5 [%?(ps,s)ﬂL (Voo (ps.5), F(ps,U[y](S)‘y('S))% ds]259/2-
Now ‘

W' ) =¢(p,t) and W(p.1) = é(p,1),
and by dynamic programming,

0> inf sup {@(prss.t’ +8) =0 (P 1)}
uelUle) vy

This implies
U+5 8¢
(4.33) 0> inf sup / {——(ps.s)Jr(Vp(t(ps,S),F(ps,u[y](S),y(S))q ds g,
ucU(") yey() v ot

contradicting (4.32). Therefore W(p, 1) isa viscosity supersolution of (4.13). d
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5. Verification theorem. The main reason for defining value functions and using dy-
namic programming is to determine optimal controls. Typically, some type of smoothness is
required. The following theorem says essentially that if both (3.3) and (4.13) have smooth
solutions, then the optimal control is obtained by finding the control value u”(p, r) that attains
the minimum in (4.13) as

(5.1 uyj(t) = u*(plyl. 1.

This control is an information state feedback controller and depends on the output y via the
information state. This is a type of separation principle for this partially observed differential
game,

THEOREM 5.1. Assume that there exists a smooth solution W of the DPE (4.13). If there
existu* € U(s), y* € V(1) such thar

(5.2) W(s) € argmin{(V, W(p;, 5). ~V.p, - f(-.u) + L(- 1)),
uel/
(5.3) YH($) € argmax{{V, W (py. ), =V, p, - g(-, y — h) — vy — h)))
yeRe

forae.s € (t, T], thenu* is optimal for the initial data (p.t)y e DNX' x|0. T}and W(p. 1) =
W(p,t), where (p,t) e DN X', [n particular, for (p.t) = (2. 0) € DN X' « (0. T the
control u* solves the parnally observed minimax differential game.

Proof. Since p,(x) and W(p, 1) are smooth solutions (t < r < T, p, = p e DN xh,
Lemma 4.5 implies

. . oW .
G W(p,r)y=W(p,.1) +/ ljw(p:,s) +{V, W(p,.s), F(ps,u(s).y(S)»J ds.

Fix y* € Y(¢) as in (5.3). Then for any u € U(z), we have, using the DPE (4.13) and
5.4y withr =T,

. Tlaw .
Wip. 1) = —/ [E—(ps.s) +{(V,W(p,. s, Flps, u[y*](s). _v*(s)))J ds + (pr. )

IA

(pr. D),

with equality for u = u* as in (5.2). Therefore W(p.1) < Wip,1).
Conversely, letu = u* and ¢ > Q. Then there exists v € V(r) such that

Wip, 1) < (pr.P) + c.
Using (5.4) and r = T, this gives

- Tlaw N
Wip.t) < W(p, f)+/ [W(p,y,s)prW(pS.S),F(p.;.u*(s)_\'(sm ds +¢
I3

IA

- Tlow . )
W(p, f)+/ W(ps.S)wL(VpW(pS.S)VF(p;,u (). ¥(s)) | ds +¢
t

< W(p. 1) +e.
Hence W(p,1) < W(p. ). )
We conclude that Wp,t) = W(p. 1), and in fact

W(@.0) = J(u*) = inf J(u),
ueU(0)

proving the optimality of u*. 0
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6. Relation to certainty equivalence. In this section we explain how the certainty equiv-
alence principle [5], [9], [6] fits into the general framework developed in this paper. This issue
was treated in discrete-time in [24], [21] and in the case of continuous-time bilinear systems
in [32], [33]; see also [6]. The certainty equivalence principle is as follows.

Consider a state feedback differential game with value function V(x, ¢) satisfying the
DPE

Vv
7 4 inf sup (Vi V - (f(x,u) + g(x, w)) — y2€(w) + L(x,u)} = 0in R x (0, T),
dt ucl eRe

Vx,T)=®(x) inR"
(6.1)
Equation (6.1) is a nonlinear first-order PDE and need not possess smooth solutions; thus (6.1)
must also be interpreted in the viscosity sense in general. The value function V (x, ) is the
unique viscosity solution of (6.1) and is bounded Lipschitz continuous. Let uw®(x, 1) denote
the optimal state feedback control (if it exists), i.e., the control value attaining the minimum
in (6.1). The minimum stress estimate is defined by

(6.2) %(t) € argmax(p,(x) + V{(x.1)).

xeRn

In [9] it is proven (for a closely related problem) that the cerzainty equivalence controller
(6.3) w(e) = uw (x (), 1)

is optimal provided (i) p(x) is a smooth solution of (3.3), (i) V(x, t) is a smooth solution of
(6.1), and, most significantly, (iii) x(¢) is unique.
The following theorem provides a new interpretation of the certainty equivalence con-
troller (see also [6], [21], [241, [32], [33]).
THEOREM 6.1. Fixa point (p',1") € DN X' x (0. T). and assume that
(i) V(x.t) = V,(x) is a smooth solution of (6.1);
(11) the quantity

(6.4) a(ph) = argmax(p'(x) + Va(x))

xeR?

is unique (i.e., the maximum is attained at a unique point).
Then the function W € C(D N A x [0, T)) defined by

(6.5) Wip.t)y=(p. V)

(sup-pairing) is X-Gateaux differentiable at (p', ') and satisfies the DPE (4.13) at (pt.th.
Further, the optimal control at the point (p'. el is given by

(6.6) wi(ph) = w (Ea(ph). 1)) = u (),
Proof. 1. We claim first that the Gateaux derivative 3,W(p', t')is given by
(6.7) 3, W(p' th = Ez (o1
where E, € X* is the evaluation rﬁap
(6.8) (Ee.q) = q(x), (q € X).

For brevity, write X = I (ph, o(p) = (p, V), Vix) = V,i(x),and letq € X, ¢ > 0.
Since p! € DNX, ¢(p' + &q) is finite for all £ sufficiently small, and ¢(p' +eq) — f(p").
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x* — x as ¢ — 0 by hypothesis (iii), where ¢ € argmaxxeRn(pl(x) +eg(x) + Vi(x)). We
must show that

1 » 1
(6.9) lirr(l)d)(p +€ci) ¢(p*)

= g{x).
Now
(p' +e9) —d(p") = p'(E) +£q(X) + V(X) — (p () + V(X)) = eq(®),

and hence

1 . 1
lim inf ¢(p +eq)—@(p’) > 4(®),
e—0 £
Simitarly,
d(p' +eq) —p(p") < p'(F°) +£q(F°) + V(E®) — (p' (%) + V(%)) = eq(x).

and hence

i P(p' +eq) —d(p")
im sup .
e—0

< g(x).

These two inequalities prove (6.9), establishing the claim.

2. It follows from Danskin’s theorem (see [5, App.]) that
aW( Ly = e
— = —(X, 1),
(6.10) ot

VV(x th = -V, pl(x).
The gradient V, p! is well defined since p! € X!,

3. Next substitute the derivatives calculated above into the left-hand side of DPE (4.13)
to yield

oW 1 .
f(p t') + inf sup (3, Wp'.th, F(p'u, v)

uel veR?
8 ]
= ——(r ¢ )+1nf sup (Ez, —=Vep'-(f (- u)+g¢.y =h)+L( u) =y e(h—y))
veR?
(6'11) 1n(§ sup [V, V(& 1Y) - (f(X, u) + g(F, w) -y E(w)+L(v )]
uel yeRr
+inf sup [V, V(E ) - (f(E )+ g(F. v = W) = y2e(y = h) + L(F, )]
u veR?

=0

This proves that W satisfies the DPE at (p', thH.

4. Finally, the above calculation yields explicitly the formula (6.6). ad

Remark 6.2. If the minimum stress estimate (6.4) is not unique, i.e. contains more than
one point, then in general the function W(p. t) defined by (6.5) is not a solution of (4.13). To
see this, we know from Lemma 4.2 that ¥ = %, (p') is compact. The proof of Theorem 6.1
shows that

(6.12) W't > max E,.

XE)?,] (ph)
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Hence in place of (6.11), Theorem 6.1, we have (for x € X)

aW 1 { : 1 1 1 1
5 Pt )+ Inf sup (3, W(p~.17), F(p'.u, )

ue veR?

v

3V s
T t'y + inf supsup(E., =Vip' - (f(,u) + 8,y —h) + L(-,u) — y*e(h — y))

UEU yeRP xex

= —inf sup [V, V(x.1") (f(x.0) + g(x, w)) — y*€(w) + Lx, w)]

uel yeRre

+1inf supsup [VXV(x, Y- (flx,u)+gx,y—h) — yze(y —h)+ L(x, u)]

4eU yeRr xex

> —inf sup [V Vir. ') (flx.u) + g(x ) — y20(w) + Lix, )]

uel yeRe
+supinf sup [V Ve, 1Y (flx.u) + glx, vy — 1) — y*2(y — h) + L(x, )]
xei#€l yeRre
> Q.
(6.13)
This inequality can be strict in general. This calculation suggests that W (p, 1) is a subsolution
of (4.13), but not in general a solution, and consequently

(6.14) W(p.t) = W(p.1).

7. H. control. As an application of the above results, we consider a relatively simple
nonlinear H., control problem, viz. finite-horizon disturbance attenuation. Some comments
on the infinite-horizon problem will be made in §8.2. We follow closely the approach initiated
in [4], [23]. We emphasize that we provide both necessary and sufficient conditions in terms
of two PDEs—one defined on a finite-dimensional space R", the other defined on an infinite-
dimensional space D N X.

Associated with the system (2.1) is the performance output z (not measured) given by

(7.1) 2(t) = 1(x (1), u(t)).

To maintain consistency with earlier notation, we set L(x, u) = %ll(x, u)|> and ® = 0. We
assume that zero is an equilibrium; that is, £(0,0) = 0, g(0,0) =0, 2(0) =0, (0, 0) = 0.

Given y > 0 and a fixed time interval [0, T'], the disturbance attenuation H,, problem is
to find an output feedback control u € U(0) such that the resulting closed loop system Z" is
finite gain [0, T], i.e.,

T 2 T
(72) {é/o P dr < VT/O Ew(n) di + Blxy) forall w € W(O),

for some function B(x) >0, (0) =0,-B e DN AX.
Clearly. =¥ is finite gain on [0. T] if and only if

(7.3) Ju) <0 for pp =a = —5.

THEOREM 7.1. [f there exists a solution of the finite-time H., problem, then there exist
solutions of the PDEs (3.3) and (4.13) such that py = —f and W(—8,0) = 0 for some
Blx) > 0 with B(0) = 0. Conversely, if there exist smooth solutions of the PDEs (3.3) and
(4.13) such that py = —B and W(—8,0) = 0, for some B(x) = O with S(0) = 0, then the
controller u* defined by (5.1), (5.2) solves the finite-time Hy, problem.

Proof. 1. Assume that a control u’ € U(0) solves the finite-time H, problem, and set
po = —BY. Then

J(u’) <0,
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and in fact
0=(=8",0) < W(=8*,0) <0,

as in Lemma 4.1. Thus W(—8*,0) = 0. Solutions to the PDEs (3.3) and (4.13) exist
according to the resuits in earlier sections in the viscosity sense.

2. Conversely, if (3.3) and (4.13) have smooth solutions, then the verification Theorem
5.1 implies that the control u* given by (5.1), (5.2) is optimal. Therefore, with py = —8,

JW") = W(-8,0) =0,
which implies that =% is finite gain on [0, T]. a
8. Remarks.

8.1. General partially observed differential games. We expect that the results devel-
oped in this paper will extend to much more general situations. However, additional technical
difficulties arise. For instance, suppose (2.1) is replaced by

x(t)
y(t)

@), u@®) + g(x @), w(r)),

8.1)
A(x () + v(D),

I

where v(-) is a second independent and unknown disturbance input. In this case, the function
F(p, u, y) governing the information state dynamics is nonlinear:

(82)  Flp.u,y)=sup{=Vip- (f(,u) +g(-.w)) + L(-, u) — v e(w., v — h)}.

A consequence of this is that (3.3) does not in general have smooth solutions (even if « is
smooth). This complicates substantially the proof that the value function Wi(p.1)isaviscosity
solution of the corresponding HJI equation (4.13).

8.2. Infinite-horizon H control. The theory of dissipative systems [18], [36] provides
a powerful framework for treating infinite-horizon Hy, problems, and many of the articles listed
in the reference section make use of this theory. In the state feedback case, one is led to a
partial differential inequality (PDI); see, e.g.. [2], [18], [20], [34], [36]. In particular, it is
shown in [2] and [20] that the PDI can be interpreted in the viscosity sense.

In the discrete-time case, the infinite-horizon output feedback H,, problem was discussed
in (23], and an infinite-dimensional dissipation inequality was used. The continuous-time
analogue of this inequality is an infinite-dimensional PDI, closely related to the steady-state
version of (4.13). The PDI is

inf sup(V,W, F(p,u,y)) < 0inDn X',

uel/ yeRP
(8.3) Wip)= (p,O)in DN X,
W(=B) = 0.

A theory of infinite-horizon H,, control can be developed using this type of equation: see
[16]. It is possible to prove the existence of a function W (p) satistying (8.3) in the viscosity
sense (i.e., as a viscosity supersolution), using a stationary version of the definition given in
84. An explicit storage function for the closed-loop system is defined in [15].
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