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ABSTRACT

In this article we derive the rules for a fuzzy logic based
PID tuner (expert) for dominant pole sysiems with
large rise times. We present applications of the expert 10
a third-order plant, separator temperature control. and
pH control. It is observed that the expert can success-
fully tune the PID gains without requiring any process
identification. @ 1995 John Wiley and Sons. Inc.

INTRODUCTION

The recent stimulus for the application of in-
telligent control to the chemical process industry
has resulted in the proposal of a variety of
schemes. However, most of them are targeted
toward specific applications. The need is to
develop schemes for intelligent control that are
applicable to a broader class of problems
(Astrom and McAvoy, 1992).

It is often seen that control experts tune the
parameters of a controller according to error
versus time curves based on their knowledge and
experience. rather than on complicated control
algorithms. In fact. their tuning actions seem to
be based on relations between the shape of the
response curve and the parameters of the con-
troller. rather than on explicit process models.
This kind of tuning method. if realizable. is
captivating because of its independence from a
process model. Hence. an expert developed with
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CONTROLLERS

such a principle in mind will be intelligent and
universal to various controlled processes. The
fact that the expert tunes the controller parame-
ters. without actually knowing the process pa-
rameters. guarantees robustness with respect to
process parameter variation.

Following Tolle and Ersu (1992). we identify
two performance criteria that the expert needs to
satisfy. (1) As with humans. satistactory learning
requires frequent repetition of the same ctfort.
so the system is improved by being restarted
from the same initial conditions again and again.
(2) An important factor for technical control
problems is the ability to stabilize the control
loop in the first trial. however. with refatively
bad performance in general.

The rest of the article is organized as follows.
We state the problem. Then we derive the rule
base. The rule base derivation is done in several
steps. We first identify the required corrections in
the position of the dominant closed-loop poles.
to correct for the deviation in the observed
response from that required. These are then
linked to movements in the controller zeros. We
then identifv the required changes in the loop
gain. Finallv. we link variation of the PID gains
to variations in the loop gain and the controller
zeros. Hence, when we change the PID gains.
we move the dominant closed-loop poles via
movement of the controller zeros. and variation
of the loop gain. The required changes in the
PID gains are then used to generate the rule
base. After deriving the rule base. we present
some examples. This is followed by a section on
overshoot control and conclusions.
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Figure 1. Reference response.
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STATEMENT OF THE PROBLEM

The problem can be stated as follows. Given a
stable plant

_YGs) K

PLs) E(s)  (ms+D(ms+ 1) (rs+1) (1)

where 7, > max(1.7,)./=2.3.. ... n. along with
a PID controller

Cloy =) = g+ Rk 2

s)= Yoy - Kot nS . 2)

develop a strategy to instantaneously tune K.
K,. and K,,. based on observation of the plant
output ¥(s). and the set-point s(r}. 10 get a good
response to setpoint changes. By good response.
we mean that the closed-loop response approxi-
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Figure 2. Overall svsiem architecture
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mate a given reference response. The latter is
specified by two parameters. 7, and 7.. and is
illustrated in Figure 1. Here T, can be thEOught of
as dead time and T, as the open-loop response
time. The overall system architecture is illus-
trated in Figure 2.

This strategy deviates from the current trend
where effort is made to obtain information about
the plant by carrving out data analysis and
modeling. A review of these techniques can be
found in Koivo and Tanttu (1991). Note that
gain scheduling 1s an immediate consequence of
the proposed tuning strategy.

DeERIVATION OF THE RULE BAsE

In the current context. we want to compensate
for rise time and the settling time of the closed-
loop response while ensuring that the system
remains stable. Hence. it is natural to consider
two sets of rules. The first set (R,) deals with rise
time compensation. whereas the second set (R,)
deals with reducing the settling time and stabiliz-
ing the closed-loop system. When a set-point
change 1s detected. R, is activated. Once the
response reaches the current set-point. R, is
switched off, and R, is activated. The input to R,
is the error e,(r). and the inputs to R, are (i) the
error e.(r) and (ii) the rate of change of error
didre,(t). e, (t) and e,(r) are calculated as

V() = S0 ﬂ
€)=y, ) = (3)
(’:1([) = Snm« - )'([) (4)

where y(r) is observed plant response. v, (1) is
the reference response, s, ,, is the previous set-
point value. and s, is the current set-point
value. The transformation (¥(r) —s,,,)/(S,0 —
s,.4) 1s required in Eq. (3). because the reference
response (Fig. 1) is alwavs specified as going
from 0 to 1. The above transformation maps the
interval [s,,,.s,..] onto the interval [0.1].
Hence. now we can dircctly compare the ob-
served response {after transformation) with the
reference response. The definition of e,(r) as in
Eq. (3) has the further advantage that —1=
e,(1) =1 irrespective of the set-points chosen.

Based on classical control theory (see Kuo
(1991)). the following rules are postulated for
the manipulation of the dominant closed-loop
poles.



R,:
L If e () is positive. move the dominant
closed-loop poles towards the imaginary
axis, and away from the real axis.

It e (r) is negative, move the dominant
closed-loop poles away from the imaginary
axis. and towards the real axis.

L

. If e.(r) is not small. or if d/dte,(r) is not
zero, move the dominant closed-loop poles
away from the imaginary axis, and toward
the real axis.

2. If e,(¢) is small. and if d/dte,(t) is zero,
move the dominant closed-loop poles away
from the real axis. and toward the imagin-
ary axis. This rule is incorporated to pre-
vent the response from getting over-
damped.

These rules result in manipulation of the damp-
ing factor and the natural frequency of the
dominant poles to push the response toward that
desired. For example. R, rule 1 increases the
damping factor and decreases the natural fre-
quency to help reduce the settling time. It also
ensures that, if the dominant closed-loop poles
are unstable (i.e., lie in the right half-plane),
they are drawn into the left half-plane. One can
observe this by considering the root locus plot.

VARIATION OF THE CONTROLLER ZEROS

We now consider the relationship between the
controller zeros and the dominant closed-loop
poles. This relationship is important. because
what we want to manipulate are the PID gains.
which in turn influence the controller zeros and
the overall loop gain. The relationships derived
below enable us to link the variations in the
controller zeros to variations in the dominant
closed-loop poles. and hence to R, and R,
above. Note that the characteristic equation of
the closed-loop system is given by

Lo Msrz)6rz)

‘ 5(5+/\1)(s+/\:)---(s+/\"): )

where —z,, —z, are the controller zeros: —A,;,
=1...n are the open-loop plant poles; and
N=KK, is the loop gain, where K=K/
(r,75 ... 7,). with K the plant gain, and K, is the

derivative mode gain.

First Order Plant:

Pls) = — f
() =777 (6)
=
L Clopps) = 1+ IO 5]
(s)P(s) = G+ ) (7
Let z,. 2, = a = jB. and the roots of Eq. (7) be
$,. 8, =v = ju. Then.
dv_ N .
de =~ 1+N° (8)
e _
da
N(Q2a — A)
(1+ N)VaN(a® + )L+ N) — (A +2Na)™
9)
dv
'[ZB*:O‘ (10)
dp 2NB
dB \/4N(a = B )1+ N) = (a4 + 2Na)
(1D
Hence. if @ <A/2 then
dv du dv du i
-(E;O‘ da.SO, dB—O. dB—O. (12)
Second Order Plant:
P(s) = —— 13
) =5+ A)G + A (13)
=
L4 CoPls) =1+ 2822 2) gy
(5)Ps) = S(s+HA (s A

Let z,. 2, = « = jB. and the closed-loop poles be
5., s> =v =ju and 5; =y with vy <v<0.

=N

dv__Nyta)
da (y—V)2+,u.:‘

(15)

dp _ N ~(y—v)(r +a))

et aadn - - 16
da p(y—v) +u) (16)
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dv BN

=P (17
By =y :
di _ ~BN(y =) s

B u((y =) +u)’

Hence. if a =0, and pu* + 17 < vy. we obtain

E<0.EE<O% O@)O (19)
A sufﬁucm condition for the above is a = (. and
/.L Tt < —pAL.

Higher Order Plants:
Similar relations hold for higher-order plants.
For example. in the case of a third-order plant
we get

dv, du, dv, du

o ().—d; < 0, dﬁ)o “dﬁ>() (20)
provided v; + u] < —1A./2. and « =0: where,
1 = ju are the dominant closed-loop poles and
— A5 1s the middle plant pole

Because we are dealing with dominant pole

plants having large rise times. we expect these
relationships in Egs. (12). (19). and (20) 1o
hold. Based on these. we now deduce the rules
for manipulating the controller zeros (z;) to
obtain the desired manipulation of the dominant
closed-loop poles.

R:
L If e,(r) is positive. then increase Re(z,).
and increase Im(z,) in magnitude.
2. If e,(r) is negative. then decrease Re(z.).
and decrease Im(z,) in magnitude.
R.

1. I e.(1) 1s not small or zero. or didr e.(1) 1s
not zero. then decrease Re(z,).

If e.(r) 1s small. and d/dre,(r) is zero. then
increase  Re(z,). and increase Im(z,) in
magnitude.

ro2

VARIATION OF THE Loor GaIn (N)

As observed above. R. stabilizes the svstem with
respect to unstable dominant poles by decreasing
Re(z,). Another cause of instability could be
dead-time. To stabilize the system with respect
to dead-time. we need 1o reduce the loop gain
(AN Also. from root focus theory, we know that
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a larger gain (N) forces the dominant closed-
loop poles towards the controller zeros. Based
on these observations, the following rules are
proposed for manipulating the loop gain.

Ry

1. If e,(r) is positive large, increase N. This
helps speed up very slow responses.
If e,(¢) is negative large, decrease N. This
aids in slowing down a very fast response.

3]

1. If e,(1) is greater than small, or d/dt e.(1) is
not zero. then decrease N. This rule stabil-
izes the system against dead-time.

2. 1f e,(t) is small, and d/dt e.(t) is zero. then
increase N. This rule aids in decreasing the
damping.

We now consider manipulation of the PID gains
to obtain the proposed variations in the control-
ler zeros and the loop gain.

PID GaiN VARIATION

The variation in the PID gains is derived under
the following assumptions:

I. We can express the PID gain variation
AK . AK,,. and AK, as

AK = PA'(‘[K =K. ]5/\'(. = plx‘(~Rl\‘(61\'(

maa min

AKU - ‘D’\'D[Kl)mux - K[)mm]éf\v[l = 'UKURKné’\'D :
AK, = p[\',[K ]5/\, K,RI\',él\', .

[I'Hll mm

where Sk, - Ok 6y, arc the defuzzified
output from the fuzzy logic controller.

2. The output scaling factors are equal. i.e.,
Pr, T Pk, = Pr, =P

3. The PID gains are of the same order of
magnitude as their ranges (R,\,L . R,\v”. RK,)'

INFLUENCE ON N

N=KK, (21)

AN =K AK, = pKR, 5, . 22)

INFLUENCE ON THE CONTROLLER ZEROS

We present an order of magnitude analvsis. Let

:‘;(xf]'b’.

>




— }\"(
= ‘vK[ (23)
- )
K. 4K, K,
=5\ ! (24)
.'_KD A(‘
=
o Ll
“= 2[\,D
/ («‘ R N B
~ (TD pK{)RKnéKn *pK(\RK@OK(-) - (25)
By assumption 3, we have K R, lgn =~ RI\’(.'
Hence
A PRy (05, =0k ) (26)
a = - ) 2
2K,
Similarly
AB = !
\/4]\’1,1(
Kz
. IPRK( . pRK! R R l .
X 2K, ( Ky Ol\’( )+ K, (()]\»/ - ()K[,ﬂ)J . (27)

Because the rules for manipulating V. «. and 3
have been determined. we can relate o¢ . O .
and &, from Egs. (22). (26). and (27).

We divide the inputs and the outputs into
seven fuzzy classes. Namely. (1) Positive Large
(PL). (2) Positive Medium (PM). (3) Positive
Small (PS). (4) Zero (Z), (5) Negative Small
(NS). (6) Negative Medium (NM). and (7)
Negative Large (NL). Furthermore. we let the
outputs share a common fuzzy membership func-
tion A, and denote by Ag . Ag . and A their
individual output classes obtained after rule
evaluation from which we obtain J; . 5/\',- and
o, after detuzzification. We adopted the centroid
strategy tor defuzzification of the output sets. the
details of which can be found in any standard
source on fuzzy logic. e.g.. Kosko (1990). The
centroids of the PL and NL classes were placed
at ~1 and +1, respectively.

Before we derive the final rule bases. we place
two additional requirements on the tuner: (i) the
tuning actions are monotone with respect to the
inputs to the rule bases. i.e.. larger inputs result
in larger tuning actions. and (i) we trv to
minimize the derivative mode gain. because
doing so makes the PID controller more robust

against measurement noise. One would perhaps
suspect that the rules will. in general. be non-
unique. We will observe that this is indeed the
case. Furthermore. note that because the outputs
share a common membership function A, this
ensures an ordered relation. i.e.. if A, =NM
and A, =NL. then 8, >§,

To 1llustrdte how the rules are derived,
present the derivation of four rules for R;. Thesc
correspond to e, (t) =Z. ¢ {t)=PS. e (t) =PM,
and e (t) = PL.

Because the error is zero. clearly we need not

carry out any compensation. and hence we

immediately obtain A, =Z. 3¢ =Z. and A, =
- €

Z.

e, (t)=PS:

In order to compensate for this. we require that
the dominant closed-loop poles move towards
the imaginary axis. and away from the real axis.
We also require no change in the loop gain (V).
Based on the analvsis relating the controller
zeros to the dominant closed-loop poles (Eqgs.
(12). (19). (20)). we need to move the controller
zeros (o = jB) toward the imaginary axis. and
away from the real axis, i.¢., we need Ao >0
and AB >0. From Eq. (22). we observe that to
keep the loop gain constant. we require that 8,
equal 0. Furthermore. from Egs. (26) and (27).
we observe that to obtain Ae >0 and AB > 0. we
need §; <0 and §; >0. One possible choice
that results in this is A x, =U. A =NS. and

=PS. Clearly. this choice is nonunique.
Howe\er we will see later on that the require-
ment for monotonicity will automatically pre-
clude certain rule sets trom occurring.

e, (t)=PM:

Here again, we require AN =0, Aa >0, and
AB > 0. Moreover. we need to move the control-
ler zeros by at least us much as in the e,(¢) = PS
case. Hence. one choice of the tuning actions
will be A =0, 3, =NM.and A, = PM.

Here. we need AN >0. da >0, and AL >0,
From Eq. (22). we cbserve that to obtain AN >
0. we need 5, >0. We fix A, =PS. Now,
because we nud Ao and AB to be at least as
large us those for the ¢ (1) = PM case. we choose
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A4, =NLand Ax, = PL. Note from Figure 3 that
the output membership function A divides the
interval [0.1] equally. i.e.. the centroids of the
fuzzy classes are spaced equally apart. Hence.
the values assigned to AK(,. Ag,. and by, ensures
that Aa and AB for this case are equal to those
obtained for e,{t) = PM.

This procedure for assigning rules mav have to
be carried out iteratively. For example. if we had
assigned Ay, =NL and Ay, =PL for the case

A AIO Aoy
\/f\\ // \/ \

N\, N /
ML NN NS )z X ops \ M PL
/ as / /

de (1}
dt=

Figure 3. Fuzzy membership functions.

Table 1. Rule Set R,

e Ay A, A,
PL NL PS PL
PM NM z PM
PS NS z PS
z z z z
NS PS z NS
NAM PM z NM
NL PL NS NL
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Table II. Rule Set R.

de (1)

e.(t) PL PM PSS z NS NM NL

PL z Z Z z PS PS PM
PM z Z Zz Z PS PM  PM
PS Z z z NS PS PM PM

z Z Z Zz z z z Z
NS PM  PM PS NS Z z Z
NM PM PM PS z z z z
NL PM PSS PS Z z Z z
A,
de. (1)

e,(r) PL PM  PS NS NM NL

z
PL Z Z z z NM NM NL
PM zZ Z Z Z NM NL NL
PS z Z z PS NM NL NL

z

PS

Z

Z Z Z Z Z Z Z
NS NL NL NM Z Z Z
NM NL NL NM Z Z Z
NL NL NM NM Z Z Z Z
AM
,d‘)?([ )
di

e,(r) PL PM PS z NS NM NL
Z NS NS NM

PM z z Z Z NS NM NM
PS Z Z z PS NS NM NM
Z z Z z Z Z Z z
NS NM NM NS PS V4 Z Z
NM NM NM NS§ zZ Z Z Z
NL NM NS NS Z z z z

when e, (1) = PS. then we would not be able to
assign any values for the ¢ (1) = PL case. because
the monotonicity property would fail.

Carryving out a similar analysis as above. we
obtain the remainder of the rule bases. These are
presented in Table I for R,. and in Table 11 for
R.. The number of rules on R, have been almost
halved. by requiring that the cxpert take action
only when the response is returning to its steady
state value. The input membership functions

were determimed after simulation studies with a



second-order plunt. These are shown in Figure 3.
[t should be noted that the abscissus of the
membership functions have been normatized to
lic between —1 and — 1. Hence. the inputs to the
fuzzy logic controller should be scaled according-
lv. Suggested scaling tactors are 1 for e (7). 0.2
Spew =S, for es(r). and 027, for d'dre.(1).

However. these values are not binding.

APPLICATIONS

To verify the validity of the rule base. we present
three applications.

THIRD-ORDER PLANT

Here. we consider the application of the cxpert
to a simple third-order plant. The transfer func-
tion of the system is given by

P(s) Y(s) 0.0301 (28)
5= " = by . Ke
‘ Uls) (s +0.01)(s™ = 10s + 41)

The reference response has T, =20sec. 7T.=
250 sec. and 1s shown in Figure 4 (top). A step
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Figure 4. Third order plant: reference response
(top). initial response (middle). final response (bot-
tom).
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Figure 5. Third order plant: steady state gains versus
iteration number.

change from 0 to 10 is chosen. The initial PID
cains vield a very large rise time (Fig. 4 (mid-
dle)). Figure 4 (bottom) shows the response after
the expert has tuned the gains. The variation in
the steady state gains is illustrated in Figure 3.

SePARATOR TEMPERATURE CONTROL

The separator is part of a larger plant (Tennes-
see Eastman Test Problem (Vogel and Downs,
1990)) comprised of a reactor, condensor,
separator. stripper. and recycle compressor. Fig-

From Cws To
I <] Recycle

Reactor ) [

D
Conder;sorj 1 .
i :

L

To Stri
° pper Vap/Liq Separator

Figure 6. Separator: chosen control loop.
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Figure 7. Separator: very slow initial response (top).
final response (bottom).

ure 6 presents a simplified view of the portion of
the plant of interest to us. illustrating the control
loop. We note that (i) there is dead time present.
(i) the plant has an unknown number of poles.
(i11) there is measurement noise. and (iv) there
are restrictions on the manipulated variable. i.e..
the condensor cooling water flow valve. The
reference response has T, =80 sec. and 7.=
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Figurce 8. Separator (mittally slow: steadv state gains
versus iteration number.
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Initial Response(deg C)

First Iteration(deg C)

Final Response(deg C)

Time(sec)

Figure 9. Separator: oscillatory initial response
(top). first iteration response (middle). final response
(bottom).

300sec. A step change from K0.109 deg C to &5
deg C is chosen.
Two initial responses are considered: (i) The
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Figure 10, Separator (oscillatoryvy: steady state gains
versus iteration number,
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initial PID settings give a verv large rise time,
and (i1) the initial settings result in an oscillatory
response. Figure 7 (top) illustrates the initial
response for the case ot large rise time. Figure 7
(bottomy illustrates the response after the expert
has tuned the PID gains. Figure 8 shows the
variation of the steady state gains from iteration
to iteration. Similarly, Figure 9 (top) illustrates
the initially oscillatoryv response. Figure 9 (mid-
dle) shows the response during the first applica-
tion of the expert. and Figure 9 (bottom) shows
the final response. Figure 10 shows the variation
of the steady state gains from iteration to itera-
tion.

Thus. the expert correctly tunes the gains of
the PID controller. It also damps out oscillations
quickly and gives rapid convergence of the gains.
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Figure 12. pH neutralization: initial response (top).
final response (bottom).
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PH CoNTROL

We now consider an application of the expert to
a plant with nonlinearity in its output. The
system chosen is the one considered by Tolle and
Ersa (1992). Figure 11 shows the plant and the
control loop. The parameters chosen were as
follows: ¢ =10 mol/l: ¢, =0.1mol/l: m, =
30 1/sec: V=30001: and m =u is the manipu-
lated variable. with 0 =y =3 1/sec.

The reference response has 7, = 20sec. and
7. =200sec. A step change in the pH from 1 to
9 1s considered. Figure 12 (top) shows the initial
response, and Figure 12 (bottom) shows the
response after the expert has tuned the PID
gains. Figure 13 illustrates the variation in the
steady state gains from iteration to iteration.
Again we observe that the response is improved.
and the gains converge rapidly.

BuiLDING ON THE EXPERT
The behavior of the expert mayv be modified to
suit one’s needs. We consider one such modi-

fication here.
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Figure 15. Separator (liquid level change): final
response obtained with overshoot control.

OvVERsSHooT CONTROL

So far. no attempt has been made to control the
amount of overshoot. In fact. the rules have
been developed so that there is a greater em-
phasis on rise time compensation. For some
applications. the control of overshoot mayv be
more important.

The overshoot control. in brief. is based upon
adaptively changing the switching point between
the two rule sets (R, and R.) depending on the
amount of overshoot. If the overshoot is large.
switch to R. sooncr. else if the overshoot is
within acceptable limits. but the rise time is
large. then switch to R, later. Furthermore. scale
the inputs to R, so that their largest values in the
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previous iteration fall in the membership sct
large. This helps damp out oscillations about the
steady state.

As an application. we consider separator tem-
perature control with the liquid level in the
separator increased bv 20% . The reference re-
sponse is not modified. Figure 14 (top) illustrates
the initial response to a set-point change to 83
deg C. and Figure 14 (bottom) shows the final
response obtained by the original expert. To
meet the rise time requirement. the response is
highly underdamped. Figure 15 illustrates the
final response obtained when the expert was
applied with overshoot control, with a maximum
allowable overshoot of 3% . We observe that the
response meets the overshoot and rise time
specifications.

CONCLUSIONS

Although much work has been done in the area
of tuning PID gains. most of it is based on the
analysis of the plant response and on parameter
estimation. In this article. we have shown that
for the class of stable. dominant pole plants with
large rise times. it is not necessary to carry out
data analysis anc¢ paramecter cstimation. There
are inherent properties of this class that can be
exploited to design a learning controller that can
learn on-line. and that displays rapid conver-
gence. This could be thought of as being analo-
gous to humans. who possess the ability to tune
PID parameters without necessarily carrving out
data analvsis or identification.

The results show that the fuzzy logic rule base
derived in this article performs as required. The
resultant PID controllers have a small derivative
mode gain. This is advantageous as it prevents
measurement noise from influencing the control
action. The example concerning pH control
illustrates robustness of the rule base to mono-
tone. continuous output nonlinearities. One
could also consider constructing a supervisor 1o
enhance the performance of the expert. Finallv.
results provide encouragement for the design of
intelligent controllers to handle a class of svs-
tems.
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