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Risk-Sensitive Control and Dynamic Games for 
Partially Observed Discrete-Time Nonlinear Systems 

Matthew R. James, Member, ZEEE, John S .  Baras, Fellow, ZEEE, and Robert J. Elliott 

Abstract- In this paper we solve a finite-horizon partially 
observed risk-sensitive stochastic optimal control problem for 
discrete-time nonlinear systems and obtain small noise and small 
risk limits. The small noise limit is interpreted as a deterministic 
partially observed dynamic game, and new insights into the 
optimal solution of such game problems are obtained. Both the 
risk-sensitive stochastic control problem and the deterministic 
dynamic game problem are solved using information states, 
dynamic programming, and associated separated policies. A cer- 
tainty equivalence principle is also discussed. Our results have 
implications for the nonlinear robust stabilization problem. The 
small risk limit is a standard partially observed risk-neutral 
stochastic optimal control problem. 

1. INTRODUCTION 

ECENT interest in risk-sensitive stochastic control prob- R lems is due in part to connections with H ,  or robust 
control problems and dynamic games. The solution of a risk- 
sensitive problem leads to a conservative optimal policy, 
corresponding to the controller’s aversion to risk. 

For lineadquadratic risk-sensitive problems with full state 
information, Jacobson [ 171 established the connection with 
dynamic games. The analogous nonlinear problem was studied 
recently, and a dynamic game is obtained as a small noise limit 
[7], [12], [18], [27]. A risk-neutral stochastic control problem 
obtains as a small risk limit [7], [18]. 

Whittle [26] solved the discrete-time lineadquadratic risk- 
sensitive stochastic control problem with incomplete state 
information and characterized the solution in terms of a 
certainty equivalence principle. The analogous continuous- 
time problem was solved by Bensoussan and van Schuppen 
[4], where the problem was converted to an equivalent one 
with full state information. A transformation technique has 
also been used to solve partially observed linear/quadratic H ,  
and dynamic game problems [8], [23], [24], and others). The 
nonlinear continuous-time partially observed risk-sensitive sto- 
chastic control problem was considered by Whittle [28], and an 
approximate solution was stated using a certainty equivalence 
principle when the noise is small; these results are not rigorous, 
but are very insightful. 
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In this paper we consider the finite-horizon partially ob- 
served risk-sensitive stochastic control problem for discrete- 
time nonlinear systems. The solution to this problem together 
with large deviation limits lead to new insights into the optimal 
solution of partially observed dynamic game problems and 
related robust control problems. 

The risk-sensitive stochastic control problem is solved by 
defining an information state and an associated value function 
and applying dynamic programming (Section II). The dynamic 
programming equation is a nonlinear infinite-dimensional re- 
cursion. Our approach is motivated by the method used 
by Bensoussan and van Schuppen [4] and the well-known 
separation method for risk-neutral problems. The resulting 
optimal controller is expressed in terms of a separated policy 
through the information state. The derivation of this solution 
does not involve asymptotic methods. 

In Section I11 we obtain the small noise limit of both the 
information state and the value function. Logarithmic trans- 
formations are employed in each case. The information state 
limit is similar to large deviations limit results for nonlinear 
filters [l], [15], [16], [19], [20], where the limit filter can be 
used as an observer for the limit deterministic system. The 
limit of the value function also satisfies a nonlinear infinite- 
dimensional recursion, which in Section IV is interpreted 
as the dynamic programming equation for a deterministic 
partially observed dynamic game. As a by-product, we obtain 
an information state and value function for this game and a 
verification theorem. The optimal output feedback controller 
for the game is given by a separated policy through the 
information state. The information state, which depends on 
the output path, is a function of the state variable and evolves 
forward in time. The value function is a function of the 
information state, evolves backwards in time, and determines 
the optimal control policy. The structure of the controller 
we obtain is similar to that arising in the solution of the 
lineadquadratic problem, which involves a pair of Riccati 
equations, one corresponding to estimation and one to control 
[14], [26]. We identify a certain saddle point condition under 
which the certainty equivalence policy proposed by Basar 
and Bemhard [3] and Whittle [26], [28] is optimal, using 
our verification theorem. This policy involves the forward 
dynamic programming recursion for the information state and 
a backward recursion for the value function for the corre- 
sponding dynamic game problem with full state information. 
This latter value function is (like the information state) a 
function of the state variable and, consequently, easier to 
compute. 
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The treatment of the robust H,nonlinear output feedback 
control problem using stochastic control formulations leads 
naturally to the "correct" feedback structure of an "observer" 
and "controller." Our approach leads directly to this struc- 
ture through limiting processes which involve large deviation 
principles. The method clearly establishes the separation of 
the feedback policy and provides a framework for evaluating 
practical recipes. This correspondence and application to the 
discrete-time, nonlinear, robust, output feedback stabilization 
problem will be described in detail in a different publication 
El * 

Finally, the small risk limit is evaluated in Section V 
and shown to be a standard risk-neutral partially observed 
stochastic control problem. The notion of information state 
and the use of dynamic programming is well known for risk- 
neutral problems (e.g., [22], [25]). The continuous-time case 
is discussed in James et aE. [21]. 

11. THE RISK-SENSITIVE CONTROL PROBLEM 

A. Dynamics 

On a probability space (52,  F, P") we consider a risk- 
sensitive stochastic control problem for the discrete-time sys- 
tem 

on the finite time interval k = 0, 1, 2, . . , M .  The process x E  
represents the state of the system and is not directly measured. 
The process yE is measured and is called the observation 
process. This observation process can be used to select the 
control actions Uk. We will write for the sequence 
xi, ,zE, etc. & and yk denote the complete filtrations 
generated by (x:, k ,  96, ]E) and y;, k respectively. 

We assume: 
i) x; has density p(x) = ( 2 ~ ) - " / ~ e x p ( - 1 / 2 ( ~ : ( ~ ) .  
ii) {w;} is an R" valued i.i.d noise sequence with density 

iii) y; = 0. 
iv) {wi} is a real-valued i.i.d noise sequence with density 

@(w) = ( 2 ~ t ) - ~ / ~  exp ( - 1 / 2 ~ ~ ~ ~ ~ ) ,  independent of x; 
and {w;}. 

v) b E C1(R" x R", R") is bounded and uniformly 
continuous. 

vi) The controls Uk take values in U c R", assumed 
compact, and are yk measurable. We write uk,l for 
the set of such control processes defined on the interval 

+ E ( w )  = ( 2 r ~ ) - " / ~ e x p  ( - I / ~ E I w ~ ~ ) .  

I C , .  , E .  
vii) h E C(R") is bounded and uniformly continuous. 
The probability measure P" can be defined in terms of an 

equivalent reference measure Pt using the discrete analog of 
Girsanov's Theorem [11]. Under P i ,  {y;} is i.i.d with density 
@, independent of {xi}, and xE satisfies the first equation in 
(2.1). For U E U O , M - ~  

where 

B. cost 
The cost function is defined for admissible U E 240, ~ - 1  by 

and the partially observed risk-sensitive stochastic control 
problem is to find U* E U O , M - ~  such that 

JPtE(u*) = inf P'(u). 
UeuO, M-1 

Here, we assume: 
viii) L E C(R" x R") is nonnegative, bounded, and 

ix) @ E C(Rn) is nonnegative, bounded, and uniformly 

Remark 2.1: The assumptions i) through ix) are stronger 
than necessary. For example, boundedness assumption for b 
can be replaced by a linear growth condition. In addition, a 
"diffusion" coefficient can be inserted into (2.1). Other choices 
for the initial density p are possible; see Remark 4.1. 

The parameters p > 0 and E > 0 are measures of risk 
sensitivity and noise variance. In view of our assumptions, the 
cost function is finite for all p > 0, E > 0. These parameters 
will remain Jired throughout Section 11. 

In terms of the reference measure, the cost can be expressed 
as 

uniformly continuous. 

continuous. 

C. Information State 

We consider the space L"(R'") and its dual L"*(R"), 
which includes L1(Rn). We will denote the natural bilinear 
pairing between L"(R") and Lm*(R") by (7, v) for 7 E 
Lm*(Rn),v E L"(R"). In particular, for g E L1(R") and 
v E L"(R") we have 

We now define an information state process E 
L"* (R") by 

for all test functions q in L"(R"), for k = 1, . . , M and 
go"' E = p E L1 (R"). We introduce the bounded linear operator 
W E :  L"(R") -+ L"(Rn) defined by 
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The bounded linear operator W : Lm*(Rn) + L"* (R") 
adjoint to W E  is defined by 

(E'"+*T, 7)) = (7, P ' 7 ) )  

for all T E L"*(R"), 7) E Lw(R"). 
The following theorem establishes that U:" is in L1(R"), 

and its evolution is governed by the operator WE*; for 
U E L1(R"), 7) E Lm(Rn), we have 

Theorem 2.2: The information state a;l' satisfies the re- 
cursion 

Further, U:" E L1(R") since p E L1(R") and E ~ ~ "  maps 
L1(R") into L1(Rn). 

Proofi We follow Elliott and Moore [ l l ] .  From (2.4), 
we have 

k-2 -I 

= (U:::, x"'(Uk-1, y;)7)) 

= ( x ' " ' E * ( U k - l ,  &)a[lt,  7)). 

This holds for all 9 in L"(R"); hence (2.7). 
The fact that W E *  maps L ~ ( R " )  into L1(Rn) follows 

easily from (2.6) and the properties of $', !P', and L. 0 
Remark2.3: When L G 0, the recursion (2.7) reduces to 

the Duncan-Mortensen-Zakai equation for the unnormalized 
conditional density [22]. 

The operator E"?' actually maps cb(Rn) into cb(Rn). 
Then we can define a process vi' ' E cb(R") by 

It is straightforward to establish the adjoint relationships 

for all U E L1(R"), v E Cb(R"), and all k. 

D. Alternate Representation of the Cost 
Following [4], we define for U E UO,M-I  

a cost function associated with the new "state" process a!? '. 
Theorem 2.4: We have for all U E UO, ~ - 1  

J '"* ' (U)  = K'"?'(U). (2.1 1) 

Proofi By (2.4), 

= J'"7'(u) 

using (2.3). 0 
We now define an alternate but equivalent stochastic control 

problem with complete state information. Under the measure 
P", consider the state process a:? ' governed by (2.7) and the 
cost KF>'(u) given by (2.10). The new problem is to find 
U* E Uo,~-l minimizing K"9'. 

Let U;, I denote the set of control processes defined on the 
interval k,-..,l which are adapted to a(a;,', k I j I 1). 
Such policies are called separated [22]. 

E. Dynamic Programming 

The alternate stochastic control problem can be solved using 
dynamic programming. Consider now the state on the 
interval k, . . , M with initial condition u:~ e = U E L1(R"): 

The corresponding value function for this control problem is 
defined for U E L1(R") by 

Note that this function is expressed in terms of the adjoint 
process vi*', given by (2.8). 
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Theorem 2.5 (Dynamic Programming Equation): The 

S P ?  '(a, k) = infuEU Et[S@?'(W'* (U, Y ~ + ~ ) C T ,  k -t l)] 
Sp>'(a, M )  = (a, exp$'P). 

value function S P ?  E satisfies the recursion 

(2.14) 
Proofi The proof is similar to Elliott and Moore [ l l ,  

= a] 

The interchange of minimization and conditional expectation 
is justified because of the lattice property of the set of controls 

Theorem 2.6 (Veri$carion): Suppose thatu* E Ut, M-l is a 
policy such that, for each k = 0,. . . , M - 1, U: = Ez(afi'), 
where Ti;(.) achieves the minimum in (2.14). Then U* E 
U O , M - I  and is an optimal policy for the partially observed 
risk-sensitive stochastic control problem (Section 11-B). 

Proof: We follow the proof of Elliott and Moore [ l l ,  
Theorem 4.71. Define 

[9, Chapter 161. 0 

-P S ' E (a, k; U )  = Et[(ac", ~,"")IG,"" = a]. 

We claim that 

SP?'(a, k) = sP"(a, k; U * )  (2.15) 

For k = M, (2.15) is clearly satisfied. Assume now that 
for each k = 0, 1,. . . , M. 

(2.15) holds for k + l , . - . , M .  Then 
-P E s ' (G, k; U * )  = Et[Et[(C'"J (U; ,  y;+l)a;' ', 

' v&i(Ut+~, M-I)) I yk+l] 1 Gf' ' = 

from (2.14). This proves (2.15). 

From (2.15), setting k = 0 and a = p E L1(Rn) we obtain 
--cc ' s ' (p ,  0; U') = S""(p, 0) 5 P ( p ,  0; U )  

for any U E UO, ~ - 1 .  Comparing (2.10) and the definitions of 
S P ?  ', 3" ' above this implies 

K P ? ' ( U * )  5 Kr"r'(u) 

proof. 0 
for all U E UO, ~ - 1 .  Using Theorem 2.4, we complete the 

Remurk2.7: The significance of Theorem 2.6 is that it 
establishes the optimal policy of the risk-sensitive stochastic 
control problem as a separated policy through the process 
a;' ', defined in Section II-C, which serves as an "information 
state" [22]. The information state af ' is a suficienr srarisric 
for the risk-sensitive problem [25]. 

In. SMALL NOISE L m  
To obtain a limit variational problem as E + 0, we must first 

obtain limit results for the information state (and its dual). 

A D = { p  E C(R"): p(x) 5 -y1(zI2 + 7 2  for some 7 E G) 
and write 

c~(R")  2 { q  E c(P): lq(x)ls C, for some c 2 01. 
We equip these spaces with the topology of uniform con- 
vergence on compact subsets. In the sequel, B(z ,  a) c Rp 
denotes the open ball centered at x E Rp of radius a > 0. 

The "sup pairing" 

(3.1) 

is defined for p E V, q E Ca(Rn) and arises naturally in view 
of the Varadhan-Laplace Lemma (see the Appendix): 

(3.2) 

(uniformly on compact subsets of VY x Ca(Rn), for each 

Define operators AP*: 2) + 27, and A': Cb(!Rn) -+ 
7 E GI. 

Ca(R*) by 
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With respect to the "sup pairing" (., .), these operators satisfy 

(3.4) 

Also, Ap*(u, y): 2 7  -, V is continuous for each y E G; in 
fact, the map (U, y, p) H A ~ * ( u ,  y)p, U x R x Vr ---t ID is 
continuous. 

The next theorem is a logarithmic limit result for the 
information state and its dual, stated in terms of operators 
(i.e., semigroups). 

(AP*P, d = (P, A P d .  

Theorem 3.1: We have 

lim,,o 4 log w e* ( U ,  y)eP/'p = A P * ( ~  7 Y P, 
P 

lime-,o 5 log ' ( U ,  y)eP/'* = AP(U, y)q (3.5) 
P 

in 2) uniformly on compact subsets of U x R x V7 for each 
y E G, respectively in Cb(Rn) uniformly on compact subsets 
of U x R x Cb(Rn). 

Proof: From (2.6), we have 

4 log CPL' E* (U, y)e'llEP(z) 
P 

Therefore, 

= AP*(U, Y)P(Z) 

uniformly in a = (2, U, y, p) E A, by Lemma A.l; where 
A = B(0, R) x U x B(0, R) x K ,  and K c DY is compact. 
This proves the first part of (3.5). The second part is proven 
similarly. 0 

B. Risk-Sensitive Value Function 
The next theorem evaluates the small noise limit of the risk- 

sensitive value function '. It involves two large deviations 
type limits, one corresponding to estimation and one to control. 

Theorem 3.2: The function W"(p, k) defined for p E 2) by 

exists (i.e., the sequence converges uniformly on compact 
subsets of 2 7  (y E G)), is continuous on Vr (y E G), and 
satisfies the recursion 

pro08 The result is clearly true for k = M because of 
the second of (2.14), (3.2), and the continuity of p H ( p ,  'P) 
on each 277. 

Assume the conclusions hold for k+l ,  . . . , M. Select y E G 
and K c 277 compact. In what follows C > 0, etc, will denote 
a universal constant. From Theorem 2.5 and (3.6), we need to 
compute 

lim,,o 4 log S P ~  E(eP/Ep, I C )  

= lime,o 4 log inf ~t [ s ~ I  '(PI ( U ,  yi+l) 

1-1 

p uEU 

. eP/'P, IC + I)] 
= lim,,o inf 4. I ~ ~ E + [ s ' L ' E ( c ~ ~ ' * ( ~ ,  y;+l) 

UEU 

. ep/'P, k + 111. (3.8) 

The last equality is due to the monotonicity of the logarithm 
function. 

Direct calculation verifies the estimate 

4. log SP? '(c"> E* ( U ,  y)ep/Ep, k + 1) 5 C(I+ ~ y l )  
1-1 

for all U E U, y E R, p E K ,  E < E' for some E' > 0, and 
the inclusion 

5 log ZP9 e' y)eP/'P E vr(lrl) 
P 

for all U E U, y E R, p E K ,  E < 8, for some y(ly1) E G. 
The fact that y( Iy I) depends on Iyl complicates matters a little. 
If we select R > 0 and consider those y for which (y( 5 R, 
then there exists YR E G such that 

5 log C P ~ E *  (U, y)ep/EP E D ~ R  

for all U E U, IyI 5 R, p E K, for all E > 0 sufficiently small. 
Considering the right-hand side of (3.8) we have 

P 

VP' ' ( p ,  I C ;  U) 
6 4 logEt[Sp*'(Cp''* ( U ,  y;+l)ep/'P, IC + 111 
= log k@(y)Sp. E(Cp,e* (U, y)ep/'P, k + 1) dy 

P 

+ / I v l l R  
A E  = - log{A + B}. 

P 

qY(y)Sp'"(Cp"' (U, y)ePIEP, k + 1) dy 

(3.9) 

Now using the bounds above we can write 

and using a standard estimate for Gaussian integrals we obtain 

5 -C' (3.10) 
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as E -+ 0, uniformly in U E U , p  E K, where C’ > 0 if R > 0 
is chosen sufficiently large. 

By the induction hypothesis W P ( p ,  k + 1) exists and 

Wp(p,  k + 1) = lim 4. logsP> ‘(ePI‘P, k + 1) 
6-0 p 

uniformly on ’DYR.  We also have from Theorem 3.1 that 

uniformly on U x B(0, R) x K, and 

A”*(u, y)p E ’DYR 

for all (U, y, p) E U x B(0, R) x K.  
Consider the function Wp(AP*(u, y)p, k + 1) - 1/2pIyl2. 

Due to the induction hypothesis and the properties of APT 

it is continuous in p ,  y, U, and bounded in y; all properties 
uniformly in (U, p) E U x K. Therefore we can choose R 
large enough so that enough so that both (3.10) is satisfied 
and 

WP(AP*(u, y)p, IC -t 1) - 
Y ER 

We keep R fixed from now on. 
Combining the above limits for S P >  E and W E we have that 

(3.11) 
1 

21.1 

uniformly in U E U,p E K,y E B(0, R). 

Indeed, we follow the proof of Lemma A.l with 

s ~ > ~ E ( w ~ *  (U,  y)eP/‘*, IC + 1) 

= W p ( A P * ( ~ ,  y)p, k + 1) - -Iyl2 

We can now proceed with the further computation of (3.9). 

replacing exp (F:/E),  and 

1 
WP(AP*(U, YIP, k + 1) - Gl”2 

replacing Fa, and a = (U, p )  E A = U x K. Then 

1 

2P 
WP(A@*(u, y)p, k + 1) - -1112) 

YER E’O p 

(3.12) 

uniformly in U x K. It is crucial that R is chosen as above so 
that the uniform bound required by condition iii) of Lemma 
A. 1 is satisfied. Consequently 

lim,,oVP~ ‘((p, k; U) 

= lime+o 5 log (A + B )  

= limc+o 4 logA(1 + B/A) 
P 

P 

= sup { WP(A@*(u,  y)p, IC + 1) - -IyI2} 1 
Y ER 2P 

uniformly on U x K, since lim,,o c/plog (1 + B/A) = 0 
from (3.10) and (3.12). 

To complete the proof, we use the continuity of the map 
(p, U) H V”>‘(p,  k; U),  V7 x U -, R to obtain 

= lim,_,o inf VP7 ‘(p, k; U) 

= inf lime-,O VP9 ‘ ( p ,  k; U )  

UEU 

UEU 

uniformly on K. The last equality holds by the definition (3.6). 
The sequence converges uniformly on K, and as a result 

W@(p, k) is continuous on 27’. This completes the proof. U 
Remark3.3: In Section IV (3.7) will be interpreted as 

the optimal cost function (upper value) for a dynamic game 
problem. 

Remark3.4: Note that there are two large deviation type 
limits involved in the result of Theorem 3.2. The first is 
expressed in the use of (3.5) in (3.11) and corresponds to 
“state estimation” or “observers.” The second is embodied in 
(3.6) and corresponds to the relationship of the stochastic risk- 
sensitive optimal control problem to the deterministic game 
that (3.7), (3.13) imply. 

IV. A DYNAMIC GAME PROBLEM 

A. Dynamics 
We consider a two-player deterministic partially observed 

dynamic game for the discrete-time system 

on the finite time interval k = 0, 1, 2, . . . M ,  where 
i) z(0) = z o  is the unknown initial condition, and y(0) = 

0. 
ii) Player 1 selects the U-valued control U k ,  which is 

required to be a nonanticipating functional of the obser- 
vation path y. We write uk, 1 for the set of such controls 
defined on the interval k, . . . , E, and note that U E &, 1 

if and only if for each j E [k, I] there exists a function 

iii) Player 2 selects the R” x R-valued disturbance 
( W k ,  W k ) ,  which is a square summable open-loop 
sequence. We let Zz([k, I], Rp) denote the set of square 
summable RP-valued sequences defined on the interval 
k,...,l(p = n, 1, n +  1). 

Zj: &-’+l)” -+ U such that U j  = aj((Yk+l,j). 
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B. Cost for all IC, and 
P 

N exp - q p  (4.7) ai“ N exp-pg, up,‘ P 

in probability as E + 0. 
Remark 4.2: The asymptotic formulas (4.7) are similar to 

the large deviation limit for nonlinear filtering ([ 151, [16], [19], 
[20]). In addition, if L s 0 the recursions (4.4) reduce to 

estimation. 

E E k  
The payoff function for the game is defined for admissible 

U E U o , ~ - i  and (w, W )  E 12( [0 ,  A4 - 11, I?.”+1) by 

M-1 

J’”(U7 w, U) = sup 
2 0  

M-1 
the equations for Mortensen’s method of minimum energy 

1=0 

where a E D. 
Remark 4.1: This formulation treats 20 as part of the 

uncertainty (to be chosen by nature). A priori knowledge of 
zcg is incorporated in the cost function a E D. Our theory also 
applies to the case a = 0, which corresponds to no a priori 
information, and note lim,,o E log p = 0, where p is the initial 
density for the risk-sensitive stochastic control problem. One 
can alternatively select a E 2, and define the initial density by 
p(z )  = e, exp ( -a(%)/€) ,  where e, is a normalizing constant. 

The (upper) game is defined as follows. Let 

J ~ ( u )  = SUP J y U ,  w, U), 
( w ,  w ) E l z ( [ O ,  M--l],Rn+l) 

and the (upper) partially observed dynamic game problem is 
to find U* E U O , M - ~  such that 

J ~ ( u * ) ’ =  inf J p ( u ) .  
UEUO,  M-1 

The cost function P(u) can be rewritten in the form 

M-1, 

This cost function is finite for all p > 0. 

C. Information State 

Motivated by the use of an information state and associated 
separation policies in solving the risk-sensitive stochastic 
control problem, given a control policy U E UO, M-1 and an 
observation path y E Z2([0, MI, R),  we define an “information 
state” p i  E D and its “dual” qg E Ct,(R”) for the game 
problem by the recursions 

(4.4) 

(4.5) 

where A. and A.* are as defined in (3.3). Note that, in the 
“sup pairing” notation of (3.1), 

(4.6) (PE, 473 = (Pg-1 ,  4 L )  

D. Alternate Representation of the Cost 

Define for U E Uo, ~ - 1  

a cost function associated with the new “state” process pg. 
Theorem 4.3: We have for all U E Uo, M-1 

J’”(U) = KC”(u). (4.9) 

Proof: Iterating (4.4), we see that 
f M-1 

~ M-1- 

Substitution of this equality into (4.8) yields (4.9). 0 
We now define an alternate deterministic dynamic game 

problem with complete state information. Consider the state 
sequence p i  with dynamics (4.4) and the cost K ~ ( u ) :  find 
U* E U;, M-l minimizing KP. Here, U,., denotes the set 
of separated control policies, through the information state 
pf ,  defined on the interval I c , . - . , l ,  i.e., those which are 
nonanticipating functionals of (pr, IC 5 j 5 1). Note that 
ui,l c uk,1. 
E. Dynamic Programming 

initial condition pg = p E D 
Consider now the state pp on the interval I C , .  . . , A4 with 

The (upper) value function is defined for p E 2) by 

W p ( p ,  IC) = inf SUP 
M-1y€t2([k+1, MI, R) 

Theorem 4.4: The value function W p ( p ,  k) defined by 
(4.11) is the unique solution of the dynamic programming 
equation (3.7). 
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I 1 M - 1  
- - 

lYE+112 - -JYk+1I2: p: = p  
2Pl=k+l 2P 

1 M-1 
- - 

IYl+1l2 - - lyk+1(2:  2P p: = p  
2Pl=k+l  

- -lYk+112} 1 
2P 

which is the same as (3.7). Here, the interchange of the 
minimization over Wk+l, m-1 and maximimization over Yk+l  

U 
Remark4.5: We conclude from Theorem 3.2 and 4.4 that 

the small noise limit of the partially observed stochastic risk- 
sensitive problem is a partially observed deterministic dynamic 
game problem. 

Theorem 4.6 (Verzjication): Suppose that U* E U;, M41 is 
a policy such that, for each k = 0,.  - . , M - 1, U; = -* Uk ( p i ) ,  
where Ei;(p) achieves the minimum in (3.7). Then U* E 
UO, ~ - 1  and is an optimal policy for the partially observed 
dynamic game problem (Sections IV-A, IV-B) 

is justified because vk+1, ~ - 1  is a function of y k + l .  

Proof: Define 

Wc”(P, I C ;  U )  

We claim that 

W P ( p ,  I C )  = wyp, I C ;  U * )  (4.12) 

for each IC = 0, 1, . . , M. For IC = M, (4.12) is true. Assume 
now that (4.12) holds for IC + l , . . - , M .  Then 

W%, I C ;  U * )  

= sup SUP 
Y L + ~  E R  y&([k+2, MI,  R) 

W*(u;, Y k + l ) P E ,  4;+&*k + 1, M - 1)) 

1 -- 2P IYk+1I2: P i  = P 

which proves (4.12). 
Next, from (4.12) and setting IC = 0 and p = (Y we obtain 

W’”(a, 0; U * )  = wqa, 0) 5 wya, 0; U )  

for all U E U O , M - ~ ,  which implies 

K@(U*) 5 KP”) 

for all U E Uo, ~ - 1 .  This together with Theorem 4.3 completes 
the proof. U 

F. Certainty Equivalence Principle 

Remark 4.7: Theorem 4.6 is the “appropriate” separation 
theorem for the partially observed dynamic game described in 
Sections IV-A and IV-B, in that it establishes that the optimal 
feedback policy is a separated one [22] through the information 
state p i  which carries all the information from the observations 
y o ,  k relevant for control. It is important to note that the 
solution of this partially observed dynamic game problem 
involves two infinite dimensional recursions. One is (4.4), 
which describes the dynamics of the information state, evolves 
forward in time, and is a dynamic programming equation in 
view of (3.3). This equation plays the role of an “observer” 
in the resulting controller and is determined by the control 
problem at hand, and not prescribed a priori. The information 
state $(z) is a function of the state variable z E R”. The 
other recursion is (3.7), which describes the computation of 
the feedback control as a function of the information state, 
evolves backward in time, and is a dynamic programming 
equation. The value function Wfi(p, k) is a function of the 
information state variable p ,  which takes values in the infinite- 
dimensional space D. An important aspect of our work is to 
point out this essential difficulty of the nonlinear robust Ha 
control problem. This is not surprising given that this difficulty 
is well known in stochastic control. For practical applications, 
one can try to find suboptimal finite-dimensional schemes that 
provide performance close to the one predicted by the optimal 
results obtained here. We are also pursuing the development of 
numerical schemes that can compute the required recursions 
(4.4) and (3.7), as well as the incorporation of such schemes 
into computer-aided design control systems design software 
based on optimization. 

We now relate the above analysis to certainty equivalence 
principles suggested by Whittle [26], [28] for the risk-sensitive 
problem, and by Basar and Bemhard [3] for the game problem. 

Consider a completely observed dynamic game problem 
with dynamics 

and payoff function 
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where the initial state xg is known, player 1 selects U E 
U;, M-l to minimize J P ,  and player 2 selects w E Z2( [0, M - 
l), R”) to maximize J”. Here, U:, is the set of U-valued 
controls which are nonanticipating functionals of the state x 
defined on the interval I C , . . . , Z  . 

Define the upper value (see e.g., [lo]) for this dynamic game 
by 

f;(z) = inf SUP { y L(x1, U l )  
- 

M-1 w E l z ( [ k ,  M - I ] ,  R”) l=k 

I M - 1 .  

This function satisfies the dynamic programming equation 

- 
f:(z) = i n f u ~ U  
- {7;+1(b(z, U )  +.I) + L(x ,  U )  - $lwIz} (4.16) 

f a 4  = @(.I 
and if ’ilz(x) E U achieves the minimum in (4.16), then 

observed game. 
Whittle 1261, [28] solves the partially observed risk-sensitive 

stoGhastic control problem by using the solution to the com- 
pletely observed game (4.16) and the modified filter or “ob- 
server” (4.4). He refers to 7; as the future stress, to p i  as 
the past stress, and defines the minimum stress estimate z k  of 
x k  by 

k --* - U k ( x k )  is an optimal feedback policy for this completely 

where 2; is a set-valued variable. For linear systems with 
the quadratic cost, the certainty equivazence principle asserts 
that if J”(u,  w, v) is negative definite in (w, U )  (and positive 
definite in U ) ,  then U ;  = - i i . , ( zk )  is an optimal control for the 
partially observed risk-sensitive problem [26]. For nonlinear 
systems, Whittle’s assertion is that this recipe gives a policy 
which is approximately optimal for the risk-sensitive stochastic 
control problem [20]. 

Remark4.8: The variable 2; is set-valued and is closely 
related to the finite-time observer results of James [19, (3.8)] 
and our earlier observer design methodology [l], [20]. Indeed 
our construction brings out another essential difficulty of the 
nonlinear problem, which has to do with multivalued (or set- 
valued) variables for state estimation and control. We will have 
more to say about this issue in a forthcoming paper. 

We now state a certainty equivalence principle for the 
partially observed deterministic game problem described in 
[3, Chapters 5, 61. 

Theorem 4.9 (Certainty EquivaZence): Let 7; (z) be the 
upper value for the full state information game (4.13), (4.14). 
If for all IC = 0,. . . , M and p E 2) we have 

WYP, I C )  = (P, 73  (4.18) 

then the policy uce E U;, M-l defined by 

U r  = ‘&L(Hk) (4.19) 

is an optimal policy for the partially observed game problem 
(Sections IV-A and IV-B). 

Proof: Let 

4(P> E argmax + 7;(C)). 
(ER* 

Then the minimum stress estimate and the candidate policy 
defined by (4.19) can be written as 

(4.20) - 
5 k  = Xi(&) and U T  = ‘6 i (X; (p i ) ) .  

Therefore UT is a separated policy. To check the optimality 
of u F ,  we apply the verification Theorem 4.6. We must show 
that for each k ,T i r (p )  = GE(zE(p)) achieves the minimum in 
(3.7). To prove this, using the hypothesis (4.18) at time k + 1, 
we have 

A 

= inf sup sup sup 
u E u y ~ R  XER” €eRn 

(4.21) 

On the other hand, (4.18) at time IC implies 

(4.22) 

Thus W p ( p ,  IC) is a saddle value for a static game, with 
saddle point = x;(p), U = i i i ( z ; ( p ) ) .  Therefore iiE(xE(p)) 
achieves the minimum in (3.7). 0 

Remark 4.10: As described in Remark 4.7, the partially 
observed dynamic game (and the related robust control prob- 
lem [23) involve two infinite-dimensional recursions. The 
significance of the “certainty equivalence” theorem is that if 
valid, the recursion (3.7) invo1.ving the value W”(p, I C ) ,  p E 2) 

can be replaced by a simpler recursion (4.16) involving the 
upper value T;(z>, x E R”. This has obvious computational 
implications. 
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Remark 4.11: A crucial contribution here is that we have 
identified precisely the condition that one needs to establish 
the certainty equivalence principle suggested in [3], [26], [28]. 
The condition is (4.18), i.e., the saddle point condition in 
(4.21), (4.22). One may ask to what extent this condition 
can be obviated. Or alternatively, can we show under certain 
assumptions that (4.18) is satisfied? A counterexample to the 
certainty equivalence principle is given in Bernhardsson [5], 
and hence this principle is not valid in general. Indeed, (4.18) 
may not hold in general, and the proof of Theorem 4.9 shows 
that 

(4.23) 

This is not surprising from the point of view of stochastic 
control, since the certainty equivalence principle is not valid 
generally in that context. 

Remark 4.12: Since the partially observed game is the limit 
of the partially observed risk-sensitive problem, then, if the 
certainty equivalence principle is valid, the policy (4.19) is 
an approximate optimal policy for the partially observed risk- 
sensitive problem for small E > 0 [28]. 

Remark4.13: The Bertsekas and Rhodes paper [6] con- 
siders game problems similar to the type discussed here. In 
the Ianguage of that paper, the information state is a 
sufficiently informative function, i.e., the deterministic dynamic 
game analogue of sufficient statistic [25]. 

v. SMALLRISKLIMIT 

In this section we show that a risk-neutral stochastic control 
problem is obtained if in the risk-sensitive stochastic control 
problem the risk-sensitivity parameter p tends to zero. 

A. Znformution State 

Define the bounded linear operator CE* : L1 (R") + L1 (R") 
by 

Theorem 5.1: We have 

uniformly on bounded subsets of U x R x L1(Rn). 
Proof: This result follows simply from the definitions 

(2.6), (5.1). 0 
Next, we define a process a; E L1(Rn) by the recursion 

(5.3) 

Remur(k5.2: The process a; is an unnormalized condi- 
tional density of z; given &, and (5.3) is known as the 
Duncan-lvlortensen-Zakai equation [ l l ] ,  [22]. 

B. A Risk-Neutral Control Problem 
We again consider the discrete-time stochastic system (2.1) 

and formulate a partially observed risk-neutral stochastic con- 
trol problem with cost 

J E ( U )  = E" L(zf, U [ )  + @(zb) ] (5.4) 1:: 
defined for U E Uo, ~ - 1 ,  where UO, ~ - 1 ,  etc., are as defined 
in Section 11. This cost function is finite for all E > 0. 

We quote the following result from [ l l ] ,  [22], which es- 
tablishes that the optimal policy is separated through the 
information state a; satisfying (5.3). 

Theorem 5.3: The unnormalized conditional density a; is 
an information state for the risk-neutral problem, and the value 
function defined for U E L1(Rn) by 

satisfies the dynamic programming equation 

(W'(a, 6 )  = infuEU 

If U* E U;, M-l is a policy such that, for each k = 0,. - , M -  
1, ug = ag(~;), where Ei;(a) achieves the minimum in (5.6), 
then U* E UO, ~ - 1  and is an optimal policy for the partially 
observed risk-neutral problem. 

Remark 5.4: The function WE(o,  k) depends continuously 
on a E L1(Rn). 

C. Risk-Sensitive Value Function 
The next theorem evaluates the small risk limit of the risk- 

sensitive stochastic control problem. Note that normalization 
of the information state is required. 

Theorem 5.5: We have 

uniformly on bounded subsets of L1(R"). 
Proof: 1) We claim that 

SPIE(a, k) = (a, 1) + EW'(u, k) + o(p) (5.8) 

as p -, 0 uniformly on bounded subsets of L1(R"). 
For k = M, 

S P ?  €(a, M )  = (a, e+*) 

as p --+ 0, uniformly on bounded subsets of L1(Rn). 
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Assume now that (5.8) is true for k + 1, . . . , M. Then 

VPv'(a, I C ;  U )  

2 Et[S""(W'* ( U ,  y;+l)a, k + l)] 
r $ ' ( y ) S P + ( C f q u ,  y)a,  k + 1) dy =L 

as p + 0 uniformly on bounded subsets of U x L1(Rn). Thus, 
using the continuity of (a, p )  t) W ' ( a ,  k; U )  

S p y  ' (a ,  k) 
= inf V@'(O, k; U )  

UEU 

= (a, 1) + Fw-ecff, k) + o(p) 

uniformly on bounded subsets of L1(Rn), proving (5.8). 
2) To complete the proof, note that (5.8) implies 

APPENDIX A 

The following theorem is a version of the Varadhan-Laplace 
Lemma [13]. Below e denotes a metric on C(R") correspond- 
ing to uniform convergence on compact subsets, and B(z ,  a) 
denotes the open ball centered at z of radius a. 
Lemma A.1: Let A be a compact space, F:, Fa E C(Rm), 

and assume 

i) 

lim sup Q(F,', Fa) = 0. 

ii) The function Fa is uniformly continuous on each set 
B(0, R), R > 0, uniformly in a E A. 

iii) There exist y1 > 0, y2 2 0 such that 

''O aEA 

F,E(z), Fa(z) I -Y1Izl2 + 7 2  

for all z E R", a E A, E > 0. 

Then 

pro08 Write Fz = SUP,~R~F:(Z>, Fa = 
S U P , ~ R ~  Fa(%). Our assumptions ensure that 

lim sup Fz = Fa. 
aEA 

For 6 > 0 define 

Bi" = { E  E R": F:(s) > F: - 6). 

Then the uniform coercivity hypothesis iii) ensures there exists 
R > 0 such that B;lE c B(0, R).  

By hypothesis ii) on B(0, R) and using the uniform con- 
vergence on B(0, R), given 6 > 0 there exists r > 0 such 
that 

12 - 2'1 c r implies [F:(z) - F:(z')l < 6 
for all z, z' E B(0, R), a E A, and E > 0 sufficiently small. 

< r implies JF,"(z) - 
F a /  < 6 for all a E A, and E > 0 sufficiently small. Hence 

for all a E A, and E > 0 sufficiently small. Then 

Let z; E argmax F,". Then lz - 
--e 

B(sZ, T) c B y  

and hence 

as p + 0, uniformly on bounded subsets of L1(R"). 
Remark 5.6: We conclude from Theorems 5.3 and 5.5 that 

the small risk limit of the partially observed stochastic risk- 

problem. 

0 Thus 
E log a: 2 E log Cmrm + Fz - 6 

sensitive problem is a partially observed stochastic risk-neutral >Fa-36 (A.2) 
for all E > 0 sufficiently small and all a E A. 

I 
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and note that 

Eloga; = ElogA + O ( B / A ) .  

Now 

5 CRexp(-C’/€) 

where CR, Cl, C2 > 0, and C’ > 0 if R is chosen sufficiently 
large. Also 

E log A 5 E log exp (F: /E)  dx 
xl<R 

where R is chosen large enough to ensure that 
argmaxx,R- F,“(x) C B(0, R) for all a E A and all 
sufficiently small E. Thus 

(A.3) Eloga; 5 Fa + 36 

for all E > 0 sufficiently small and all a E A. 
Combining (A.2) and (A.3) we obtain 

- 
sup IEloga: - Fa] < 36 
aEA 

for all E > 0 sufficiently small. This proves the lemma. 0 
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