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Abstract 

Optimal risk sensitive feedback controllers are now available for very general stochastic nonlinear plants and performance 
indices. They consist of nonlinear static feedback of so called information states from an information state filter. In general, 
these filters are linear, but infinite dimensional, and the information state feedback gains are derived from (doubly) infinite 
dimensional dynamic programming. The challenge is to achieve optimal finite dimensional controllers using finite dimensional 
calculations for practical implementation. 

This paper derives risk sensitive optimality results for finite-dimensional controllers. The controllers can be conveniently 
derived for 'linearized' (approximate) models (applied to nonlinear stochastic systems). Performance indices for which the 
controllers are optimal for the nonlinear plants are revealed. That is, inverse risk-sensitive optimal control results for nonlinear 
stochastic systems with finite dimensional linear controllers are generated. It is instructive to see from these results that as the 
nonlinear plants approach linearity, the risk sensitive finite dimensional controllers designed using linearized plant models 
and risk sensitive indices with quadratic cost kernels, are optimal for a risk sensitive cost index which approaches one with 
a quadratic cost kernel. Also even far from plant linearity, as the linearized model noise variance becomes suitably large, 
the index optimized is dominated by terms which can have an interesting and practical interpretation. 

Limiting versions of the results as the noise variances approach zero apply in a purely deterministic nonlinear Ho~ setting. 
Risk neutral and continuous-time results are summarized. 

More general indices than risk sensitive indices are introduced with the view to giving useful inverse optimal control 
results in non-Gaussian noise environments. 

Keywords: Nonlinear control; Optimal controllers; Risk-sensitive control; Information state filters; Finite-dimensional 
controllers 

1. Introduction 

Optimal open loop control o f  nonlinear plants goes 
back many decades, and for this length o f  t ime there 
has been the challenge to develop a feedback opti- 
mal control theory so as to exploit  the robustness o f  
feedback for nonlinear control in an optimal setting. 
Such results have been achieved for very general non- 
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linear plants and indices in a stochastic setting, see 
[10]. The catch is that the controllers are infinite di- 
mensional and require infinite dimensional calcula- 
tions for both design and implementation. Also, not 
many engineers are comfortable working in a stochas- 
tic setting for nonlinear signal models. The controllers 
actually consist of  a linear infinite-dimensional infor- 
mation state filter and static nonlinear feedback o f  the 
information states. The latter is derived by an off-line 
(doubly)  infinite dimensional dynamic programming 
equation. 

0167-6911/95/$09.50 t~ 1995 Elsevier Science B.V. All rights reserved 
SSDI 0167-691 1(95)00025-9 



224 J.R Moore. J.S. Baras/Systems & Control Letters 26 (1995) 223-230 

A follow on result in [12] develops risk sensitive 
generalizations of the earlier risk neutral theory so 
as to tune robustness with a so-called risk sensitive 
parameter, and moreover in this setting, achieves 
limiting results as the noise variances become zero 
which give optimal nonlinear feedback controllers for 
deterministic nonlinear plants. The small noise limit 
optimizing algorithms are differential games which 
allow tuning for robustness, and indeed can be 
interpreted as optimal in a worst case deterministic 
noise setting. They yield a natural nonlinear gener- 
alization of the so-called H~  controllers. Follow-on 
direct deterministic derivations of the latter are given 
in [1 1]. Earlier direct directions of H a  controllers 
are given in [2, 5, 14, 16-18]. Again however, the 
controllers are infinite dimensional in general, For 
background reading see books [9, 19]. 

In order to achieve finite-dimensional optimal con- 
trollers exploiting the power of the recent theory, first 
efforts imposed certain restrictions on the plant. In 
[1, 7], the plant is assumed to be linear in the states, 
but not the controls, and the index kernel is assumed 
to be quadratic in the states but not in the controls. 
This results in a finite dimensional information state 
filter, but the static information state feedback control 
law is calculated off line by (singly not doubly) infi- 
nite dimensional dynamic programming equations. Of 
course, if the plant is additionally linear in the con- 
trois, and the index kernel is additionally quadratic 
in the controls, then this theory leads to known 
linear quadratic (risk sensitive) controllers [8, 20]. 
These controllers are of course linear and have the 
same dimension as the plant. 

More recently, finite dimensional information fil- 
ters for the continuous-time, risk sensitive, stochastic 
control setting have been achieved for a special class 
of nonlinear plants and indices, see [6]. Small noise 
limits for this setting are studied in [7]. The key idea 
is that the special nonlinearities in the plant must be 
absorbed in some way in the cost index. It is our obser- 
vation that the absorption is not as general as it might 
be, perhaps because the authors limited themselves by 
the objective of generalizing the Bene~ continuous- 
time filter results to this setting. Actually, the Bene~ 
filter is equivalent, to within a coordinate basis, the 
Kalman filter as pointed out in [3]. 

In this paper, motivated by computer implementa- 
tion requirements, we first generate discrete-time, op- 
timal risk sensitive control results achieving (linear) 
finite dimensional information filters and (nonlinear 
static) information state feedback via (singly) infi- 

nite dimensional dynamic programming). The theo- 
rems do not restrict the plant nonlinearity but rather 
include terms in the performance index to compensate 
for these nonlinearities. The controller turns out to be 
identical to that derived for a model linearized with 
respect to the states, and a risk sensitive index with a 
kernel quadratic in the states. We go on to study even 
more restricted indices to achieve linear information 
state feedback and consequently linear, finite dimen- 
sional, controllers. Here the controller is identical to 
that derived for a model linearized with respect to both 
the states and the control inputs, and a risk sensitive 
index with a kernel quadratic in both the states and 
the controls. Since we give indices for which prac- 
tical controllers are optimal for nonlinear plants, the 
results constitute so-called inverse (risk sensitive) op- 
timal control theory. 

Another motivation in our work is to demonstrate 
rigorously that linear finite-dimensional controllers 
can be optimal for nonlinear, but 'nearly' linear plants 
and a reasonable class of risk sensitive indices. Also, 
for nonlinear plants that can only be approximated 
reasonably by models linear in the states, appropriate 
optimal controllers can be designed which have fi- 
nite dimensional linear dynamics, but requiring static 
nonlinear information state feedback designed from 
off-line infinite-dimensional dynamic programming 
calculations (or finite dimensional approximations to 
these). 

Two sets of additional results are derived of more 
general interest. The first set concerns nonlinear plants 
driven by non-Gaussian noise. We show that finite 
dimensional controllers, as discussed above, can be 
achieved by working with more general risk sensitive 
indices than those involving simply the product of ex- 
ponentials of costs at each time instant. Other func- 
tions can replace the exponentials to advantage. 

The second set of additional results concerns the 
common practice in design to achieve robustness 
to unmodelled dynamics. One assumes more noise 
variance and initial state uncertainty variance than is 
really there in a plant. In particular, we show in the 
most general nonlinear design case, what is well 
known in the linear quadratic Gaussian case, namely 
that the cost index actually optimized in the design 
is a reasonable upper bound for the cost index in the 
absence of uncertainty. 

Continuous-time versions of some of our results are 
stated without derivations, since these parallel closely 
the discrete-time case. Likewise risk neutral, and de- 
terministic small noise limit versions of some of the 
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results are only summarized without fleshing out all 
details, since these do not require additional insights. 

In Section 2 we set up the risk sensitive control 
problem to lead into the new results for finite dimen- 
sional optimal controllers in Section 3. Conclusions 
are drawn in Section 4. 

As stated earlier, a typical selection would be with 

Ok >>,Qk, kk >~Rk, f'o>>,Po (5) 

for all k. Also, for the limiting results as the noise vari- 
ances approach zero, we require the following condi- 
tions on the nonlinearities. 

2. The risk sensitive control problem 

2.1. The plant model 

Consider the state space stochastic nonlinear model 

Xk+l = A(Uk)Xk + a(uk,Xk) + B(uk)uk + wk, 
(1) 

Yk+l = Cxk + c(xk) + vk, 

on k = 0, 1,2 . . . .  ,M with states Xk an n-vector and 
Yk an m-vector. The noise terms w and v are assumed 
i.i.d, with distributions ~b(.) and if(-), respectively, 
and perhaps control and state dependent. The matrix 
functions A(.), B(.), C(.) may be time varying but here 
we suppress a k subscript for notational simplicity. 

A linearized approximation to the above model is 
assumed to be ( 1 ) with the nonlinear terms a(. , .)  and 
c(.) set to zero, namely the system 

xk+] = A(uk)xk + B(uk)uk + wk, 
(2) 

yk+l = C(uk)xk + fk, 

with initial state Y0. Here ff and ~ are not necessar- 
ily assumed to be identical to w, v, but are assumed 
to be i.i.d, with densities q~ and ~, respectively. Typi- 
cally, the covariances of  the densities are chosen to 
be 'greater' than for the original model to compensate 
for neglecting the nonlinearites a(., .), c(.) in the lin- 
earization process. Of  course, the linearization giving 
rise to (2) is only with respect to the states xk, and a 
further linearization with respect to the controls leads 
to a linear model, denoted as 

xk+l = Akxk + Bkuk + ff~k, 

Yk+l = Ckxk + Vk. (3) 

For the first new results of  the paper, so as to keep 
fully within the standard risk sensitive optimal control 
framework, we require Gaussian noise and initial state 
uncertainty, as 

wk ~ y [ 0 ,  Qk(xk, uk)], 

vk "~ ~P[O,R(xk, uk)], xo "~ JV'[0,Po], 

wk ~ ~/V'[0, Oh], (4) 

~k ~ X[0,kk],  x~ ~ ~[0,P0] .  

The nonlinearities a(. , .)  and c(.) are uniformly 

continuous in x and bounded by an affine func- 

tion o f  the norm o f  x. (6) 

2.2. Cost functions 

The risk sensitive cost function for admissible con- 
trols in the set U0,M is 

, 

where 0 = /~/e is a risk sensitive adjustment para- 
meter. Here e is a parameter which goes to zero in a 
small noise limit case, discussed later. For each e cho- 
sen, /~ must be selected suitably small for the index 
and associated information state filters to exist. In the 
limit as # goes to zero (for fixed e), then the exponen- 
tial operation becomes linear and, the so-called, risk 
neutral control is achieved. 

The control problem is to find u* in U0,~t such that 

J ( u * ) =  inf J(u) .  (8) 
uC Uo.M 

Here L is scalar and is nonnegative, and for the small 
noise limit results of  this paper, is constrained as 

The kernel L(.,.) is uniformly continuous and 

bounded by a quadratic in the norms o f  x and u. 

(9) 

Our aim is to restrict the class of L(., .)  so as to 
achieve finite dimensional controllers, and then decide 
when the restricted class of  indices has practical value. 

Other cost function formulations than (7) turn out to 
be appropriate to consider in the case ofnon-Gaussian 
noise models, as in (1) when 4)(.) and ¢(.)  are non- 
Gaussian. In this case, indices which incorporate the 
function ~b(.) and ~b(.) can be useful. Thus we intro- 
duce the index 

J ( u )  = E L(xi, ui))f(q~(XM , (10) 

where f ( . )  is a scalar function of its argument. 
Clearly, (10) collapses to (7) when f ( . )  is exp(-). 
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2.3. A measure change 

For the model (1) defined on ( f 2 , ~ , P )  with f#k = 
a(xt, yl; O<~l<<.k) and ~k = a(yt, O<~l<~k), con- 
sider the measure change from P to P as 

6-~p ~k I-I ~° (y i+l -Cx i -c (x i ) )  Ao. k := = (11) 
i=0 4~(Yi+l ) 

This yields Yk i.i.d under/5 as in [9]. 

2.4. Information state and adjoint process 

Consider an information state associated with the 
model (1) and measure change (11) as qklk(X ) satis- 
fying the defining equation for all b : ~n ~ ~ Borel 
test functions 

where/~ is the expectation under/5. As shown in [12], 
the information state satisfies the linear integral equa- 
tion 

gk+llk+t(x) = 4(Yk+l) 4(Yk+l -- C~ -- C(~)) 

× tp (x - A(uk)¢ - B(uk)Uk -- a(~, Uk 1) 

×exp(~L(¢,uk))q,l , (¢)d~. (13) 

In shorthand (linear operator) notation 

qk+l Ik+l = ff,(Uk, Yk+l )qklk. (14) 

An adjoint process is defined from a backwards 
recursion 

ilk--1 Ik-1 ~- ~ ' (Uk- I ,  Yk )flklk" (15) 

minimization 

S(q ,k )=  inf P~[Iqklk,~ktk){qklk=q]. (16) 
uE Uk,~a_ ~ 

Moreover, S(.,.) satisfies the dynamic programming 
equation 

S(q ,k )=  inf E[S(S(u,  yk+l)q,k + l)] 
uEUk.k 

A key observation for one of the results to follow 
is that the above results of [12] can be generalized for 
coping with the more general cost indices (10) simply 
by replacing exp(-) in the above equations (1 2)-(17) 
by f ( .  ). 

3. Finite dimensional optimal controllers 

3.1. Exploiting linearization with respect to states 

From (12), we see that under the Gaussian assump- 
tions (4), then q010 " N[0,P0] is Gaussian. Moreover, 
qklk is Gaussian for all k if and only if the integrand 
of (13) is Gaussian with exponent quadratic in ~,x. 
That is, 

L(xk,Uk) = (x~kM(uk)xk + U(uk)xk + m(Uk)) (18) 

for some possibly time-varying M(.),N(.)  and m(.) 
of appropriate dimension. It follows that in this case, 
the information filter and adjoint filter are not only 
linear as in the general case, but finite dimensional of 
dimension n, in general. 

The first key contribution of this paper is to ob- 
serve that with appropriate selections of the cost index 
kernal L(~, .), then the plant nonlinearities c(~) and 
a(~, .) can be 'absorbed' by the L(~, .) to achieve a 
finite dimensional (linear) information state filter, and 
information state feedback controller as in the follow- 
ing theorem. 

Theorem 3.1. Consider the discrete-time stochastic 
nonlinear control system (1) and risk sensitive cost 
index 

J(u) 

2.5. Dynamic programming 

As shown in [12], minimization of the risk sen- 
sitive control index is equivalent to the following 

(19) 
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where the cost index kernel is mildly generaizzea to 
include xk + l dependence and restricted as 

/,(Xk+l, Xk, Uk) 

= - yk+, - Cxk - c(xk)ll~ 
12 

+ Ilxk+~ - A(uk)xk - B(uk)uk - a(xk, uk)ll~ 

- [ ] y k + ,  - Cxkll 2 - I lxk+,  - A(uk )xk -- B(Uk )Ukll20 } 

+L(xk, uk ) (20) 

for L(xk,uk ) given in (18), where Illllx := l'Xl. Then 
the linear information state f l ter  (13) and informa- 
tion state feedback controller given from (16) - (17) 
has finite dimensional dynamics. Moreover, they are 
identical (within a scaling factor) to that for the plant 
linearized with respect to x, as in (2), and with the 
cost term (7) under (18). 

Proof. That the information states of the two control 
problems are identical (within a scaling factor) follows 
since (13) under (20) is 

1 n qk+llk+l(X) -- W(y;+,,kjf . w ( Y k + l  - -  C(Uk)~,R) 

× w  (x - A(uk)~ - B(uk)u~, Q) 

xexp{ ~(x~M(u)x, + N(u,)x ,  

+ m(uk)) } q/¢l/,(~) d~. 

That this information state is given by finite dimen- 
sional dynamics follows since the exponents in the 
formulation are quadratic in x, ~, see also [1]. [] 

3.2. Robustness properties 

The above theorem is an inverse optimal control 
result in that it gives an index for which a class of 
(desirable) finite-dimensional controllers is optimum 
when applied to a nonlinear stochastic plant. In order 
to proceed with generalizations, specializations, and 
follow-on results, we work with a simplified version 

of (20), namely 

+llwk + a(xk, uk)ll20)} + Z(xk,uk). (21) 

From this equation we see that for near linear plants, 
in which the nonlinearity norms Ila(', ')11, IIc(')ll are 
relatively insignificant, then 

L(-) "-~ L(.). (22) 

Also observe that under (5) and with the nonlinearities 
a(.,.), c(.) = 0, then 

/,(.) >~L(-), J(.)>~J(.). (23) 

Consequently, consider the case of plants linearized 
with respect to the states and driven by Ganssian noise, 
and optimally controlled according to a risk sensitive 
index with nonnegative kernel quadratic in the states, 
but assuming more noise variance and initial state un- 
certainty than is there. Then the finite dimensional 
controller so derived is indeed optimal for an index 
which is an upper bound on the design index. This 
result also holds for more general indices and plants 
as follows. Consider the nonlinear stochastic plant ( 1 ) 
driven by Gaussian noise, but where for design pur- 
poses, the plant noise variances and initial state un- 
certainty is assumed greater than is actually the case 
as in (5). Consider also that the optimal controller for 
the index (7) is applied (being infinite dimensional in 
general). Then a straightforward generalization of the 
above theorem shows that the controller is optimal for 
an index with kernel having a form 

g L(. )=;  {(JJvkH  + jjw, ()rv, + iiw, ll )} 
+L(x, u). (24) 

Again we see that under the conservative design 
philosophy adopted to cope with plant dynamics or 
noise uncertainties of optimizing a plant with in- 
creased noise and initial state covariances, as in (5), 
the index for which the controller is optimal is an 
upper bound for the original performance index used 
in the design. That is, (23) holds in this more general 
case also. 

We can also see clearly now that for suitably large 
R, O, the negative term in the kernels for which the 
designed controllers are optimal, become negligible 
and can be ignored in giving an interpretation of the 
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index for which the desired controllers are optimal. 
The remaining terms can be nonnegative by design 
and represent control, state and noise costs. 

3.3. Linear finite-dimensional controllers 

The off-line dynamic programming equation for 
the index selection of Theorem 3.1 is still infinite- 
dimensional although not doubly so, as when the 
information state has an infinite-dimensional repre- 
sentation. The control law is a nonlinear feedback of 
the information state mean value, see [1] 

S(Z, k) = inf E[S()~k+l()~k,U, Yk+l),k + 1)]Zk = Z] 
uEU~.k 

(25) 

and S(X, T) --= (qr(. ,Z), f lv) .  
However, in the case that A(u),B(u) ,  C(u) ,M(u) ,  

N(u)  are not control dependent and re(u) is quadratic 
in u (that is re(u) = u'mu), then applying the results 
of  [8], the information state mean feedback law is in 
fact a linear one, and calculated using finite dimen- 
sional dynamic programming equations. The resulting 
control law is given by 

rain --(m + B~k+lB)- t  BISk+l.~#k, (26) U k = 

the non-Gaussian densities involving plant nonlinear- 
ities in the same way as exp(L) 'absorbed' exponen- 
tial terms derived from Gaussian densities. As a step 
to see this let us first rewrite (21) as 

exp { ~/~(.)} 
..~[vk, R]JV'[wk, Q] 

..... ~"[vk + c(xk), k]W[wk + a(xk, uk), O] 

× exp {~L(.)}. (28) 

The generalization of this result to the non-Gaussian 
version of the nonlinear plant (1), with 'linear' Gaus- 
sian monel (2) as before, is 

#(vk)C(wk) 
,J4~[vk + c(xk),k]W[wk + a(xk, u~), Q] 

× exp { eP-L(') } • (29) 

Again, further variations on this theme are possible, 
but not explored further here. 

3.5. Risk neutral results 

where /tk and Zk are the mean and variance of  the 
information state respectively, and where 

S k + l  ( S i l l  ~ ~1  I ~ = - ORkR k ) -  , A = A p -  ~, 

~I =Alp  -1 , p = I - OMZk, 

Rk = A I ( k C ' R - I C O ,  0 :- [ (CtRC)- lp-IZk]I /2 ,  

ffk = (S,k I + C ' R - I C  - OM) - I .  

Also, Sk is given by the following backwards 
recursion: 

~ ~ /  ~ ~ !  [ ~ 
Sk = M  + A Sk+l (I + Bm-I  BISk+I - ORkRkSk+l ) -  A 

(27) 

under the condition that (I - 0R'kS,+l/~k ) is positive 
definite for all k. 

3.4. ~on-gaussian noise 

To apply the same concepts as above for plants with 
non-Gaussian noise, it is appropriate to work with the 
class of indices (10), where f ( . )  is able to 'absorb' 

The risk sensitive performance index (7) becomes 
risk neutral in the limit as 0 = #/e approaches zero. 
That is, the exponential term becomes in effect a linear 
term, so the index is simply ~ o  1 L(xi, ui) + ~(xM ). 

Notice that the inverse optimal index (19) under 
(18) is not a risk neutral index as 0 approaches zero. 
To see this in the simplest manner, take limits as 0 ap- 
proaches zero to both sides of  (28), and observe that 
the Gaussian densities remain exponential and do not 
become linear. This observation highlights the impor- 
tance of a risk sensitive optimal control theory even 
to support the more usual risk neutral theory. 

3. <~. Small noise limits 

In risk sensitive optimal control theory as in [12], 
small noise limits of the controllers achieve optimal 
deterministic nonlinear control in the presence of  
'worst case' deterministic noise. These can be viewed 
as nonlinear H ~  controllers. The key is to work with 
noise covariances R < Q of order e in the Gaussian 
case. Here we do likewise, and also for R, Q. Let us 
generalize the notation as R e, Q~, R~, Q'.  
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3. 7. Continuous-time results 

Consider the continuous-time (stochastic) signal 
model on t E 0, T 

dx t  = A(u t ) x t  + a(xt ,  ut)  + dwt, 
(30) 

d Yt = Cxt + c(xt ) + dvt,  

where wt, vt are Wiener processes with covariance ma- 
trices Q(-),R(.), perhaps functions ofxt, ut. The asso- 
ciated risk sensitivity index is 

J ( u ) = E [ e x p { ~ ( f o L ( X t , u t ) d t + ~ ( x r ) ) }  J • 

(31) 

Define an operator 

6 
~¢ = ~i [Ai(u, )xt + ai(x,, ut)] 6x-~i 

+~ i~jOi)(x,) 6z 6xifx; " (32) 

The information state filter is now given from the mod- 
ified Zakai equation, see [13] 

/0' q(x,t) = q0(x) + q(x,r)[Cx + c(x,r)]* R-71 dzr 

+~ot(d*q)(x,r)dr÷-~ fotL(x,r)q(x,r)dr, 

(33) 

where * denotes an adjoint. Again, we see the tech- 
niques exploited in Theorem 3.1 can be applied. That 
is, 'absorb' the nonlinear component of the adjoint op- 
erators of (33) into the cost index kernel L so that it 
becomes (suitably) quadratic. 

4. Conclusions 

The key new results of the paper are inverse op- 
timal control results for nonlinear control. They give 
readily interpreted performance indices for which a 
useful class of  controllers is optimal. Also, insightful 
performance bounds follow as a corollary from these 
main results. The results apply to controllers designed 
for suitably simplified plant models and appropriate 
indices when applied to the actual plant. For simplic- 
ity, we have assumed here models for design of the 
same dimension as the plant equations, and focussed 
on practical finite dimensional controllers designed 

for linearized models and risk sensitive indices with 
quadraticized performance index kernels. 

The key technical approach for achieving the re- 
sults has been to apply information state feedback risk 
sensitive optimal control theory for general nonlinear 
(possibly stochastic) systems to a class of performance 
indices designed to absorb some of the nonlinearities 
in the plant in such a way as to achieve finite dimen- 
sional controllers. The resultant designs are equivalent 
to those achieved by working with models linearized 
with respect to the states and possibly the controls. 

The results are significant because they expand our 
understanding of the role of finite dimensional con- 
trollers for nonlinear optimal feedback control, and 
yet exploit the power of the very general optimal non- 
linear (possibly stochastic) feedback control theory 
available now. In this way they flesh out this pow- 
erful theory and are a further step to make this the- 
ory useful for applications where infinite-dimensional 
controllers are not practical. 
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