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Robust H ,  Output Feedback 
Control for Nonlinear Systems 
Matthew R. James, Member, IEEE, and John S .  Baras, Fellow, IEEE 

Abstract-In this paper we present a new approach to the 
solution of the output feedback robust H ,  control problem. 
We employ the recently developed concept of information state 
for output feedback dynamic games and obtain necessary and 
sufficient conditions for the solution to the robust control prob- 
lem expressed in terms of the information state. The resulting 
controller is an information state feedback controller and is 
intrinsically infinite dimensional. Stability results are obtained 
using the theory of dissipative systems, and indeed, our results 
are expressed in terms of dissipation inequalities. 

I. INTRODUCTION 
HE modem theory of robust (or H,) control for linear T systems originated in the work of Zames [38], which 

employed frequency domain methods (see also [8], [9], and 
[39]). After the publication of this work, there was an explo- 
sion of research activity which led to a rather complete and 
satisfying body of theory; see Doyle et al. [7]. In fact, the 
successful development of this theory is, to a large extent, due 
to the use of time-domain methods. In addition, significant 
advances in the theory depended on ideas from elsewhere; in 
particular, extensive use has been made of results concerning 
dynamic games, Riccati equations, the bounded real lemma 
(e.g., 141, 171, 1241, 1261, [27]), and risk-sensitive stochastic 
optimal control (e.g., [lo], [35]). The solution to the output 
feedback robust H ,  control problem has the structure of an 
observer and a controller and involves filter and control type 
Riccati equations. 

The time-domain formulation of the robust H ,  control 
problem has a natural generalization to nonlinear systems, 
since the H ,  norm inequality ( (CI (H ,  < y has an inter- 
pretation which in no way depends on linearity (of course, 
use of the term “norm” may not be appropriate for nonlinear 
systems). This inequality is related to the L2 gain of the system 
and the bounded real lemma. The robust H ,  control problem 
is to find a stabilizing controller which achieves this H ,  
norm bound and can be viewed as a dynamic game problem, 
with nature acting as a malicious opponent. A general and 
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powerful framework for dealing with L2 gains for nonlinear 
systems is Willems’ theory of dissipative systems [37]. Using 
this framework, one can write down a nonlinear version of the 
bounded real lemma, which is expressed in terms of a dynamic 
programming inequality or a partial differential inequality, 
known as the dissipation inequality (see, e.g., [14]), which 
reduces to a Riccati inequality or equation in the linear context. 
Therefore, it is not surprising that in papers dealing with 
nonlinear robust H ,  control, one sees dissipation inequalities 
and equations and dynamic game formulations (e.g., [2], [3], 
[161, [311-[331). 

An examination of the references cited above reveals that 
the state feedback robust H ,  control problem for nonlinear 
systems is reasonably well understood: one obtains the con- 
troller by solving the dissipation type inequality or equation 
which results from the dynamic game formulation (actually, 
controller synthesis remains a major difficulty for continuous- 
time systems, but the conceptual framework is in place). 
The output feedback case is not nearly so well developed, 
and no general framework for solving it is available in 
the literature. By analogy with the linear case, one expects 
the solution to involve a filter or observer in addition to 
a dissipation inequality/equation for determining the control. 
Several authors have proceeded by postulating a filter structure 
and solving an augmented game problem ([31, [161, [331). 
These results yield sufficient conditions, which are in general 
not necessary conditions; that is, an output feedback problem 
may be solvable, but not necessarily by the means that have 
thus far been suggested. 

In this paper we present a new approach to the solution of 
the output feedback robust H ,  control problem for nonlinear 
systems. Our approach yields conditions which are both neces- 
sary and sufficient. The framework we present incorporates a 
separation principle, which in essence pennits the replacement 
of the original output feedback problem by an equivalent one 
with full information, albeit infinite dimensional. It is this 
aspect which differentiates our results from other results in 
the literature. To express our ideas as simply as possible, we 
consider discrete-time systems, except in Section V where 
continuous-time systems are discussed. The system-theoretic 
ideas we introduce in this paper apply to both discrete- and 
continuous-time systems, with the main difference being the 
level of technical detail (see [20], [29], [18]). 

Our approach to this problem was motivated by ideas 
from stochastic control and large deviations theory. In our 
earlier paper [19], we explored the connection between a 
partially observed risk-sensitive stochastic control problem 
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and a partially observed dynamic game, and we introduced 
the use of an information state for solving such games. The 
information state for this game was obtained as an asymptotic 
limit of the information state for the risk-sensitive stochastic 
control problem. Historically, the information state we employ 
is related to the “past stress” used by Whittle [35] in solving 
the risk-sensitive problem for linear systems (see also [36]) 
and can be thought of as a modified conditional density or 
minimum energy estimator (c.f. [ 131, [25]). The framework 
developed in this paper to solve the output feedback robust 
H ,  control problem involves a dynamic game formulation, 
and the use of the (infinite dimensional) information state 
dynamical system constitutes the above-mentioned separation 
principle. This idea of separation, using, say, the conditional 
density, is well known in stochastic control theory; see Kumar 
and Varaiya [23]. (We thank an anonymous referee for pointing 
out related results in [22].) Our results imply that if the robust 
H ,  control problem is at all solvable by an output feedback 
controller, then it is solvable by an information state feedback 
controller. A different way of approaching output feedback 
games has been proposed by Basar and Bernhard [6], [4], using 
a certainty equivalence principle as in Whittle [35]. When this 
principle is applicable, the resulting controller is a special 
case of the information state controller, and the complexity 
of the solution is reduced considerably (which may be useful 
in practice); see [17]. 

The information state feedback controller we obtain has an 
observerkontroller structure. The “observer” is the dynamical 
system for the information state p k ( z )  

P k  = F(Pk-1 ,  1 L k - I .  yk) 

(the notation is introduced in Section 11). The ‘‘controller” 

uk = E*(Pk) 

is determined by a dissipation inequality 

and the value function W ( p )  solving it is a function of the 
information state. This dynamic programming inequality is an 
infinite dimensional relation defined for an infinite dimensional 
control problem, namely that of controlling the information 
state. Our solution is therefore an infinite dimensional dynamic 
compensator, Fig. 1. In a sense, the solution is “doubly infinite 
dimensional.” Actually, there are three levels of equations and 
spaces involving i) the state of the plant z, ii) the information 
state p (a function of z), and iii) the value function W (a 
function of p ) .  In some cases, the information state turns out 
to be finite dimensional; see [21] and [30]. 

While there is a separation principle, the task of “estimation” 
is not isolated from that of “control.” The information state 
carries observable information that is relevant to the control 
objective and need not necessarily estimate accurately the 
state of the system being controlled. The control objective 
is taken into consideration and so the resulting state estimate 
is suboptimal, but nonetheless more suitable to achieving the 
control objective, relative to an observer designed with the 
exclusive aim of state estimation. Thus the information state 
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Fig. 1 .  

represents the optimal trade-off between estimation and control 
for the robust I€, control problem. 

We begin in Section I1 by formulating the problem to be 
solved. Then in Section I11 we consider the state feedback 
problem; it is hoped that our treatment of this problem will 
clarify certain aspects of our solution to the output feedback 
problem, which is presented in Section IV. Note, however, 
that the solution to the state feedback problem is not used to 
solve the output feedback problem. Our results are obtained 
in a rather general context, and as a consequence the use 
of extended-real valued functions is necessary. We remark 
that while the key ideas for our solution were obtained 
from stochastic control theory, this paper makes no explicit 
use of that theory and is in fact self-contained and purely 
deterministic. 

11. PROBLEM FORMULATION 

We consider discrete-time nonlinear systems (plants) C 
described by the state-space equations of the general form 

z k + l  = b ( z k ,  216, wk), 
Z k + l  = l ( z k ,  Uk, wk), (2.1) 
yk+ l  = h ( Z k ,  Uk, Wk). 

Here, xk E R” denotes the state of the system and is not 
in general directly measurable; instead an output quantity 
Y k  E Rp is observed. The additional output quantity zk E Rq 
is a performance measure, depending on the particular problem 
at hand. The control input is U k  E U c R”, and W k  E R’ is 
a disturbance input. For instance, ’w could be due to modeling 
errors, sensor noise, etc. The system behavior is determined by 
the functions b ; R” x R” x R‘ + R”, 1 ; R” x R” x R’ + 

Rq, h : R“ x R” x R‘ + Rp. It is assumed that the origin is an 
equilibrium for system (2.1): b(0,  0, 0) = 0, l (0 ,  0, 0) = 0, 
and h(0. 0. 0) = 0. 

The output feedback robust H ,  control problem is: given 
y > 0, find a controller U = u ( y ( . ) ) ,  responsive only to the 
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observed output 9, such that the resulting closed-loop system 
C" achieves the following two goals: 

i) C" is asymptotically stable when no disturbances are 
present, and 

ii) E" is finite gain, i.e., for each initial condition xo E R" 
the input-output map relating w to 2 is finite 
gain, which means that there exists a finite quantity 
p"(z0) 2 0 such that 

for all w E 1 2 ( [ 0 ,  k - I]. R') and all k 2 0. 

Since xo = 0 is an equilibrium, we also require that 
P"(0)  = 0. 

Of course, /3 will also depend on y. 
Note that we have specified the robust control problem 

in terms of the family of initialized input-output maps 
{ } T o  &", whereas the conventional problem statement 
for linear systems refers only to the single map E;. This is 
often expressed in terms of the H ,  norm of C; 

For linear systems, the linear structure means that the solv- 
ability of the robust control problem is equivalent to the 
solvability of a pair of Riccati difference equations (and 
a coupling condition), under certain assumptions, and so 
implicitly all the maps Ego are considered. For nonlinear 
systems, our formulation seems natural and appropriate (see 
[14], [34]), since otherwise if we were to follow the linear 
systems formulation, one would need assumptions relating 
nonzero initial states x0 to the equilibrium state zero (such 
as reachability). The formulation adopted here has also been 
used recently by van der Schaft [33]. A solution U = U* to 
this problem yields 

IlGllH, I Y (2.4) 

as is the case for linear systems. It is also apparent that in place 
of the 12 norm used in the definition of the finite gain property, 
one could substitute any other 1, norm [34], or indeed, any 
other suitable function, and the corresponding theory would 
develop analogously. 

111. T H E  STATE F E E D B A C K  C A S E  

In this section we consider the special case where complete 
state information is available, i.e., where h(x, U ,  w )  5 z. 
It is not assumed that the disturbance is measured. For an 
alternative presentation of the state feedback problem, see [2] 
and [4]. 

The system C is now described by 

(3.1) 

where U E S is a state feedback controller, i.e., those 
controllers for which uk = i i ( x k ) ,  where E: R" + U .  The 
state feedback robust H ,  control problem is: given > 0, 

X k + 1  = b ( a ,  Ut. Wk) { zk+l = l ( x k ,  uk. Wk) 

find a feedback controller U E S such that the resulting closed- 
loop system C" is asymptotically stable and finite gain, as in 
Section 11. 

Before attacking the full problem, we consider the finite- 
time problem, where stability is not an issue. 

A. Finite-Time Case 

Let S k , l  denote the set of controllers IL defined on the 
time interval [k, 11 such that for each j E [k, I ]  there exists 
a function iiJ : R(J-~+')"  + U such that U ]  = 7 & ( x l ~ , ~ ) .  
The finite-time state feedback robust H ,  control problem is: 
given y > 0 and a finite-time interval [O. k ] ,  find a feedback 
controller U E  SO,^ such that the resulting closed-loop system 
C" is finite gain, in the sense that (2.2) holds for the fixed 
value of k .  

1 )  Dynamic Game: For U E S 0 , k - l  and SO E R" we define 
the functional Jzo.k(u) for (3.1) by 

Jz0.li(u) = S U P  
111 E l 2  ( [O, k - 11 .R' ) 

(k-l 

Clearly 

Jro,k(.) 2 0 

and the finite gain property of 
of J as follows. 

Lemma 3.1: 
exists a finite quantity @(xo) 2 0 such that 

can be expressed in terms 

is finite gain on [0, k ]  if and only if there 

J r o . , ( ? L )  5 P!3.ro). j E [O. kl (3.3) 

and P t ( 0 )  = 0. 
The state feedback dynamic game is to find a control 

U* E S 0 , k - l  which minimizes each functional J z 0 , k ,  xo E R". 
This will yield a solution to the finite-time state feedback 
robust H ,  control problem. 

2 )  Solution to the Finite-Time State Feedback Robust H ,  
Control Problem: The dynamic game can be solved using 
dynamic programming (see, e.g., [4]). The idea is to use the 
value function 

and corresponding dynamic programming equation 

4 ( x )  = infu€u SUP", R' { V , - l ( b ( X ,  U ,  w)) 
(3.5) +ll(x, U ,  w)12 - Y f Iwl'} { Vo(x) = 0. 

Remark 3.2: Note that we use a value function which 
evolves forward in time, contrary to standard practice. Our 
reason for this choice is that it simplifies transition to the 
infinite-time case. 
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Theorem 3.3 (Necessity): Assume that us E S 0 , k - l  solves 
the finite-time state feedback robust H ,  control problem. 
Then there exists a solution V to the dynamic programming 
equation (3.5) such that V, (0) = 0 and V, (x) 2 0, j E [O, k ] .  

(Sufficiency): Assume there exists a solution V to the 
dynamic programming equation (3.5) such that &(0) = 0 
and V,(x)  2 0, J E [O, k ] .  Let U* E S 0 , k - l  be a policy such 
that U ;  = Til-J(sJ), where E;(x) achieves the minimum in 
(3.5); J = 0 , .  . . , IC - 1. Then U* solves the finite-time state 
feedback robust H ,  control problem. 

Proofi The proof uses standard arguments from dynamic 
0 programming, and we omit the details. 

B. Infinite-Time Case 

We wish to solve the infinite-time problem by passing to the 
limit V ( z )  = limk-m Vk(x), where Vk(z) is defined by (3.4), 
to obtain a stationary version of the dynamic programming 
equation (3.5). viz. 

(3.6) 
In many respects, this procedure is best understood in terms of 
the bounded real lemma 111, [27]. For instance, the finite gain 
property is captured in terms of a dissipation inequality [37] 
(or partial differential inequality in continuous time). Also, 
stability results are readily deduced 1141, [37]. 

I) Bounded Real Lemma: We will say that E" is finite gain 
dissipative if there exists a function (called a storage function 
1371) V ( s )  such that V ( r )  2 0, V(0)  = 0, and satisfies the 
dissipation inequality 

- y 2 ( w ( 2  + ( l ( .L U(X), w)(". (3.7) 

The following result is one way of stating a version of the 
bounded real lemma. The proof is omitted. 

Theorem 3.4 (Bounded Real Lemma): Let U E S .  The sys- 
tem C" is finite gain if and only if it is finite gain dissipative. 

Under additional assumptions, stability results can be ob- 
tained for dissipative systems [37], [14]. We say that C" is 
(zero state) detectable if w =; 0 and limk-% Zk = 0 implies 
limk-= zk = 0. C" is asymptotically stable if w = 0 implies 
limk,, 21; = 0 for any initial condition. 

Theorem 3.5: Let U E S. If C" is finite gain dissipative and 
detectable, then C" is asymptotically stable. 

Proof: Since C" is finite gain dissipative, (3.7) implies 
k - 1  k-1 

V ( . T ~ )  + ]2,+1(* 5 r2C lwZl2 + V(xo) .  (3.8) 

Setting w E 0 in (3.8) and using the nonnegativity of V we get 

7 =o ,=n 

k-1 

/z,+112 5 V(20).  for all k > o 
,=n 

Remark 3.6: In general, detectability (or observability) is a 
key property required for asymptotic stability as it is related to 
the positive definiteness of the storage functions [14], [34], but 
is difficult to check and will depend on the controller U E S. 
Detectability holds trivially in the uniformly coercive case: 
-U0 + v1/xI2 5 /I(., U ,  w) l2 ,  where VO 2 0, v1 > 0. 

2 )  Solution to the State Feedback Robust H ,  Control Prob- 
lem: It is clear from the previous section that the state 
feedback robust H ,  control problem can be solved provided a 
stabilizing feedback controller can be found which renders the 
closed-loop system finite gain dissipative. The next theorem 
gives both necessary and sufficient conditions in terms of 
a controlled version of the dissipation inequality, under a 
suitable detectability condition. The proof is omitted. 

Theorem 3.7 (Necessity): If a controller iifi E S solves the 
state feedback robust H ,  control problem then there exists a 
function V(:c) such that V ( z )  2 0, V ( 0 )  = 0, and 

V ( L )  2 inf sup {V(b(z ,  U ,  w)) 
E U U ,  ER ' 

- y2/wI2 + ( l ( .r .  U. w)I2}. (3.9) 

(Sufficiency): Assume that V is a solution of (3.9) satis- 
fying V ( x )  2 0 and V ( 0 )  = 0. Let E*($)  be a control value 
which achieves the minimum in (3.9). Then the controller 
U *  E S defined by U* (x) solves the state feedback robust H ,  
control problem if the closed-loop system E"* is detectable. 

Remark 3.8: The utility of this result is that the controlled 
dissipation inequality (3.9) provides (in principle) a recipe for 
solving the state feedback robust W, control problem. 

IV. THE OUTPUT FEEDBACK CASE 

We return now to the output feedback robust H ,  control 
problem. As in the state feedback case, we start with a finite- 
time version. For the remainder of this paper we will assume 
the following 

for all E .  U. y, there exists w such that h(E, U ,  w )  = y. 
(4.1) 

A. Finite-Time Case 

Let 0 k . l  denote the set of output feedback controllers 
defined on the time interval [ k ,  I ] ,  so U E 0 k . l  means that 
for each J E [ k .  I ]  there exists a function U3 : R(J-k+ l )p  -+ U 
such that uJ = E ] ( y 1 ; + 1 , ~ ) .  For U E C?O..&f-i, C" denotes 
closed-loop system (2.1). The finite-time output feedback 
robust H ,  control problem is: given y > 0 and a finite- 
time interval [O, k ] ,  find a controller U E 0 0 , k - l  such that the 
resulting closed loop system E" is finite gain, in the sense that 
(2.2) holds for the fixed value of I C .  

1) Dynamic Game: Our aim in this section is to express the 
output feedback robust control problem in terms of a dynamic 
game. 

We introduce the function space 

& = { p :  R" + R*}  

and define for each x E RI1 a function b,  E & by for any initial condition 20 .  This implies { Z k }  E 12 ((0, E). 
R4),  and so limk-, Zk = 0. By detectability, we obtain 
1imk4= .rk = 0. U --M i f ( # x .  
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For U E 0 0 . k - 1  and p E &, define the functional J p . k ( u )  

for system (2.1) by 

Remark 4.1: The quantity p E E in (4.2) can be chosen in 
a way which reflects knowledge of any a priori information 

0 
The finite gain property of C'l can be expressed in terms 

Lemma 4.2: i) E& is finite gain on [O. k ]  if and only if 

concerning the initial state 20 of E". 

of J as follows. 

there exists a finite quantity @(.CO) 2 0 such that 

and & ( O )  = 0. ii) C" is finite gain on [O. k ]  if and only if 
there exists a finite quantity OF(.) 2 0 such that 

and @;(0) = 0. 

gain system E", we write 
It is of interest to know when JP,k(u) is finite. For a finite 

dom J , k ( u )  = { p  E E : . JP ,k (u )  finite}. 

In what follows we make use of the "sup-pairing" [I91 

Note that if p E domJ ,k (u ) ,  then --x < (U. 0 ) .  
Lemma 4.3: If each map E::" is finite gain on [O. k ] ,  then 

( P .  0 )  I J p  k ( 1 L )  I (P .  / j t )  (4.6) 

and so J p , k ( u )  is finite whenever the lower and upper bounds 
in (4.6) are both finite. 

Proof Set w F 0 in (4.2) to deduce ( p .  0) 5 Jp k ( u ) .  

Next, select w E / 2 (  [O, k - 11. R' ) and 20 E R". Then (2.2) 
implies 

This proves (4.6). 0 
The finite-time output feedback dynamic game is to find 

a control policy U E 0 0 , k - l  which minimizes the functional 
Jl,.k. The idea then is that a solution to this game problem 
will solve the output feedback robust U,  control problem. 

2 )  Information State Formulation: To solve the game 
problem, we borrow an idea from stochastic control theory 
(see, e.g., [ 5 ] ,  [23]) and replace the original problem with a 
new one expressed in terms of a new state variable, viz., an 
information state [18]-[20]. 

t=O 

: ,rJ = 2 .  h(z, .  U ' ,  w,) = y2+1. O 5 15 - I} 
(4.7) 

where xt, L = 0. .  . . . j is the corresponding solution of (2.1). 
This quantity represents the worst cost up to time J that is 
consistent with the given inputs and the observed outputs 
subject to the end-point constraint .cJ = .r. 

To write the dynamical equation for I),, we define 
F ( p .  U .  w )  E E by 

(4.8) F ( p .  U .  y)(.c) = sup { P ( < )  + B(<. 3'. ?L. g ) }  
€ER" 

where the extended real valued function B is defined by 

B(( .  3'. U .  y) = sup {I!(<. U. W ) l 2  - y2)wI2 

: /I(<. U .  111) = IC. h(<. U .  W) y}. 
U E R  

(4.9) 

Here, we use the convention that the supremum over an empty 
set equals --x. 

Lemma 4.4: The information state is the solution of the 
following recursion 

Pro08 The result is proven by induction. Assume the 
assertion is true for 0. . . . . - 1; we must show that p ,  defined 
by (4.7) equals F(p,- l .  71,-1. y,) defined by (4.8). Now 

F ( p , - l .  7 i J - 1 .  yI)(,r) 
- 
- SUPcgR" {P,-l(<) + s(E. 
- SUPEER" { ? ' - I ( < )  + suP7,,-,cRF 

. ( I l (E.  l l~-1.  Y J ) ~  - Y ( ~ U , - I ( * :  

71 j -1 .  W J ) }  
- 

2 2  

! ) (E .  11J-1. U']-1) = s% h(<.  1 L J - l .  W J - 1 )  = y j ) ]  

= PJ ("1 
using the definition (4.7) for p J - l  and p,. 0 

The next lemma concerns the finiteness of the information 
state. Allowing it to take infinite values is very important, as 
this encodes crucial information. 

Lemma 4 5: 

i) If C" is finite gain, then 

--3L I p , ( r )  I (PO. &!) < +x. (4.1 1) 

ii) If --x < (PO. 0), then -x < (p,. 0), ,I = 1. . .  . . k ,  
and consequently, for each J there exists r for which 
--x < p,(.r). 

iii) If --x < ( p ,  O),  then 

sup ( F ( p .  11. y)$ 0 )  2 ( p .  0) 
!ERP 

for all U E U. (4.12) 
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Proof: The proof of (4.11) follows directly from defini- 
tions (4.7) and (2.2). To prove the second part of the lemma, it 
is enough to show that given any U ,  y, -m < ( p ,  0) implies 
-m < ( F ( p .  U .  y). 0). By definition, we have 

( F b ,  U, Y), 0) = s w  {do + Iq<. U .  ?A2 - lWl2 : 
x C,lI  

b ( [ ,  U ,  w) = 2, h([ ,  U .  w) = y}. (4.13) 

Since --x < ( p .  0), there exists [ with --x < p ( E ) ,  and by 
assumption (4.1) there exists w such that h ( [ ,  U ,  w) = y. Set 
L = b(<, U ,  w). Therefore the set over which the supremum 
in (4.13) is taken is nonempty, hence the supremum is greater 
than -m. 

with p ( [ )  2 ( p ,  0) - E > 
-m, and set w = 0. Let 7~ E U be arbitrary. Then let 
y' = IQ,<. U .  0) and x u  = b(<. U. 0). Then from (4.13) we 
have 

Finally, let E > 0 and choose 

This proves (4.12). 
Remark4.6: Note that we can write 

A p,(.r) = sup 
€ E l 2  (l0.JI.R" ) 

0 

Corollary 4.9: For any output feedback controller U E 
0 0 , k - 1 ,  the closed-loop system E" is finite gain on [O, I C ]  
if and only if the information state p3  satisfies 

for some finite P,"(zo) 2 0 with ,L$(0) = 0. 
Remark 4.10: In view of the above, the name "information 

state" for p is justified. Indeed, p ,  contains all the information 
relevant to the key finite gain property of that is available 

U 
Remark 4.11: We now regard the information state dynam- 

ics (4.10) as a new (infinite dimensional) control system 2, 
with control U and disturbance y. The state p ,  and disturbance 
y, are available to the controller, so the original output 
feedback dynamic game is equivalent to a new one with full 
information. The cost is now the right-hand side of (4.15). The 
analogue in stochastic control theory is the dynamical equation 
for the conditional density (or variant), and y becomes white 
noise under a reference probability measure [19], [231. U 

Now that we have introduced the new state variable p ,  we 
need an appropriate class 2,l of controllers which feedback 
this new state variable. A control U belongs to Z2,1 if for each 
J E [z. 21 there exists a map UJ from a subset of EJ-'+' 
(sequences p Z ) ]  = p , .  pz+l .  . . . , p j )  into U such that uJ = 
U ( P ~ . ~ ) .  Note that since p ,  depends only on the observable 
information y1 J ,  Io,,-i c 0 0  J - l .  

3)  Solution to the Finite-Time Output Feedback Robust H ,  
Control Problem: In this section we use dynamic program- 
ming to obtain necessary and sufficient conditions for the 
solution of the output feedback robust H ,  control problem. 
We make use of the dynamic programming approach used in 
[ 191 to solve the output feedback dynamic game problem. The 
value function is given by 

in the observations 91, J .  

for j E [O. I C ] ,  and the corresponding dynamic programming 
equation is 

For a function W : & + R*. we write 

dom W = { p  E E : W(p)  finite}. 
0 

Remark 4.8: This representation theorem is a separation 
principle and is similar to those employed in stochastic control 

0 
Theorem 4.7 enables us to express the finite gain property 

of E" in terms of the information state p ,  as the following 
corollarv shows. 

theory; see [23], and in particular, [ 5 ] ,  and [19]. 

Theorem 4.12 (Necessity): Assume that U' E 00.rc-1 

solves the finite-time output feedback robust H ,  control 
problem. Then there exists a solution W to the dynamic 
programming equation (4.18) such that dom J .IC ( U " )  c 
domW,, W,(-P'") = 0, W , ( p )  2 ( p ,  0), p E domW,, 
j E [0, k ] .  
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Proof.' For p E dom.l.,k(u"), define Wj(p) by (4.17), B. Infinite-Time Case 
i.e., 

W,(P) = ucgf,-l J1) ,3(U).  

Note the alternative expression for W,(p) 

W,(p) = inf sup SUP 
l L E e ) O  2 - l  II E I L ( [ O  3-11,RI) r o E R n  

Again, we would like to solve the infinite-time problem by 
passing to the limit W(p)  = limk+,Wk(p), where Wk(p) is 
defined by (4.17), to obtain a stationary version of the dynamic 
programming equation (4. IS), viz. 

~ ( p )  = inf sup { W ( F ( p .  U ,  ?I))}. (4.20) 
!/ERP ?LEU 

For technical reasons, however, this is not quite what we do. 

&(U) = SUP J p . k ( U )  (4.21) 
k 1 0  

3-1 

d r o )  -t 12t+112 - y21wt12 . (4.19) Instead, we will minimize the functional 

For = U' we see that, using the finite gain property for P" 

over U E 0. Here, 0 denotes output feedback controllers U 

such that for each I C ,  U k  = E k ( j J y 1 , k )  for some map Ek from 
Rpk into U .  This makes sense in view of the following lemma, 
whose proof is an easy consequence of the definitions (c.f. 

Y ( P )  5 SUPWcl,([O,J-l],RP) SUPZ&R" 
1-1 

. { P ( T o )  + l&+112 - Y 2 I W J 2 }  
1=0 

I ( P .  P F ) .  Corollary 4.9). 

information state p k  satisfies 
W,(P, 2 ( P .  0). 

Since [$'(0) = 0, p,""(x:) 2 0, then (-[3;". 0) = 0, and 
we have Wj(-P,"") = 0. Finally, the proof of Theorem 4.4 
[I91 shows that WJ is the unique solution of the dynamic 

Theorem 4.13 (Suflciency): Assume there exists a solution 
W' to dynamic programming equation (4.18) on some 
nonempty domains dom Wj such that - / j  E domWj, 
Wj(-/3) = 0 (for some /3 2 0 with b(0) = O), W j ( p )  2 
( p .  O ) ,  for all p E dom W,, j E [O, k ] .  Assume ?I,*(p) achieves 
the minimum in (4.18) for each p E dom W,, j = I ,  . . . . k .  Let 
U* E ZO.~.-I be a policy such that U$ = U*,- j (p , ) ,  where p ,  is 
the corresponding trajectory with initial condition p0 = -@, 
assuming p; E dom W k - , ,  j = 0, . . . k .  Then U* solves the 
finite-time output feedback robust H ,  control problem. 

Proof: Following the proof of Theorem 4.6 of [19], we 
see that 

programming equation (4.18). 0 

which implies by Corollary 4.9 that E"' is finite gain, and 
hence U* solves the finite-time output feedback robust H ,  
control problem. 0 

Remark 4.14: Note that the controller obtained in Theorem 
4.13 is an information state feedback controller. 0 

Corollary 4.15: If the finite-time output feedback robust 
H ,  control problem is solvable by some output feedback 
controller U" E 0 0 . k - 1  (whose details are unspecified), then 
it is also solvable by an information state feedback controller 
U* E Z0.k-1. 

for some finite pzL(xo) 2 0 with p"(0) = 0. 
Our results will be expressed in terms of an appropriate 

dissipation inequality, and so in the next section we formulate 
an appropriate version of the bounded real lemma for the 
information state system. 

I )  Bounded Real Lemma: Let Z denote the class of infor- 
mation state feedback controllers U such that U k  = U ( p k ) ,  for 
some function E from a subset of & into U .  We write 

dom J .  ( U )  = { p  E & : J,(u) finite} 

From Lemma 4.16, we say that the information state system 
? ((4.10) with information state feedback U E Z) is finite gain 
if and only if E ( p )  is defined for all p E domJ.(E) and the 
information state p k  satisfies (4.22) for some finite pU(x:0) 2 0 
with /?"(O) = 0. 

We say that the information state system ?' is finite gain 
dissipative if there exists a function (called a storage function) 
W(p)  such that domW contains -p  (where 2 0 and 
p(0) = O), U ( p )  is defined for all p E dom W ,  W(p)  2 ( p ,  0) 
for all p E dom W ,  W (  -p)  = 0, p k  E dom W ,  for all IC 2 0 
whenever po = -p  (for all sequences yk) ,  and W satisfies the 
dissipation inequality 

Theorem 4.17 (Bounded Real Lemma): Let U E Z. Then 
the information state system E" is finite gain dissipative if 
and only if it is finite gain. 
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Proofi Assume that E" is finite gain dissipative. Then and define w E /2([0, k - 11, R') by setting w = w' on 
[O, k - 21 and wk-1 = 0, and let zo = xb. Then (4.23) implies 

W(Pk) 5 W(P0) (4.24) k-1 

for all k > 0 and all y E /2([1, k], Rp). Setting po = -,L? and 

( P k .  0) L W(-P) = 0 

for all k > 0, y E / 2 ( [1 ,  k], Rp). Therefore E" is finite gain. 

Wk(P) 2 P(Xb) + 

2 p(zb) + 
2 Wk-l(P) - E .  

1 2 2 + 1 1 2  - Y 2 l W i l 2  

1z1+1I2 - Y21W:l2 + b k I 2  

2=0 

k - 2  
using the inequality W(p)  2 ( p ,  0) we get 

z=o 

Conversely, assume that E" is finite gain. Then 

( P ?  0) I J p ( U )  I (P1 P") 

( P ;  0) I W a ( P )  I ( P ?  P" ) ,  P E 8. 

for all p E E .  Write W,(p) = JP(u),  so that 

This and (4.22) imply Wa(-P") = 0. We now show that W, 
satisfies (4.23) and that if p E dom W,, then F ( p ,  E ( p ) ,  y) E 
dom W, for all y. 

Fix p E domW, and y1 E Rp. Set PI = F ( p ,  U ( p ) ,  yl) .  
For any sequence y2, y3, . . . define a sequence yl, y2, ' . ' by 

y; = &+I, 2 = 1, 2 , .  . . . 

Let pk and p k  denote the corresponding trajectories, and note 
that p k  = p k + l .  With y1 fixed and maximizing over k 2 1 
and y2.k we have 

Since E > 0 is arbitrary, the monotonicity assertion is verified. 
Therefore the limit limk+m W k ( p )  exists and equals W,(p), 
for p E dom W,. 

Remark4.19: The function W, defined in the proof is 
called the available storage for the information state system. 
If E" is finite gain dissipative with storage function W ,  then 
W, I W ,  and W, is also a storage function. W, solves (4.23) 
with equality. 

As in the case of complete state information, we can deduce 
stability results for the closed-loop system E". Stability here 
means internal stability, and so we must concern ourselves 
with the stability of the information state system as well. For 
the remainder of the paper, we will assume that h satisfies the 
linear growth condition 

I V Z ?  U ,  w)l 5 C(l4 + lwl). (4.25) 

We say that C" is (zero state) z-detectable (respectively, 
12 - z-detectable) if w =: 0 and limk+QS z k  = 0 implies 
1imk-m xk = 0 (respectively* {Zk) E /2([0, CO).  R') imp1ies 
{xk} E /2([0, CO), R")) and asymptotically stable if w 0 
implies limk,, xk = 0 for any initial condition. For U E 0 
and y E /2 ( [0?  C O ) ~  Rp) ,  E" is uniformly ( w ,  y)-reachable 
if for all z E R" there exists 0 I a(.) < +cc such that 
for all k 2 0 sufficiently large there exists z o  E R" and 
w E 12([0? k - 11, R') such that x (0 )  = .co, ~ ( k )  = z, 
h(z,, U , ,  w,) = yz+l, z = 0. .  . . , k - 1, and 

W a ( P )  2 suPk>l,y2,1 { ( P k ,  0) :  Po = P >  

- SUPk>O,ij, 4. { ( l j k .  0 ) :  Po = Pl)  - (= Wa(P1)) 
2 (Pl. 0). 

This implies, using Lemma 4.5, that pl E dom W, (since 
p E dom W, implies -CO < ( p ,  0) and -CO < ( p l ,  0)). 

Since y1 is arbitrary, we have 

W a ( P )  2 SUP Wa(F(P ,  U ( P ) ?  Y)). 

This inequality implies that W, solves (4.23). (Actually, W, 
solves (4.23) with equality.) Thus E" is finite gain dissipative. 

0 

YER' 

Remark 4.18: The supremum in (4.21) can be replaced by 
a limit. To prove this, write W k ( p )  = Jp ,k (u ) ,  so that 

Now Wk is monotone nondecreasing Given inputs U E 0 and y E /2 ( [0 ,  CO), Rp),  we say that the 
information state system E" is stable if for each z E R" there 

Wk-l(P) I Wk(P). exists K, 2 0, C, 2 0 such that 

(4.27) 
To see this, note that 

lpk(x)I 5 C, for all k 2 K,  
Wk(P) = sup S U P  

w El2 ( [ O , k - l ] , R ' )  2oER" provided the initial value po satisfies the growth conditions 

-a:1x12 - a; I Po(%)  L -a1lxI2 + a2 (4.28) 

Theorem 4.20: Let U E 1. If E" is finite gain dissipative 
where a l ,  a i ,  a2 ,  a: 2 0. 

and C" is z-detectable, then E" is asymptotically stable. If 
E" is finite gain dissipative and C" is 12 - z-detectable and 
uniformly (w, y)-reachable, then E" is stable. 

I { P ( Q )  + IZi+1I2 - Y21WiI2 

k - 1  

2=o 

Then given E > 0, choose w' E /2 ( [0 ,  k - 21, R') and xb 
such that 

k - 2  

i=O 
W k - l ( P )  L p(zb) + 1z:+1I2 - Y21w:I2 + 6 
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Proof: Inequality (4.24) implies 

S U P  S U P  
WEI~([O,IC-IJ.RP) QER" 

1 { P ( Q )  + 1z2+1I2 - Y2lW2l2 I W(P) (4.29) 
IC-1 

2=0 

for all IC > 0. Let zo E R" and select p = -p". Then (4.29) 
gives, with w E 0 

IC-1 

IG+1l2 5 W(-P") + P"(x0) < +cc 
2=0 

for all IC > 0. This implies {.IC} E /2( (0 ,  cc), R4), 
and so limk4,zk = 0. By z-detectability, we obtain 
limk-, x k  = 0. Therefore E" is asymptotically stable. Also, 
12 - z-detectability implies {zk} E 1 2 ( [ 0 ,  co), Rn) ,  and by 
assumption (4.25), {yk}  E 1 2 ( [ l ,  m), Rp) since w 

So now suppose that {yk} E 12( [0,  co), Rp) .  We wish to 
show that Z" is stable, The dissipation inequality implies 

0. 

PIC(.) I (PIC. 0) I W ( P 0 )  < +W 

for p0 = -0, IC 2 0. For the lower bound, the hypothesis 
imply, given z, for all IC sufficiently large there exists x0 and 
w such that x ( 0 )  = 20, x ( k )  = x, and 

IC-1 

1z0l2 + 1Wzl2 5 4.) 
2 = 0  

for some finite nonnegative a. Thus 
IC-1 

P d Z )  2 PO(Z0)  - Y2 1Wzl2 

2 -(dl + r 2 ) a ( x )  - a: 
2=0 

for all k sufficiently large. Therefore Z" is stable. U 
Remark 4.21: The question of stability of the information 

state is a subtle and deep one and is the subject of current 
investigations 1111. The behavior we are attempting to capture 
here is that of eventual finiteness (and in fact boundedness) of 
the information state. The criteria used to imply stability are 
modeled on those used in the state feedback case and are of 
course difficult to check in practice. These conditions simplify 
greatly under appropriate nondegeneracy assumptions. Note 
that it is feasible that C" is stable with E" unstable; this 
corresponds to an unstable stabilizing controller. 

2)  Solution to the Output Feedback Robust H ,  Control 
Problem: We begin this section with a proposition which as- 
serts that if the output feedback robust H ,  control problem is 
solvable by an information state feedback controller, then there 
exists a solution to the dissipation inequality (4.30) below, 
using the bounded real lemma 4.17. This result is not adequate 
for a necessity theorem, however, since it is expressed a 
priori in terms of an information state feedback controller. The 
necessity theorem (Theorem 4.23 below) asserts the existence 
of a solution of the dissipation in equality assuming only that 
the output feedback robust H ,  control problem is solved by 
some output feedback controller, which need not necessarily 
be an information state feedback controller. 

Proposition 4.22: If a controller U' E Z solves the output 
feedback robust H ,  control problem, then there exists a 
function W(p)  such that domW contains -/3"', W(p)  2 
( p ,  0) for all p E dom W ,  W(-p"')  = 0, and 

W(P) 2 SUP { W ( F ( P ,  U ,  Y))}  ( P  E domW). (4.30) 
ycRp 

Proof: The Bounded Real Lemma 4.17 implies the ex- 
istence of a storage function W, satisfying the dissipation 
inequality (4.23) 

W a ( p )  2 suPy~RP{Wa(F(P,  ui(p), y))}  

2 i n f ~ ~ c r  SUPyERP {W,(F(P, U ,  !/I)}. 
Therefore W, satisfies (4.30). Also, we have -p"' E dom W,, 
W,(p) 2 ( p ,  0) for all p E domW,, and W,(-p"') = 0. 0 

Theorem 4.23 (Necessity): Assume that there exists a con- 
troller U" E 0 which solves the output feedback robust 
H ,  control problem. Then there exists a function W(p)  
which is finite on domJ.(u"), satisfies W ( p )  2 ( p .  0) for 
all p E dom W ,  W(-PU") = 0, and solves the dissipation 
inequality (4.30). 

Proof: Define 

W(p)  = inf Jp(u)  
U E O  

where Jp(u )  is defined by (4.21). Then we have 

(P1 0) I W(P) L J p ( U " )  I (PI io tL0)  
and so W is finite on domJ.(u").  Clearly W(p)  2 ( p .  0) for 
all p E domW and W(-@"") = 0. It remains to show that 
W satisfies (4.30). 

Fix p E domW, and let e > 0. Choose U E 0 such that 

W(P) 2 SUP { ( P I C ,  0) PO = p }  - e.  (4.31) 

Fix y1 E Rp, and set p l  = F ( p ,  U O .  yl ) .  For any sequence 
y2. y3, . . . define a sequence y1, y 2 ,  . . . by 5% = y,+1, 1 = 
1. 2 , . . .  Define a control ii E 0 by 

e O , Y E b ( [ l , ~ l . R 7  

G(G1. ' ' . , Yz) = %+I (91 1 Yl. . . ' ,&). 

Let p ,  and fiJ denote the information state sequences corre- 
sponding to po = p .  U ,  yl ,  y2. ' .  . , and 80 = pl = F ( p ,  u0, 
y1). U, y1, $ 2 ,  . . . , respectively. Note that p k  = @kPl. Then 

W(P) 2 suPk>l,y2 fi  {(PIC. 0) : Po = P >  - E 

- suPIC>O.yl {($IC, 0) : $0 = Pl} - E 

L ( P I ,  0) - c.  

W(P) 2 W ( F ( P ,  U 0 ,  Yl)) - E .  

- 

That is 

Since 91 was selected arbitrarily, we get 

and therefore 
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The infimum is finite in view of Lemma 4.5. From this, we see 
that W satisfies (4.30), since t > 0 is arbitrary. Also, it follows 
that F ( p ,  E * ( p ) ,  y) E dom W for all y whenever p E dom W ,  

0 
Theorem 4.24 (Suficiency): Assume that W is a solution 

of (4.30) satisfying -0 E domW (for some p(.) > 0 with 
a ( 0 )  = 0, W(p)  > ( p ,  0) for a l lp  E domW and W(-P) = 0. 
Let U * ( p )  be a control value which achieves the minimum in 
(4.30) for all p E dom W. Assume po = -p  is an initial 
condition for which p~ E dom W for all IC = 1, 2,  . . . (for 
all sequences yk) .  Then the controller U’ E Z defined by 
U ;  = U * ( p k )  solves the output feedback robust H ,  control 
problem if the closed loop system E”* is 12 - z-detectable and 
uniformly (w, y)-reachable. 

Proofi The information state system I?‘* is finite gain 
dissipative, since (4.30) implies (4.23) for the controller U*. 

Hence by Theorem 4.17, ?* is finite gain. Theorem 4.20 then 
shows that E”’ is asymptotically stable and ?* is stable. 
Hence U* solves the information state feedback robust H ,  
control problem and hence the output feedback robust H ,  

Remark 4.25: As in the state feedback case (Section III- 
B2), the significance of this result is that the controlled 
dissipation inequality (4.30) provides (in principle) a recipe 
for solving the output feedback robust H ,  control problem. 

Corollary 4.26: If the output feedback robust H ,  control 
problem is solvable by some output feedback controller uo E 
0, then it is also solvable by an information state feedback 
controller U* E 1. 

Remark 4.27: It follows from the above results that neces- 
sary and sufficient conditions for the solvability of the output 
feedback robust H ,  problem can be expressed in terms of 
three conditions, viz., i) existence of a solution p k ( r )  to (4.10), 
ii) existence of a solution W(p)  to (4.30), and iii) coupling: 
p k  E domW. Further developments of this theory can be 
found in [ll] and [12]. 

Vhere Z*(P)  E xgmin,Eu SUPy&P W ( F ( p ,  U, Y)). 

control problem. 0 

V. CONTINUOUS TIME 
In this section, we discuss briefly the application of the 

above information state approach to continuous-time systems. 
This has been considered formally in [20] and [29] and in 
detail in [18]. 

The continuous-time version of system model (2.1) is 

i ( t )  = b(z( t ) ,  U(t). w ( t ) ) .  
Z ( t )  = l ( z ( t ) .  u ( t ) ,  w ( t ) ) .  
d t )  = h(z( t ) ,  4 t h  w ( t ) )  

(5.1) 

and the output feedback robust H ,  control problem is to find 
a controller U = u(y(.)), responsive only to the observed 
output y, such that the resulting closed-loop system C” is 
asymptotically stable when no disturbances are present, and 
E” is finite gain, i.e., there exists a finite quantity @“(x:o) 
with a ( 0 )  = 0 such that 

J: lz(t)t2 d t  5 T’J:IW(~)I* df + ~ “ ( z 0 )  (5.2) {for all w E &(  [O. TI. R r )  and all T > 0. 

Applying the same methodology as in Section IV, one 
defines an information state p t ( z )  and a value function W ( p ) .  

The information state for this problem has dynamics 

Ijt = F b t .  4 t ) ,  Y(t>) 

F ( p .  U, y) = sup [ - V , p .  b ( . ,  U ,  w )  + Il(.. U ,  w)12 

- Y2IWl2 + Sy(W, U ,  w ) ) ] .  

(5.3) 

where F ( p ,  U ,  y) is the nonlinear differential operator 

W € R  

(5.4) 

Equation (5.3) is a first-order nonlinear partial differential 
equality (PDE) in R’” The dissipation partial differential 
inequality (PDI) is infinite dimensional (since it is defined on 
the infinite dimensional space E )  

inf sup V,W(p) . F(p,  U .  y) 5 0 in E .  (5.5) 
Y€RP ILEU 

Here, V,W(p) denotes, say, the Frechet derivative of W at p .  
If (5.3) and (5.5) possess sufficiently smooth solutions, then the 
control which attains the minimum in (5.5) defines a controller 
which solves the robust H ,  control problem. 

The technical difficulties concern the precise sense in which 
solutions to (5.3) and (5.5) are to be understood (since smooth 
solutions are not likely to exist in general) and existence of 
the minimizing controller. These difficulties are present even 
in very simple deterministic state feedback optimal control 
problems. 
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